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Abstract
Given a compact Riemannian manifold V", following the pioneers B. Bulanyi and I.

V. Schaftingen [28] we construct for every map u; in the critical Sobolev space

wm/mimilogm ay where m € N\ {0}, a map U;: B™! — N whose trace is u;

and which satisfies an exponential weak-type Sobolev estimate. The full hold result

carry on to the extensions to a half-space of maps on its boundary hyperplane and to the

hyperbolic space of maps on its boundary sphere at infinity.
Keywords: Extension of traces in Sobolev spaces; trace theory; Sobolev embedding theorem; weak-type
Marcinkiewicz spaces: Lorentz space.
1. Introduction

It is well-known in Sobolev spaces (see [9]) the classical trace theory states that for every m €

N\ {0} and 0 < e < oo, there is a well-defined surjective trace operator trgm: WH1€(B"*1 R) —
We/1+el+e(gm R) that coincides with the restriction on the subsets of continuous functions, where the

first-order Sobolev space on the unit ball B*** ¢ R™*? is defined as

Wl’1+E(R¥1+1, ]P&:): —

Up: B! — R | U; is weakly differentiable and Z [DU; | < m]
]B?111.+1 i

and the fractional Sobolev space W1=51*€(S™ R) on the unit sphere $": = dB]'*! is defined for —1 <
e < 0as

) —w(x + e
|E|m+[1—£3]

Wi—e,1+s (Sm, ]R) —

U;(x
U;: S™ — R | u; is measurable and f Z [t dyd(x +¢) < GO] [@D)]
M xgm 1

Overall, the trace operator trgm has a continuous linear right inverse. so that. for every function u; €
We/1+elre(sm R) there exists a function U, € Wh1+€(B™*, R) such that trgmU; = u; and

T [ () —wi(x + e)[1*° _
o 22 U < e [T dx d(x + ) ©)
By 1 gMygm ;

where the 0 < € << @0 in (2) depends on m and (1 + €) only.
Given an &V as above, which we can assume to be isometrically embedded into RY by Nash's
isometric embedding theorem (see [16]). we consider the mappings of Sobolev spaces as
WL (B V)= {U; € WE+(BI1, RY) | U; € NV almost everywhere in B}**1}

and

wi—elre(sm N = {u; € WITEIHE(S™ RY) | u; € IV almost everywhere in $™}
Although it follows immediately from the classical trace theory in [9] that the trace operator is well
defined and continuous from W+ (BP+L, V) to WE/HHE1+€(§™ ). the proof of the surjectivity fails
to extend fo this case: one can just prove that every mapping in W&/1+&1+€(S™ ) can be extended to a
function in W¥*+€(B"**, R¥): since the extension is constructed by convolution. there is no hope that
the extension would satisfy the nonlinear manifold constraint in general (see [28]).
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In the case of subcritical dimension m < e, maps in the nonlinear Sobolev spaces
we/trelre(gm ) and WEIHE(BTHY, V) can be assumed to be continuous by the Sobolev-Morrey
embedding; it turns out that all maps in W/1*S1€(§™ N) are traces of maps in WX (B, W) if
and only if all continuous maps from S to V" are restrictions of continuous mappings. or equivalently. if
and only if the m™ homotopy group m,,(N) is trivial: m,, (V) =~ {0} (see [3. Th. 1]). For the critical
dimension m = e, one gets similarly that all mappings in W™/(m+1Lm+1(gm Ny are traces of maps in
wimrigrtt N if and only if m,, (V) = {0} (see [3. Th. 2]): this can be explained by the VMO
(vanishing mean oscillation) property of maps in W™/(n+Lm+1cgm nry and the possibility to extend
homotopy and obstruction theories to such maps (see [7]).

But in the case of supercritical dimension m > e, the situation surely is radically different where it
has been proved in a succession of works among other results that the trace operator is surjective from

WL, V) to WhE/1e(S™, ) if and only if the homotopy groups 1y (W), ..., mc_1)(V) are
finite and 1) (V') is trivial [2, 3, 11, 15, 27].

For the case of subcritical or critical dimension m =< e, we can wonder whether the linear estimate
(2) can still hold for the extension of Sobolev mappings. It has been proved that every map u; €
we/(Ferlrersm ) has an extension U; € Wi+ (BT+1, ") with the estimate (2) when either m = 1
and 1y (V) = {0} or m = 2,y (V) is finite and 1y (V) == -+ = w5, (W) = {03, (see [11. 25]): hence.
if there is an extension satisfying (2). then the homotopy groups 7, (), ..., M) (V') have all to be finite
(see [2.15]): in the critical case m = e. the additional condition that m,, (V) = {0} is necessary for a
Sobolev estimate on the extension of continuous mappings that have a continuous extension (see [15]).

In view of the obstructions to linear Sobolev estimates on the extension of the form (2). one can
hope to get some nonlinear estimates instead. In the subcritical dimension case, a compactness argument
(see [24. Th. 4]) shows that given m € N \ {0}, m < € and an V' as above, there exists a function y €
C([0, ), [0,0)) such that ¥(0) = 0. and every map u; € W/C+E1+e(§™M Nr) that has a continuous
extension has an extension U; € WL +€ (B jv) satisfying

|20 e < y( [ > MmO e+ e)) 3)

where d is the geodesic distance on NV (see [28]).

Because of bubbling phenomena. this estimate (3) does not go to the endpoint € = m when
T (V) = {0}. Indeed. any map in WM/ M+LmM+Ligm ary is the weak limit of continuous maps in
wm/mrm+lgm nr) that can be extended so that a weak compactness argument would imply that
every map in W/(m+m+ligm N has an extension W1™+H1(BM*, A7), which cannot be the case
when 1, (V) = {0} (see [23. Prop. 2.8]). In this situation. it has been proved in works by [24] that there
is still an extension U; € WL m+L=)(BI+L N satisfying a weak-type Marcinkiewicz-Sobolev estimate
(see also [23, 24, Th. 2]): forevery 0 = € < oo,

d(u: 3 Ax m+1
(L + M L™ ((x € By |IDU,(x) I> 1 +€]) = V(ﬂ Y AT g agr e)) @)
SMxgm &=

|E|2m

The function y. appearing in the estimate (4) for a general target manifold V. is a wild double
exponential function (see [24. discussion after Th. 2]). Petrache and Riviere get similar estimates with y
being a polynomial when m = 2 and N = §? (see [23, Th. C]) (thanks to the Hopf fibration) and an
exponential of a power when m = 3 and V' = §2 (see [23. Th. B]).

following B. Bulanyi and J. V. Schatftingen [28] we construct an extension U; that satisfies (4).
where y can be taken to be an exponential function.
Theorem 1.1 (see [28]). Let m € N \ {0} and let ' be a compact Riemannian manitold. There exist
constants 4, B, § € (0, ) such that for every u; € W™/ m+Lm+1gm ) there exists a mapping U; €
WLL(B, V) such that trgmU; = u; and for every 0 < € < oo,

(1+ )™ ™ ({x € B |DU;(x) = 1+ €})

) 1 d(w; (x), w; (x + €))™*?
<4 expz B ﬂ omrrcsmusm o @ 4G +O) fmesm z e dxd(x + €) (5)
13 14

d(ug(x)ui(x+e))=8

Moreover, one can take U; € C(BM™1\ §, V), where the singular set § © B7"*! is a finite set whose
cardinality is controlled by the right-hand side of (5).
The gap potential of the double integral appearing in the exponential in (5)

1
J] - z w drde+o) 6)

AQu(x)ug(x+e))=6 1

first appeared in estimates by Bourgain, Brezis and Mironescu on the topological degree of maps from a

sphere to itself (see [4. Open problem 2: 5. Th. 1.1: 19]) (see also [22]) and in estimates on free homotopy

decompositions of mappings (see [25]). as well as in estimates on liftings (see [20. Th. 2: 26]): they

characterize. in the limit § — 0. first-order Sobolev spaces (see [17. 18, 21]) and encompass a property
stronger than VMO (see [6]).

Theorem 1.1 implies. in particular. the weak-type estimates of [24]. The improvement of Theorem

1.1 is two-fold: the dependence of the weak-type Sobolev bound on the extension U; is exponential in the

Gagliardo energy of ;. which is much more reasonable than the double exponential in [24] and the
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nonlinear part of the estimate, that is the exponential, relies on a gap potential (6) instead of a full
fractional Gagliardo energy

ff Z d(ui(f’();lli;éi-i- e)e dx d(x + €).

The latter confrols the folmer by the immediate estiluate

d(u; (), u; (x + €))1+e
jf (x,x+€)ESM xgM Z |e|2m dx d(x +¢) = 51+e jjmxgm Z e[2m dx d(x + €).

x(ug(x)uy(x+e))=8 1
We also have a counterpart of Theorem 1.1 for the extension on the half-space RM*1:= R™ X
(0, o0) of mappings defined on the hyperplane R™ =~ R™ x {0}.
Theorem 1.2 (see [28]). Let m € N\ {0} and let ' be a compact Riemannian manifold. There exist
constants A,B,8 € (0,») such that for every u; € W™/ MHLMAL(RM M) there exists U; €

11 {—=m+1 . B 3
Wior (]R+ N ) such that trgm U; = u; and for every 0 < € < oo,
(1+e)ymismiifx e IP&T+1||DUi(x) = 1+€})

) d (u; (x), u; (x + €)™ :
<4 expz U(" ) ERM XA |E|2"‘ dx d(x +¢€) Jf - e dxd(x +¢€). (7)
i d(u (x)ui(x+e) )><5' RXR

Moreover. one can take U; € C(R™*1\ §,V). where the singular set § € R™*! is finite whose
cardinality is controlled by the right-hand side of (7).

—In+1
Here U; € I/lfli;_l (IR+ N ) means that U; is weakly differentiable and that for every compact set

—m+1
Kc ]R:rl ,fK Y |DU;| < eo. Tt follows from (7) that for every relatively finite-imeasure open set G ©

—m+1

R, andeveryq € [1,m + 1), we have U; € W4 (G, V).

Lastly, we consider the extension of maps defined on its boundary sphere $™ by using the
Poincaré ball model and the hyperbolic space H™*? is the ball BI***, that surely endowed with the mefric
Jnyp defined for x € B7*1 in terms of the Euclidean metric g.,. by

_ 4geuc (X )

e ) = G ey
whose boundary S™ is then considered to be the boundary sphere of H™*. In this setting, we have a
hyperbolic counterpart of Theorem 1.1 and Theorem 1.2.
Theorem 1.3 (see [28]). Let m € N\ {0} and let V' be a compact Riemannian manifold. There exist
constants A4,B,8 € (0,e0) such  that for every u; € WM/MmFDmEl(gm Ay there
exists U; € WYH(BI!, N) such that trgmU; = u; and for every 0 < € < oo,
H™ 1 ({x e mm+1||DUi(x) I=1+¢€})

1 d(u (), u:(x + €)™+ .
1+ m+1 pz JJ‘ (x.x+e)eFMxEM Te12m d(l +eé) J] 2m dx d(_.\' + E) (8)
( E) (s ynaglere)>5 el M x§m €]

Moreover, one can take U; € C(H™*\ S, V). where the singular set S € H™*! is a finite set whose
cardinality is controlled by the right-hand side of (8).

Now we assert that U; € WYL(BY**:, V), with the ball BY**! endowed with the Euclidean metric
instead of the same ball H™*! endowed surely with the hyperbolic metric. Indeed. U, € W' (B, V)

would translate as
2m DU, (x
f ZIDU\— DUl
Hm+ (l —|xP)m

Hl+l

which is neither a consequence of U, e wt 1([8’”*1 N ) nor U; € WEHL(H™*L, V) and has no reason to
be expected.

Although standard conformal transformations between BP'*',H™*! and RT*! preserve the
fractional Gagliardo energy of the boundary values in the 11:11T-]1a11d sides of (5), (7) and (8), the
corresponding gap potentials and the strong-type quantities

f Z ‘DUi|m+11 j Z |DUi|m+1 and J Z |DUi|m+1
IB'.'ll’l+l I mi:’!+1 ; Hm+1 [
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corresponding to the weak-type quantities in their left-hand side. the left-hand sides as such are not
conformally invariant so that Theorems 1.1 to 1.3 are not equivalent to each other. In practice, this
explains why we have the same constiuction of U; in all three cases, but three different particular
estimates on U; (see [28]).

At the core of the proof of Theorems 1.1 to 1.3 there is a refined understanding of functions in the
fractional critical Sobolev space W1 &1t€(R™ RY). We start from the elegant and versatile approach
through the VMO property of critical Sobolev maps in [7]: if (1 — €2) = m, it follows from Lebesgue's
dominated convergence theorem and from the definition in (1) that

lim sup f f Z lu;(x + €) —wu(x + 2e) [P d(x +e) d(x +2e) =0 (9)
" 0xer™ Jp @) JB )

If u; € IV almost everywhere, then we have

1+e
dist U Z ui,N) < f f Z g (x + €) — u(x + 26)[1€ d(x + €) d(x + 2€) (10)
Br'(x) 3 B () VB (x) 5

Thus. by (9) and (10).

1+€

lim sup dist f z u;, v =0 (1D
T0xerm B (x) i

Because of the lack of conirol on the rate of convergence of the limit in (11), we need to refine it to get
the quantitative results we are looking for.

To give a glimpse of our core quantitative estimate in a simplified setting. we replace (11) by the
integral inequality

j sup j f z [ug(x +€) —u(x + 26) € d(x + €) d(x+2€}—
B (x) YB(x)

xem™

= —L"’([Bm)?-f J(x+ex+2£)elmmxmm [ (x + €) — up(x + 26)|* € d(x + €) d(x

lel=21
dr

+ 26) rim+1
[i; (x + €) — u;(x + 2e)|1F

N 2mLm(BT")? ffﬂmxmm - le|2m

It follows from (12) and the Chebyshev inequality that for every 0 < € < oo there exists 7 € (1,1 +€)

such that
Z sup dist f Z u;, NV
xeR™M E™M 7

r(1+e]_"'(x)
sup f j Z [u;(x + €) —u(x + 26) P ed(x + €) d(x + 2¢)
xelmm 'B:E1+€)—k( x)

d(x + €) d(x + 2¢). (12)

1+e

;;(x)

1(1+G)‘
‘Elzm

_ [ (x + €) —u, (x + 2€) |
= Zm‘cm([@;ﬂ)z In(1 + €) Jgmygmm J-f\ui(:c+€]—uf(x+2€]|1+s Z le[2m
If we take now an extension u; by convolution on the half-space R7'*2, (13) implies that when its right-
hand side is small enough, that is, when

s - ﬂ Z [u(xc + €) — uy(x + 2€)|**€ N "
RMxR™

d(x + €) d(x + 26). (13)

|E|2m

there is a family of hyperplanes whose distance to the boundary is in geometric progression of ratio (1 +
€) on which the exfension by convolution is close to the manifold. In view of (14), the ratio (1 + €) is
controlled by an exponential of the Gagliardo fractional energy.

In order to actually prove the results, we improve the estimate (12) in two directions. First, instead
of considering parallel hyperplanes. we consider a decomposition of cubes on the boundary of which we
control the MO. Second. we replace the MO by a truncated MO which can be controlled by the gap
potential (6).

In comparison, the proof in [24] of (4) relies on the estimate (see [24, Prop. 4.2])
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1-e dist (1—rz)m Z U; (x+e) q Iy dr
Jy oS |, 2 e a0 )5

|x|=r
1=€ (1 —|r|®)*m-t - w(x +€) —w(x + 2¢
= f % sup J i€ z)m igm )l d(x +€) d(x + 2¢) dr
0 J{ (S ) E]Em+1 gMygm |E‘ |2E|
lx]=r

1

=(l+e) (ln E)lif (ﬂ;mxsm Z [u; (x + €) TET;S( + 2e)|**€ o s 26))m,

with —1 < € < 0. This allows to find bad balls in the hyperbolic space in the Poincaré ball models
outside of which the hyperharmonic extension to B! is close to the target
manifold and whose radius is controlled by the exponential of the Gagliardo fractional energy. One
cannot perform directly a homogeneous extension on the bad balls because they could intersect; through a
Besicovitch-type covering argument, the construction is performed on collections of disjoint balls. with a
number of collections bounded exponentially: combined with the exponential of the radius appearing in
the equivalence between critical Marcinkiewicz-Sobolev quasinorms, this explains the double exponential
appearing in the final estimate. Here we avoid this pitfall by working directly with a decomposition into
disjoint cubes.

2. MO on (1 + €)-Adic Skeletons

2.1. Truncated MO. Our analysis will rely on truncated MOs, which have already been used in estimates
on homotopy decompositions in [25] and on liftings over noncompact Riemannian coverings in [26].
Definition 2.1. Given u;: R™ — V', we define the function MOgs ;41 RTFE — [0, 0] for every x =
(x!’xmﬁ—l) € RT+1 by

MOg 1 4ot (X): = Jc'

)f e Z (d(u;(x +€),u;(x + 26)) — 6)*e d(x +€) d(x + 2¢) (15)

L G

If € = 0. one has by Jensen's inequality,

1 1
(MO 141 (X)) 1€ < (MO 4 4 pett; (X)) 126 (16)

whereas if 8y, §; € [0, ). one has by the triangle inequality and by convexity,
MOs, 44t (x) < 26(MOs, 1461 (X) + (85 — 6,)17°) 17)

The truncated Gagliardo fractional energy can be written in terms of MOs as

H Z (d(u;(x + €),u;(x + 26)) — §)1+€ d(x +¢€) d(x + 2¢)

|E|m+(1—62)

LIH+IZ M081+fu (X) 1+(1 €2)

m+1
Proposition 2.2 (see 28). Given @; € C°°(]Rm,IR{) such that [ gm 2 @i = 1 and suppg; € BY". there
exists a constant 0 < € < o, depending only on m and ¢;. such that for every u; € Li,.(R™, R") and
every ¥ S RV satisfying u; € Y almost everywhere in R™, if V:R™?! - RY is defined for every
(', X1 as

—x—
Vi(x) = f Z U (x + 2€) ( )d(x + 2¢)
m+1 RM Xm+1
= f Z u; (x — Xy (X + ZE))(,OI-(X + 26)d(x + 2¢) (18)
R &~
then for every x = (x', X;p41) € RT . forevery § € [0, ) and every 0 < € < oo,
dist(Vi(x), ¥Y)**€ < C**(MOgq4eu;i (x) + 57€) (19)
and
Cl+£
Z DV; ()| < - Z (MOs14cus(x) + 524€) (20)
Xm+1

Proof. First, we have by (1 8) and (15),
dist(V;(x),Y) = j Z [Vi(x) —u;(x +€)|d(x + €)

]me+1(x')
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< Z ||(p,-||Loo(Rm)£m([BBTI)J f [u;(x + 2€) — ui(x + €)|d(x + 2e)d(x + €)

B ()
]B?m+1(x') m+1

191l @my £ (BT )MOg 1 1 (%), (2D

and the first conclusion (19) follows ﬁ‘(;m (21), (16) and (17).
Next, defining (@;);: R™ — Lin(R™*,R) for (x + 2¢) € R™ and h = (1, hypyq1) by

(@)1(x + 26)[(R, A4 )]: = Dy (x + 26)[N'] — M1 (M (x + 2€) + D (x + 2€) [x + 2€])
we have for eveLy x = (x', Xpyq) € RTHL,

DVi(x) = = f Zu (x+2e)(qa,)1( ;X: )d(x+2€>
rRM m+

1’PI+1

I x—2
:mJ J z (g + 2€) — w4y (x + €))(0p), (x al E) d(x + 2€) d(x + €)
Xmi1 BY ., (") JR™ m+1
from which we get
|Z DV ()] < Z 1@ llumcamy £™ (BT [, G20 -ueoralde

r
xm+1 (=" xm+1(x )

+ 26) d(x +¢€)
and we conclude as previously.
2.2. (1 + €)-adic cubes and skeletons. The domain of the extension by convolution V; given by (18) is
the half-space RT*1: we will subdivide the latter in (1 + €)-adic cubes on which we will perform
appropriate constructions.
Given 0 < € < w and 1 € [1,1 + €], we consider for every k € Z the set of cubes of R™
Qrverici= (t(1 +)F([0,11™ + ) | j € 7™}
and the corresponding set of cubes of R7**?

& (k1)
Qf+f,r.k=—{Q>< rite)” rl+e) ] QEQHE,T,R}

€ ' €
={t(1+ e ([0 + (.( ™) 1j ez}
In particular, we have the decompositions

R™ = U QandIP&T“zU U 0

Q€Q14etk KEZ Q€T cri
Moreover, we consider the part of the boundaries of the cubes in Q7 ., rthat are parallel to the

hyperplane R™ x {0}
t(1+e)7*
Qrerie 7= QX f=————1| Q€ Qrre

= {t@+ e (0™ x (0} + (. () ™) 1] € Z™} (22)
and those that are normal to the same hyperplane

-k —(k-1)
Qll+£,’:,k = {dQ X [T(l _;E) ,1—(1 a EE) ] Q € Q1+£,'r,k}

={t(1+e)7*((@[0,1]™) x [0,1] + (j, (e)™1)) | j € Z™} (23)
Given h € R™, we also define the corresponding translated sets
Q1+E,t,k,h: = {Q + T(l + E)_kh | Q€ Ql+e,r,k};
Q:‘Fkah. = {Q + T(l + E)_k(h! 0) | Q S 2T+£,1:.k}’
rerin={Q+ T+ 0)1Q € Qi)
21+E,‘[,k,h' - {Z + T(l + E) k(h: 0) [ e 21+E,‘[,k}' (24)
2.3. Longitudinal estimate. We first have an estimate on the maximal MO on longitudinal faces of cubes
of the (1 + ¢)-adic decomposition of R+,
Proposition 2.3 (see [28]). For every m € N \ {0}, there exists a constant (1 + €) = C(m) € (0,0) such
that for every 0 < € < oo, for every measurable map u;: R™ — IV, for every 0 < € < oo and for every
6 € [0, o0). one has
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2+e dt
f Z f z z supMOg g4t (x)dh—
1 0,1]m — xeX T

kez "™ o o

2+en.kh
d(w;(x + €),u;(x + 2¢)) — §)1+€
<(1l+¢€) J ( (il + ) f(Zm ) = 0)x d(x + €) d(x + 2¢) (25)
]me]Rm €]
Proof. Forany X € 22+e k,pe We can write, in view of (22) and (24),
T(2+e)7F
I=QX{————
¢ { 1+e
-k
where Q € Qyyerpn- If X EX and (x +€) € R™ satisfy [x' —x —€] < T(21+E) . then x" € Q and we

have immediately that

_ (2 +e)k
dist(x +¢,Q) = |x" —x — €| ET (26)
Since ( is a cube of edge length 7(2 + €)%, accordinz to (26), we have
3+e
x+e€E)E =
( ) ( 1+ E) Q= 1+e Q
same center as Q dilated by a faLt01 — Thus (x +

€) € 3Q. since € = 0. One has then, by monor0111c1ry of the integral. for every x € X,

) 1 (2+e€ "(1 +€)
M06.1+e“r(_“) = fm(IIB;_" Jz( fﬁxie .r+2£]EIRme;L" Z (d ul(x + t) 1 ( 1 + 25)) - I{E d(x +€) d(x + 25
[ x,l<r(2+s)_

T(2+€) 7%
\x+25—x’\5%

.
() fﬁﬁmmmxaoz(d(u<x+e),u(x+zenﬂs)“fd(x+e)d(x+2eJ @

= Im@Bm)? T
' 2
Summing (27) over the sets £ € 22 yerkpand integrating the result over the translations h € [0,1]™, w

get
f Z Z SUPyes MO 1 1t (1) A
o™

2+ETJ€1’1

3m 2 (1
. (( + ”’) jﬁ]nmmmz (@ (x + €),u,(x + 26)) — B)L< d(x + ) d(x +2¢) (28)
K

= s
Lm{'Bl ) t lel= 21'(2+€]

Summing (28) over the scales k € Z and 1me01fir1112 the result over T € [1,2 + €], we get

2+€
J ZJ Z z supM051+fu(\)dh—
01]’" :

ke
=+Erkh
3M(1+ €)™ 2+ €)M (d(u; (x + ), u;(x + 26)) — 6)LF*
- ( m)z J‘f Z f Z ( D= (A (u i )+1 ( ) —6)% dr d(x + €) d(x + 2€)
Lm (]B ) RMxR™ et TE(1.2+¢) T Tem

(1 + E)(Z + E)"|E|
re— TR

3"‘(1+E)2m J‘j f (d(u,(x + €),u;(x + 2e)) — §)L* ]
= dfdx +e)d(x+2
Lm(B')? RMxR™ £ ge((2+e)~ K (2+e) "k U]Z grm+t xr+e)dix 2

|\F'

g L HOlel (1+ €)|E|
3"‘(1+e)2’“ (d(u;(x + ), u;(x + 2e)) — §)1+= ’ ’
=@ B};mmm IM gamil df d(x +€) d(x + 2¢)
12m (d(u (9( + &), u; (x + 2€)) — §)i*e ’ )
~ 2mLm(BT)E ﬂkmm Z le|zm dix +e) d(x + 26),

which implies the announced conclusion (25) and completes our proof of Proposition 2.3.

2.4. Transversal estimate. We next prove a counterpart of Proposition 2.3, where we estimafe the
maximal MO on transversal faces of cubes of the (2 + ¢)-adic decomposition of RT'*! instead of the
longitudinal ones.

DOI: 10.35629/0743-11102844 www.questjournals.org 34 | Page



Critical Sobolev Estimate of Various Singular Extension Mappings Hold under the Exponential..

Proposition 2.4 (see [28]). For every m € N\ {0} and 0 < ¢ < oo, there exists a constant (1 4+ ¢) =
C(m,1+ €) € (0,00) such that for every measurable map u;: R™ — NV, for every 0 < ¢ < o0 and for
every & € [0, o). one has

2+€
j Zf Z Z SupMOg 141y (x)dh—
o™ XEE

keL 2+E Tkh

<(1 +E)U 2 (d('ui(ﬁf)'ui(xue)) _7) d(x + €) d(x + 2¢) (29)
Jpmygm

|E|2m

Proof. We consider a set £ € Q3, ., . that we can write, in view of (23) and (24). as
12+e)* 2+ 6)("”]

=00 % (30)

1+e ' 1+e€
where Q € Q.1 p- We first note that by (15), convexity and the triangle inequality,

MOgs 14+eui(x) = j ( ']f e Z (d(u(x + €),u;(x + 26)) — )1 d(x + €) d(x + 2¢)

1+€

< 2¢ (j ” j p j Z d(ui(x + €),u;(w;)) — —) d(x + €) d(x + 2¢) dw;
B () B () JE S +
+ L?m+1(x’) L o L Z d(u;(x + €),1;(wy)) — ):H d(x + €) d(x + 2¢) dwi)

1+€

= l+e L? o sz (d(u.,;(x +6),u(x + 2¢)) — §)+ d(x +e) d(x + 2¢), (31)

where
E:={(x+26)€0Q||x+ 26 —x" |< xp41}
For every x = (X', X,p41) € Z. since € = 0 and Q is a cube of edge length (2 + €)%, we have 7(2 +

€)% = x,,,, and thus
m—1

X
f}(-m—l(Ex) > ’:L*'i Lm- 1([Bm 1) (32)
One has then for every x € Z, by (30), (31), (32) and by monotonicity of the integral.

1+e

1+€e [T 1)
MOs, 14t (X) = mJ‘JJ+E,x+ZEERmXGQ Z ((i(ui(x +e),u(x + 25)) - E) d(x +€) d(x + 2¢)
Xma1 |lx+e—x'|<xm 41 : +
lx+2e—x"|<xmeq
1+e

(d(u.i(x +e),u;(x + 25)) — g)
=(1+¢) f[x+ex+2£)e1mm><ag z [T + d(x +€) d(x + 2¢€),(33)

_2t(2+e)~(k—1)
lel= 1+e

where the constant 0 < € < o depends only on m and (1 + €). Summing (33) over the sets £ € @3, c 1 xn
and integrating the result with respect to the translations h over [0,1]™, we have
1

f Z Z supMOg 1 +cu; (x)dh
[0,i]m X€EL

TeQL Tk i
1+e
(d(ui(x +€),u;(x + 25)) _Z
=(1+e) [ J](x+ex+2€)€]]&mxaq Z le|zm—1 * d(x 4 €) d(x + 2¢)

O™ sl le|<21(2+e) (k-1)
TEE el

. 6- 1t+e

(1+e)(2+e)* (d(_ui(erf),ui(erZE))7§)+
= % [ﬁx+s,x+2€)€]]¥mx]mm Z |7t d(x +¢e)d(x + 2¢), (34)

21(24e) k1)
lel=—713e —

where the constant 0 < € < oo depends only on m and (1 + €). In (34) we have used the fact that for
every f;: R™ — [0, o0]. in view of Fubini's theorem and change of variables, it holds
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j Z U z filx + 26)d(x + 25)) dh = (r(2+s]_k)m_1j U z fi(r(2+¢€) "‘(x+25})d(x+25)) dh
O™ gegarerxn V993 foar™

=2m(r(2 + e]"‘)’“—lf Z fi(r(2 + ) ™F(x + 2))d(x + 2¢)
am

Qelz4c00h

2m(2 + e)¥
- J'

Thus, summing and integrating (34) over the scales, we get

2+€ dr
I Zf Z Z supMOg 14 ;(x)dh—
S = *ex !

EEQQZ+€IRR i
. . 5 1+e
(2 +e) (d(u;(.\' +e),u(x + 26)) — Z) . :
=(1+e€) Jf f TE(L.24€) BEERE — drd(x +¢€) d(x + 2¢)
RMXR™ £ (2+e k(1+f}|f\
TG 2(2+e
(s (x + €),ws(x + 26)) — 2)
1+6) ﬂmmmm z ﬁ,e([m)_ktm)_k ) Z e d6 d(x + ) d(x + 2¢)
oxConl
5 1+e
d(ui(x +e),u;(x + 26)) — j)
4
- (1+6)ﬂ i _L:l+E]\E| Z |E|2m_162 a9 d(X+E) d(x—'_ZE)
R™XR (2+€) i
§ 1+e
(d(ui(x +6),u;(x + 26)) — j)
2o - 4Gt e) d(x + 26)
Rmem lEl

so that the conclusion (29) tol]o&-\-s. since € = 0.

2.5. Combining the estimates. We close this section by summarizing Propositions 2.3 and 2.4 in the
following statement.

Proposition 2.5 (see [28]). For every m € N\ {0} and 0 < € < oo, there exists a constant (1L +¢€) =
C(m,1+ ¢€) € (0,00) such that for every measurable map u;: R™ — N, for every 0 = € < oo and for
everv d € [0, o), one has

2+€ dr
f Z j Z Z sup MOg 14U (x)dh—
= Jlo1m x€dQ T

QEQ 2+Eﬂcn !
1+e

Z (d(ui(x +6),u;(x + 2¢)) _%)J,

|E|2m

d(x + ) d(x + 2¢).

<(1+E)J

RMxR™
Proof. This follows immediately from Propositions 2.3 and 2.4.

3. Proofs of the Singular Extension Theorems

3.1. Oscillation and gradient estimate on the skeleton. We first estimate the average number of cubes
on which the extension V; of u; given by (18) is far away from the range of 1;.

Proposition 3.1 (see [28]). Let m € N \ {0}. There exist constants p € (0,1) and 0 < € < e depending
only on m such that for every § € (0, ), for every 0 < € < oo, for every measurable function u;: R™ —
R" and every set ¥ C RY, if V; is an extension by convolution given by (18) and if u; € Y almost
everywhere in R™, then

2+€ dl’
f Z J Z #{Q € Qe orn | supdist(Vy(x),Y) = 5] dh—
[0.1]™ & T xeoq T

kez
1+e¢ ﬂ Z (d(ui(x + €),u;(x + 2€)) — ns)P+t
RMxR™

[ S —
— gm+l |E|2m

d(x +€) d(x + 2¢) (35)

Proof. By (19). we have for every x € RT*1,

dist(V;(x), V)™ < (1 + €)(MOg 11 ui (x) + 6™%1) (36)
It is worth noting that, according to (19). the constant 0 < e < oo depends only on m and the function ¢;
in the definition of V;. since m = e. Thus. fixing the fumction ¢; in the definition of V; from now on. we
can assume that the constant (1 + €) depends only on m. Hence, taking
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= - T
((1+2m+1)(1 +€))m+t

if
dist(V;(x),Y) =4 (37)
the inequality (36) with & = 21§ mmplies that
(M8)™ ! < MOgzps ma s (X) (38)
We get, by (37). (38) and Proposition [2.5 applied with m = €,

2+e dr
f Z J #{Q € Qs ieenn | supdist(V;(x),Y) = 5} dh—
[o,1]m T x€00 T

ke

2+€ dr
f Z J Z # {Q € Q;+E,'[,k.h, [ sup M02n6J1n+1”i(x) = (U5)"‘+1} dh—
[0,1]™ x€dQ T

keZ
2+e

dr
(7?5)””1," Z J[O N Z z xSél%MOZnS m+1Ui (x)dh—

+
Q€ eren !

_lte (d(u; (x + €),u;(x + 2€)) — nd)+t
fJ;RTH [m]ﬂ

5m+1 |E|2m

d(x +€) d(x + 2¢)

where the constant 0 < e < oo depends only on m. This proves the estimate (35) and completes our proof
of Proposition 3.1.

Next, we can prove an average uniform bound on the extension by convolution V;.
Proposition 3.2 (see [28]). Let m € N\ {0}. There exists a constant (1 4+ €) = C(m) € (0,0) such that
for every 0 < € < oo, for every measurable function u;: R™ — R, it V; is an extension by convolution

given by (18). then
dr
f N f Z > sup DV ™ dh—
[0,1]™ x€0Q T

kez erereTkh i
d w:(x + €),u;(x + 2e))m*1t
=(1+¢) J (i ) ;En ) d(x + ) d(x + 2¢)
m.mxmz.m €]

Proof. We proceed similarly as in the p100f of Proposition 3.1, where we assume that the function ¢; in
the definition of V; is fixed. Since by (20) applied with m = ¢,

X IDV; ()™ = (1 + €)(MOgmaatti (x) +6™*1)
where we can assume that 0 < € < oo depends only on m, the proof of Proposition 3.2 then follows from
Proposition 2.5. Namely,

2+4+€ dr
f D f Z > sup LDV O™ dh-
[o.am r

kez Q€07 cakn !
2+e dr
=(1+ e)f Z f Z Z sup MOg 41 Uy (x)dh—
! kez [D’I]m EQZ+EIkh i veaq
d(uf(x +e),u;(x + 2e)R™*E
<(1+¢€) f - d(x +¢e) d(x + 2¢)
mmxlmm l€]

where the constant 0 < € < oo depends 0111y on m.

3.2. Sobolev and Sobolev-Marcinkiewicz extensions on cubes. The first construction we will perform is
a classical extension of the boundary data on cubes with small energy. To simplify the presentation, the
result is stated on a ball, which is bi-Lipschitzly equivalent to a cube.

Lemma 3.3 (see [28]). Let m € N \ {0}. There exists a constant (1 + €) = C(m) € (0, =) such that for
every w; € WMHL(S™ RY) there exists a function W; € WM+ (BI+1, RV) n C(BI+L, RY) such thar

trgngizw
L2 owim=savap|  owim (39)
s 4 54
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J . f Z W (x) —wi(x + €)™ P dx d(x + €) < (1 +€)p?™*? J z |Dw; |1 (40)
IB%;,”l+ Sg‘ ; S’rgn -
and for every x € [B%;,”“ and almost every (x + €) € S7'.
W) —wilr+ ™ = (1+ e)pj > [Dw, " (41)
i Sz‘ 5
Proof. Let
1+ 6= (m+1)?

We have, by the fractional Sobolev-Morrey embedding,
ite

[wi(x + €) — w; (x + 2€)|**€ _ R
. e Ao d(”zf)'(”f)(Lz’Z bw ) 12)

Assuming without loss of generality that fsmwi = 0, Gagliardo's classical trace theory [9] (see also [8.
i)

Prop. 17.1: 12, Section 6.9: 13, Th. 9.4: 14, Th. 10.1.1.1]) yields a function W; € Wh**<(B)"**, R") such
that trgm W; = w; and

Lie |W; |1+E [w;(x + €) —w;(x + 2e)|** ) .
f Z [DW,| +Z e =(4e Jf Z L d(x + €) d(x + 2€).  (43)
B ST xS €]

It follcm s from Holder's 1neq11’ihry (43) and (4”) that

|‘m+l

f lz |DW|m+1+z W m+1 ,(1+E)pf Z [Dw; |m+1 (44)
'-'ll+ Sgl -

and (39) follows Then ﬁom (44).
Since for every x € By'*' and (x + €) € S}
[W; () — wi(x + €)™ = 2™ (W ()™ + |wi(x + €)|™)

we have

f J Z IWi(x) — wy(x + €)™ dx d(x + €)

mpe Jsp £

S@rapn [ D Wt as e [ 3 e (45)
sp 4 55 4

The estimate (40) follows from the estimates (45), (44) and the Poincaré inequality on the sphere.
Finally, by the Morrey-Sobolev inequality. (43) and (42), we have

Z [Wi(x) —wi(x +€)| < (1+¢€)|e|* e (f z |DW|1+E)

1 m+1
< (1+ €)pm+1 f Z |Dw; |m“)
and (41) follows.

When the oscillation is too large on the boundary of cubes, we will perform our construction of
the confrolled singular extension: the resulting map is quite wild but is sufficiently well controlled to
provide an acceptable extension on those cubes.

Lemma 3.4 (see [28]). Let m € N\ {0}. If w; € W™ (S)", RY) and if we define W;: BJ'™** - RY for
each x € B)'** \ {0} by
p
Wi(x): = w; (—x)
i( ) i |x|

then W; € W(BI*%, R¥) and for every 0 < € < o,

L ({x e By DW;(x) |> 1+ €}) < T 1)(? " e)m“J’ z [Dw; |+ (46)

Proof. It can be observed immediately that W; € Wtm+1(BQ+1\ BI+L, IR’\“) for every € € (0,p) and
that for every x € Bp*** \ {0}. one has

IDW;(x)| = |DW (|x|x)|

+€
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Hence. using Fubini's theorem. we have
_(d+er

£ (fx € BIDW,(x) 1> 1+ €}) = J:Z H™ ([x € S7||Dw; (2r)| > D dr

P

=LPZ Hm ({(,\—Jre)g S;"|\Dw,-(r+6)| 2%}) (g)m dr

__ 0
(1+e)m+t

f ’ Z H™({(x + €) € ST|[Dw; (x + €) |2 T})r™ dr

. p “ k. m R : - m
Smﬁ, Z H™({(xc+€) € ST|Dwy(x + ) | 7)) dr

P 7N e D (e oy 2 )T
= m[ﬂ Z H ({(_r+ €) € 57'||[Dw;(x + E)| = r}) p—1

D)
- Dw.(x m+1 dx
(m+l)(l+e)m+1Lg 1 IDw, (O™ dx

This yields (46) and completes our proof of Lemma 3.4.

3.3. Proofs of the theorems. We first construct and estimate the singular extension on the half-space
(Theorem 1.2).

Proof of Theorem 1.2 (see [28]). We fix &, € (0,20) so that the nearest-point retraction IIy-: N +

IBEN — IV is well defined and smooth up to the boundary. We take V;: R™*1 — RY to be an extension by

convolution of u; to RT*! as in (18).
Since by assumption u; € NV almost everywhere on R™, by the averaged estimate on the distance
to the target (see Proposition [3.1). we have

2+€
j Z f Z #{Q S Q;.—+6Jr,k,h
1 [o.am =

keZ

dr
sup dist(V;(x), V') = 5N/2} dh—
XEAQ T

1

<(l+e€ M gin Z d(x + ) d(x + 2¢), 47

1+ [[ wresvagmman Y e Ao 9 k20, @)
Al ™) uy(x+26)) =S

where 1 > 0 is the constant of Proposition 3.1 depending only on m. the constant 0 < € < oo depends

only on m, V., and we have also used that V' is compact. namely diam(NV') < co. We set §: = nd»-/2.
Taking

12m d(x + €) d(x + 2¢) (48)

(2+ex=1+exp| 2(1+ E)ﬂ (x-+ex+2€)ERMXR™ Z €]

d(ug(x+e)u;(x+26))=8
and using (477). we have then
1

1 e dr
_— # eor dist(V; N)= 6 /2;dh— <= 49
T E)J; kZZ J;O,l]m Z {Q Drverion | xSéB% ist(V;(x), V) = 65/ } =3 (49)

Similarly. by Proposition 3.2,

l 2+¢€ dT
S sup x5 DV (x) ™+ dh —
In(2 +E)Jl ;@ J[m]m Z Z xeal::g ma1 | DV (2] ;.

Q€03 erin
__l+e J Z d(u;(x + €), u; (x + 2e))™+t
In(2 +€) Jgmygm le]?™
In view of the estimates (49) and (50). there exists T € (1,2 + €) and. for every k € Z. h, € [0,1]™ such
that for every k € Z. every Q € Q3 ., , and every x € Q. one has

d(x + ) d(x + 2¢). (50)

dist(V;(x), V) < 57” (51)

> ) D) spaprem
a
keZ OEQ2++E,T.R,?1;( ! reoe
1+e¢ J z d(u;(x + €),u;(x + 2¢€))m+L
RMxR™

S —_—
In(2 +€) |e]2™

We define now the set of good cubes

and

d(x + ) d(x + 2¢). (52)
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m+1
G:= {o € Ofrenion, |SUP XDV, ()| = pandk € Z} (53)
xedQ
and the set of bad cubes
m+1
B:= [Q € Qoverion sup Xt | DVi(x) >pandk € Z}, (54)

where u will be chosen in (58). Clearly, any cube is eltheI good or bad and thus
Q =Ry
QEGUB

1
L), ) swamoveo

kezg QEQz+srkhk

1+e€ J J;Rmz d(u;(x + €),u;(x + 2e))™m+!

L
uln(2 +€) |e]z™

By (52) and (54),

d(x +¢e)d(x + 2¢) (55)
Notice also that for every k € Z and every Q € Q3¢ 1 x.n, - We have
(2 + E)_kf Z [DV; ™1 < (1 + €)(1(2 + ) F)m+1 Z sup |DV; (x) 1
aQ - - XEAQ
< (1+ €)™*2 sup X2 DV; (0™ (56)
xedQ

since for every x € Q, x,,.1 = T(2 + €)% /(1 + €). in view of (24).

We are now going to define a map W;:RT > N + Bj, separately on Ug and Ug.
For every Q € G. we apply Lemma 3.3. up to a suitable bi-Lipschitz homeomorphism between a ball and
a cube (see [10, Cor. 3]). to define the mapping W; on Q as an extension of V; I'3o. We have, in view of
(39) and of (56),

fz [DW; ™+ = (1 +£)T(2+6)_"f Z |DV; |+t
25 a0 5

< (1 +em Z sup XDV, () "+ (57)
whereas by the triangle inequality. (51). (41). (56) and (53). J
) 1
dist(W; (x), M) < 7” +(1+eum+i(l+¢)

m+1
"= (%) (38)

we have for every x € Q, W;(x) € N + [EBEN. Using the Chebyshev inequality and (57), we obtain
(14 e)™IL™ 1 ({x € Q|IDWi(x) |Z 1+ €)) < (1 + €)™ sup x| DV ()| ™+t (59)
XEIQ

Hence if

Next. we apply. up to a suitable bi-Lipschitz homeomorphism between a ball and a cube (see [10. Cor.
3]). Lemma 3.4 on every bad cube Q € B to define there W; by homogeneous extension of V; I, with

respect to the barycenter of Q. We compute then for such a cube, in view of (46) and (56), for everv 0 <
€ < m,

+1 - - 1 - m+1
£7H(x € QIIDW) 12 1+ €)) < T2+ ) kLQZ IDV|

<(1+0)), sup VI (60)
Combining the estimates (59) and (60). we get
(1+e)™ L™ ({x e RTIDW(x) [= 1+ €})
< (1 +¢)m+2 Z Z Z sup XL DV, (x) ™+ (61)

£ .
K€L Q€07 cviomy, *
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d(u;(x + e), u;(x + 2e))™+
=1+ E}E‘KPZ ((1 + f’ﬂmmmemw Tz dG O A+ ze))ﬂm = e d(x +€) dx + 26),
a(uglxte)ag(x+26))=8 e

in view of (48) and (52), where (1 + ¢€) is positive constants depending only on m, . Moreover, if §
denotes the set of the barycenters of the cubes @ € B, we have

#S=#B < (1+6) expz (1+6) ﬂmmmmmxmm - lzmd(x +€) d(x + 2€)
d(u;(x+e)up(x+2€))=8
d(u;(x + €), u;(x + 2e))m+?
Jo ™
in view of (48), (55) and (58), where (1 + €) is positive constants depending only on m, V.
In order to check that wu; is the trace of ;. we observe that on the one hand we have, since V; is an
extension by convolution. for every @ € §. by Poincaré's inequality, by (40) and by (56),

[ wi-wime
e

SLZ (I f |V-(x)—V(r+€')\"‘“d(r+€)dx+I f|W-(',\’)—ir'-(r+€')|m+ld(r+€')dr)
(T(2+€)—k)m - 50 Jo i i E 20 Jo AN i - y

i 1+e¢ — : M2 m+1
EWLLQZ Vi(x) —Vi(x + eIt dx d(x +e) + (1 +e)(t(2 + &) 7F) Lqmm

< (1+e)(r(2+ E)’k)m“z (J [DV; ™ + (1 + e)™*? sup x,’,ﬁﬂDV;(xﬂmH) (63)
- 0

By the classical theory of traces,
[ 2 v < (6
R+

It follows then from (52), (63) and (64) that

Z Z ((2+ E)T—k)m+1j z [V — W™+t < oo (65)

Thus, since the set B is ﬁmte 111 Vle\‘\ of (65). we have

;152((2+e)rk)m+1 Z f Z'V Wi dx =0

Q€7 et iny

This implies that W; and V; have the same f(race. and hence w; is the trace of W;.
Finally, we define U;: = [ o W;. The map U; also has u; as the trace on R™ X {0}; the conclusion (77)
follows from (61): U; € C(RT1\ S, V) with the cardinality of the singular set S being estimated by
(62). This completes our proof of Theorem 1.2,

The proof of Theorem 1.2 can be adapted easily to the case of the hyperbolic space (Theorem 1.3).
Proof of Theorem 1.3 (see [28]). We proceed as in the proof of Theorem 1.2. Instead of (60), we proceed
using the Poincaré metric on the half-space, (46). (56) and get for every Q € Q5 rerin(see (24)),

1 - (L+eE+of\™" met [ ) | @+
i Z xmit dlhz (f) £ 1({9‘ EQIDW(x)| —————=1+¢

PWix)|rmesziee ¢ bre

24 € m+1

L2*e) T2 +€) f Z |DV;|m+2
- +e a0

d(x + ) d(x + 2¢) (62)

xedQ

< L+E@+9™)™ D sup [DV,(0)]"™

< (+™2 ) sup DV, (0]

xEQ

where € = 0,1 is defined in (18) and. up to a suitable bi-Lipschitz homeomorphism between a ball and a
cube (see [10. Cor. 3]). W; is defined on @ by homogeneous extension of V; [, with respect to the
barycenter of Q. Observe that the constant 0 < € < o depends only on m. The remainder of the proof is
similar.

The case of the singular extension to the ball is slightly more complicated, as we will rely on the
parameterization of BI**1 by RT'*! through a classical suitable conformal mapping.
Proof of Theorem 1.1 (see [28]). We recall that the map
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” B 4(x +e) )
(x): = |x +e]? €
—m+1
where e:= (0,...,0,1) € R™*! defines a diffeomorphism from B**! to R™*!. Indeed, if x € [B;1rL+ \

{e}. then

Wix) - 2 —2|x)?
e ¥ = |x + e]?
Moreover, we have
4(x + 2e)
w1 =
) [x + 2e|?

In particular, the ball B*** is isometric to the half-space RT*** endowed with the metric g defined for
x € R and v € R™*1 by
O] 16|v)?
[, v] = ——
g |x + 2e|*
Moreover, since ¥ is a conformal map and u;: S™ — NV, one has

JJ- z d(u(x), u(x + €)' Gd(x s ) = JJ‘ Z d (ur‘(q’_l(-“)): u (P + E)))M dx d(x +€)
smxgm o RMxR™

|L,_-I2m |E|2m

and
d(u; (20), 1 (x + €)1+
x,x+ee$m. i |E |2m
d(ui(x)ui(x+e))=6 I

dxd(x +¢)

d (ui(‘{"l(x)),uf(‘{"l(x + E)))HE
= x,x+eeR™ |E|2m dx d(x + E)
d(ui(ll"1(x’))Jui(‘]"1(x+E')))>6 i
(the reader may also consult [1. discussion after I, (15)]). We proceed then as in the proof of Theorem 1.2.
using u; o W1 instead of u;. In order to replace the estimate (60), we proceed as follows.
Given Q € Q3,1 pand setting

4 4
my = inf ——— and M, = sup————
¢ xeo |x + 2e|? ¢ XEB |x + 2e|?
we have
4m+1

: Pp— :
reo . T 2o dx < Z MI L™ ({x € QIIDW(X) |= (1 + €)my})

IDW;(x)|=4(1+€)/|x+2e|?
l MO m+1
S| T2+._c_k Z DV, |m+1
<1+e)m(mo) (2+€) fm [_ |DV;|

1 M m+1
< Q 2+ -k m+1z DV: m+1
——(1+e)m( (T(2+e)™) _ fégzl f169]

Mg

m+1
=(1+e) (—O) z sup xp 1 [DV; ()| (66)
mgy 230

where € = 0, V; is defined in (18) and. up to a suitable bi-Lipschitz homeomorphism between a ball and a
cube (see [10. Cor. 3]), W; is defined on @ by homogeneous extension of V; I3, with respect to the
barycenter of @. It is worth noting that the constant 0 < ¢ < o depends only on m. We observe now that
if x,x + € € Q. then

|x + 2e| el T2+e) *m+1
= = =1+(14+e)vm+1, 67
[x + € + 2e| |x + € + 2e| T(2+€)—k (1+e)vm (67)

2+ 1+¢€

and we have thus by (66) and (67),
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4m+1

xeQ |X +,2€|mn+2
IDW;(x)[=4(1+€)/|x+2e|® &

<(1+e)(1+(1+e)Wm+ 1)2m*2 z sup x™H DV, (x) ML
—! xedQ

The rest of the proofis similar to the proof of Theorem 1.2.
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