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Abstract:

This paper presents a development and enhancement of the Modified Homotopy Perturbation Method (MHPM)
for solving strongly nonlinear oscillatory problems, with application to the rotating pendulum model. The
method allows for obtaining highly accurate approximate solutions for frequency and time response without the
need to expand trigonometric functions like sine into Taylor series, thereby preserving accuracy even at large
deflection angles. The results are compared with other established methods such as the Homotopy Analysis
Method (HAM), Gamma Function Method (GFM), and Harmonic Balance Method (HBM). MHPM
demonstrates clear superiority in terms of accuracy and relative error, especially at large amplitudes and high
rotational speeds. The study provides a detailed analysis of the influence of rotational speed (A1) and amplitude
(A) on the system's dynamics and confirms the method's efficiency in modeling complex nonlinear systems.
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I. Introduction

Many engineering problems can be modeled by nonlinear ordinary or partial differential equations, but
obtaining exact solutions is often highly complex or even impossible, with only a few exceptions. This
complexity arises from the intrinsic nature of nonlinearity, where interactions between variables are not directly
proportional, leading to behaviors such as bifurcations, chaos, and other intricate dynamics. As a result,
asymptotic solutions, which approximate solutions under specific limiting conditions, have gained significant
attention among scientists and engineers tackling various nonlinear equations.

For weakly nonlinear problems, classical methods like the averaging method and the small parameter
method have been commonly employed. These techniques simplify the original problem into a form that can be
more easily analyzed, often by isolating dominant terms and treating others as perturbations. In addition to these
foundational approaches, more advanced methods such as the multiple scales (MS) method and the Lindstedt—
Poincare (LP) method have been developed. These methods offer valuable advantages in solving vibratory
systems by addressing resonance and periodic solutions in nonlinear dynamics. However, their accuracy
critically depends on the proper selection of a small parameter, and an incorrect choice may lead to erroneous or
physically unrealistic solutions.[1]
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II.  Modified homotopy perturbation method

For describing the method at first, we take into account an oscillator with strong nonlinearity as [2]

(M

- ) ..
ti + wgu + f (u, 1, 1) = 0,
where the dots over the variable u represent derivative with respect to time, t, unperturbed frequency of the

oscillator is mo and the nonlinear function is represented by f (U., l:l, 11) . The initial conditions of the oscillator

are given as

u(0) = 4,1(0) = 0. @

If we chose T = wt, equation (1) is transformed to
3)
wu" + mﬁu +f (u,wu’,mzu") =0,

where primes on u represent derivative with respect to T and the initial conditions are transformed as u (0) = A,
u’(0)= 0. We consider the homotopy for the equation (3) as
o’u' + 0’u + p (—o’u + v’u + f (u, ou,0’u’))=0: 4
According to the present MHPM, solution of the equation (4) is considered as
u=up+pu+pu+plut ..., 5)
while the frequency response is considered as
®?= 0% (1 + poi+p*w2+plos+ ...). 6)
We now use the values of u and ®? from equations (5) and (6) into equation (4) and expand the resulting
equation in a power series of p and then equate the coefficient of various powers of p from both sides to get a set
of linear differential equations. These equations are solved in sequence to determine the solution and frequency
response.[2]
We can see from equation (4), as p—1, it reduces to equation (1), whereas equations (5) and (6) are written as
u=uptuwtutuzt..., @)
and
0’ = 0%(1 + o1+ o+ 03+ ...). (8)
The MHPM solution and frequency response of equation (1) is thus represented by equations (7) and (8).
II. Examples
The rotating pendulum (3.1)[3] The subsequent implementation, as illustrated in Figure 3.1, utilizes nonlinear
differential equations (NLDEs) to thoroughly simulate the dynamic behavior of a simple pendulum attached to a
rotating solid framework. By integrating NLDEs, the model offers a more precise and realistic depiction of the

pendulum’s response to rotational influences. The system’s governing equation of motion is

i+(1-Acosu)sinu=0, )

2 .
where A = % and the initial conditions are specified as u(0) =A, U (0)=0.
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If o represents the frequency of the oscillator, equation (9) can be expressed as
o’u’+ (1 -Acosu)sinu=0, (10)

where T =ot, u'= du and the initial conditions are converted to u(0)= A,

dt
u'(0) = 0: According to the present method the homotopy for equation (10) is considered as
®’u’+ w?u (— ®*u + sin u — A cos x sin x) = 0, (11)
Substituting the values of u and ®? from equations (5) and (6) into equation (11) and equating the terms from
both sides with the same powers of p, we can derive a series of linear differential equations, of which we present

onlv the first three as

wguy + g = 05 uy(0) = 4,u,(0) =0 (12)

I
wptt, + watty = oy — sin g + A cos tg sin g — teeymy — wpwaeor; ui(0) = 0,u(0) =0 (13)

£
mﬁuz + mﬁug = u.mﬁ — uy oS Uy + Ay cos” g — Ay sin’ ty + mmﬁm. — u;mﬁm.

—ulwio, — upwim; — wjwiws; u(0) = 0,u)(0) =0 (14)

Figure 3.1. Schematic of a rotating pendulum.
The solution of equation (12) is
u=A cost (15)

By substituting the value of uginto equation (13) and simplifying, we obtain
W) ) : , ) : 4
oyt gty = wyd cos T — sin{Acos t) + Asin(A cos t)cos(4 cost) = wyd cos T - sin(4 cost) + 7 (24cost)

(16)

Fourier series expansions for sin(A cos 1) and sin(2 A cos t) are considered as

_ - (7)
sin(Acost) = Z:::n b cos[(2n+ D)t] = L cost + B eos3t + ...,
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where
4 [T/ (18)
and by = —f sin(A4 cos t)cos[(2n + 1)tldr = 2(—1)"Fopi1 (4),
T Jo
sin(24 cost) = Z:ﬂ €1 €O8[(2n+ 1)t = e, cost +escos 3t + ..., (19)
where
(20)

4 /2
Eoppl = —f sin(24 cos t)cos[(2n + Dtldt = 2(—1)"Jop41(24).
TJo

We consider In+1(A) as the Bessel function of the first kind of (2n+1)-order. The first term for both these series
is obtained as 1; = 2J;(A) and e; = 2J1(2A). Where Ji(A) is the first-order Bessel function of the first kind.

Substitution of these results into equation (16) gives

witl] +oju, = wid cost — 2J, (d)cost + AJ,(24)cos T — Z bpr cos[(2n+ 1)) + Zez,,ﬂ cos[(2n + 1)1].

(2
1)
Avoiding secular term, we get
2 2h(4) — 45(24) @2)
0 A .
Thus, the zeroth-order approximate frequency is
(23)

_[24(4) — 4J,(24)
m“_\/ y '

Which is same as the first-order approximate frequency determined by Moatimid et al. Remaining part of

equation (21) is written as follows:

wiu, + oluy = > Zil €an1 €08[(2n + 1)7] — ZL b cos[(2n+ 1)1],

24)

with initial conditions u;(0) = 0, u%(0) = 0. The solution to equation (24) is chosen as follows:

) = Zf:n bons1 cos[(2n + 1)1]. 23)
Substituting equations (4.2.25) into (4.2.24) gives
—w, Z dn(n + 1)bs, 4y cos[(2n + 1)1] i €311 €OS[(2n + 1)1 i by cos[(2n + 1)1],
n=I =1
(26)

and then we can write the following expression for the coefficients bag+1:
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b b e 21 D) A1) (24)
T dnln+ DNez 8a(n+ w2 4n(n + e dn(n+ ey -
7)
for n > 1. Considering that u;(0) = 0, equation (25) gives
(28)

bi==3 B

From equation (14), it is obvious that the value of u; is required to determine the higher-order approximate
solution w,. But u; has infinite number of terms, which will create difficulties to obtain the higher-order solution

u;. However, we can truncate the series expansion of u; presented in equation (25) and express an approximate

equation ugN) in the form

(29)
N ZN
and E}E } = — =l ber+I:.
(30)
M =N b1 cos|(2n+ 1)]
- = e D20t T|,
which contains only a finite number of harmonics. By comparing equations (25) and (29), we find that
. N €2))
[im uE ) = i,
N ==
(32)
lim b = b,.
N—=w
For simplicity, we can consider N = 2 in equation (4.2.29) and we obtain
2 2
u'i ) = IJE ! cost +bs cos 3t = by (cos 3t — cost) + bs(cos 5t — cost),
(33)
I k! A £3
by=_ -2
8wl 16073
(34)
b Irj AE‘S
5 = =
24} 48aR
where 13,15,e3 and es are given. Thus, the first-order approximate solution is
(35)

HEE} = by(cos 3t — cos 1) + bs(cos 5t — cos 7).

The first approximate frequency w; can be derived by applying the no secular term condition on equation (14).

(2)

Now substituting the value of upand u; -, equation (14) becomes
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mﬁu; + wﬁug = mﬁ{bg (cos 3t — cost) + bs(cos 51 — cosT))
—(b3(cos 3t — cos 1) + bs(cos 5t — cos 1))cos(A cost) + A(bs(cos 3t — cost) + bs(cos 5t
—cost))cos(24 cos 1) + wim Acos Tt — wie, (bs(cos 3t — cos t) + bs(cos St — cos 1))

+ainw, (b3(9 cos 3t — cost) + bs(25cos 5t — cost)).

(36)
It is possible to do the following Fourier series expansion
@ 37
(cos 3t — cost)cos(A cost) = Zﬂ:‘] Man 41 cos[(2n 4+ 1)t] = my cost+ mscos 3t + ..., @7
(cos5t— cost)cos(A cost) = ZL] Mans1 €O8[(2n + 1)t] = nycost+ nycos 3t + ..., (38)
(cos 3t — cos t)cos(24 cos T) = Zinﬁ_ﬂ“ cos[(2n 4+ 1)t] = f cost + ficos 3t + ..., (39)
and
© (40)
[(cos 5t — cos t)cos(24 cos 1) = anﬂ g cos[(2n+ 1)t] = gy cost + g3 cos3t + ...,
(41)
o — bymy + bsn; + &120!'53 +€Uﬁbs — Absfy — Absg,
1 Am% »
where my, n;, f; and g; are given.
Thus, the first-order approximate frequency is
(42)

o = jwj(1+ o),

where wo,m; are given by equation (23) and (41), respectively, and the corresponding first-order approximate
solution is
(43)
u = (A — bs — bs)coswt + b; cos 3wt + bs cos 3w,

where bs, bs are given by equation (34).

IV.  Results and discussion

We provide a comprehensive analysis of the accuracy and efficiency of the modified homotopy
perturbation method (MHPM) across a range of parameters, highlighting its superior performance in frequency
and period approximations. Notably, the first-order approximation of frequencies using MHPM delivers
exceptionally accurate results for both examples. A critical advancement in this work is the decision to retain the
sine function in its entirety rather than employing a Taylor series expansion, as is common in many traditional
methods for solving the rotating pendulum equation. While Taylor series expansions are effective for small
deflection angles, they introduce significant errors as the pendulum’s deflection approaches higher degrees. In
contrast, retaining the full sine function allows MHPM to maintain high accuracy, even for large deflection
angles.[4]

Detailed comparisons with established methods such as the homotopy analysis method (HAM), gamma
function method (GFM), and the coupled method underscore the precision of MHPM. These comparisons,
presented in Tables 4.1— 4.3, validate the efficacy of the method across various amplitude values. For instance,
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in the case of a rotating frame pendulum with A = 0.1 and A = 170°, the maximum relative error for the first
approximate frequency using MHPM is just 2.35%. In comparison, the Coupled Method and HAM report
significantly higher maximum relative errors of 16.97% under the same conditions. Additionally, the GFM
demonstrates an even larger relative error of approximately 74.07% for the first approximate frequency at A =
0.1 and A = 160°.

Figures 4.2 and 4.2 visually corroborate these findings, illustrating the high accuracy of MHPM for
larger amplitudes. The solutions obtained using MHPM closely align with exact solutions, demonstrating the
method’s robustness and reliability.

Figure 4.2 explores the dual effects of rotational speed (A) and amplitude (A) on the rotational
pendulum’s time period when length r is constant, revealing two distinct trends: At low rotational speeds A =
0.1, the time period increases with amplitude A, as the rotational speed has minimal influence on pendulum
oscillations. Under these conditions, the system behaves similarly to a simple pendulum. At higher rotational
speeds A > 0.5, the rotational speed significantly affects the oscillatory dynamics, leading to a decrease in the
time period as A increases. This behavior highlights the pronounced role of rotational speed in shaping the
pendulum’s dynamics.[5]

To further evaluate the performance of MHPM, the approximate period are compared to the exact period for the
simple pendulum equation, given by

(44)
T U R S SN U L
e = 10 16 3072 737280 1321205760 ’
where To =21 V/ 1/k.
The first approximate period using MHPM is
45
T _T 1+A2+11A4+1?5A6+ 236184" 4 veerenns )
MHPML = 50 16 ' 3072 ' 737280 ' 1321205760 ’
with a limiting value
T (46)
lim ML~ 1.029952.
A—180 T,
By contrast, the second approximate period from the harmonic balance method (HBM) is
(47)
A2 104* 9045
THH‘“2=%(1+E+3072+W+ ......... ):
with a limiting value of
T, (48)
lim —222 ~(.520414.
a—180 T,
Similarly, the second approximate period from the standard homotopy perturbation method (HPM) is
(49)

; ., 1+A2+11A4+ 17345 N 238984 R
HPMz = L0 16 ' 3072 ' 737280 ' 1321205760

with a limiting value of
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T. (50)
lim ’;L‘”;l.mzlsu.

A— 180 -

These comparisons highlight the superior performance of MHPM, which achieves lower relative errors even in
its first approximation compared to the higher-order approximations of HBM and HPM.

The results unequivocally demonstrate that MHPM provides a highly accurate and efficient framework for
predicting the dynamics of pendulums, particularly under conditions of large deflection angles and for both high
and low rotational speeds. By retaining the full sine function and employing a novel approach to
approximations, MHPM overcomes the limitations of traditional methods, offering significant advancements in

modeling complex nonlinear oscillatory systems.[6]

Table 4.1. Comparison among frequencies obtained various methods for

A=0.1.
LUHAMI i ouied | LUHAARAI [ gl
A . Er(95) Er(%) Er(%) Er (%)
io° 0947477 0.947476781 0.947476781 0.947477 0947475
0.0000 0.0000 0.0000 00.0000
20° 0943828 0.943830354 0.943830354 0.943828 0943794
0.0002 0.0002 0.0000 0.0004
30° 0937654 0.937665034 0.937665034 0.937654 0937477
0.0012 0.0012 0.0000 00189
40° 0928817 0.928854277 0.928854277 0.928817 0928254
0.0040 0.0040 0.0000 0.0606
50° 0917139 0.917234548 0.917234548 0917139 0915752
0.0104 0.0104 0.0000 0.1513
60° 0.902406 0.902619454 0.902619454 0.902406 0899491
0.0237 0.0237 0.0000 03230
70° 0884376 0.884805719 0.884805719 0.884376 0878884
0.0486 0.0486 0.0000 06210
8o° 0862791 0.863595013 0.863595013 0.862792 0853214
0.0932 0.0932 0.0001 11100
90° 0837376 0.838798882 0.838798882 0.837379 08216
0.1699 0.1699 0.0003 1.8840
100° 080784 0.810251805 0.810251805 0.807848 0782916
0.2986 00.2986 00.0010 3.0852
io° 0773857 0.777818648 0.777818648 0.773877 0735652
0.5119 05119 0.0026 49370
120° 073504 0.741393859 0.741393859 0.735092 0677616
0.8644 0.8644 0.0071 78124
130° 0690863 0.700900159 0.700900159 0.690994 0605291
1.4529 1.4529 0.0190 123862
140° 0.640508 0.656274005 0.656274005 0.640844 0512149
24615 24615 0.0525 200402
i50° 05825 0.607441391 0.607441391 0.583403 0382525
42818 42818 0.1550 343305
160° 0513636 0.554273622 0.554273622 0.51632 0.133175
79118 79118 0.5226 74.0720
170° 0424456 0.49650052 0.49650052 0.434412 —
16.9735 16.9735 1.023458 —

Where Er(%) represents absolute percentage error.
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Table 4.2. Comparison among frequencies obtained various methods for

A=0.5.
g L Coupied | Capapad) CGrp
A o Er(%) Er(%) Er(%) Er(%)
10° 0.70977 0.709770265 0709770265 0.70977 0.709769
0.0001 00001 0.0000 0.0000
20° 0.717411 0717422729 07 I 7422729 0717411 0.7173%6
000l6 00olse 0.0000 00021
30° 0.729059 0729107729 0729107729 0.729059 0.728973
0.0067 00067 0.0000 00118
40° 0.743283 0743397142 0.743399142 0.743283 0.741984
00156 00156 0.0000 0.0403
50° 0.758405 0.758602593 0.7 58602593 0.758405 0757608
0.0261 00261 0.0000 0.1051
&0° 0.771676 0. 77193577 0F 7293577 0.F7167B 0770911
00336 00336 0.0002 032284
70" 0.784415 0.7846R068 078468068 0.784417 0.780%87
00339 00339 0.0003 04370
80" 0.792082 0792285208 0792285208 0.792085 0.786044
0.0257 00257 0.0004 0.7623
%0° 0.79432 0794422737 0794422737 0.794321 0.784444
0.0129 00129 0.0001 12434
100" 0.785%63 0790016374 0720016374 0.7B9959 0.774691
0.0067 00067 0999994 19333
1o° 0.778014 0. 778250675 0.F 78250675 0.778 0.755375
0.0304 00304 0599382 215099
1207 0.757597 0.758555771 0.F 58555771 0.757579 0.706021
0.1265 0.1265 0.999976 68079
1307 0.727867 0.730586629 0.7 30586629 0.727877 0681997
03737 03737 0.0014 63019
140° 0.6B7RI7 0694187166 06941871 66 0.687268 0623785
09262 09262 0.0220 9.30%4
150° 0.635859 0649335149 0649335149 0.636513 0546182
21193 21193 0.1028 14.1033
160" 0.568623 0596063604 0596063604 0.571044 0440009
48258 48258 0.4257 22 6185
170" 0.4758%4 0534319635 0534319635 0.485938 0275313
122770 122770 2.1106 42,1483
Where Er(%) represents absolute percentage error.
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Table 4.3. Comparison among frequencies obtained various methods for

A=0.09.
W Qifpepled]’ LOTRTEr T agm’
A e Er{'%%) Er{%%) Er{%%) Er(%%)
10" 0.331359 0.331414417 0.331414417 0.331359 0331412
00166 0.0166 0.0000 00160
20° 0.371673 0.372256B65 0.371256865 0.37 1674 0371245
0.1572 0.1572 0.0004 0.1540
0° 0.4271 &l 0428928525 0428928525 0427195 0428885
0.4092 0.4092 0.0033 0.39%0
40° 0.489305 0.492459206 0.491459206 0.48935 04932333
0.6447 0.6447 0.0093 06190
50° 0.552065 0.556450032 0.556450032 0.552157 0556183
0.7943 0.7943 00166 0.7460
&0° 0.611366 0.61655304 0.61655304 0.61 1509 0616055
0.8484 0.B484 00234 07670
io° 0.664303 0.669750116 0.669750116 0.664491 0668914
08199 08199 00283 06940
80° 0.7087 38 0.7138BT975 0.713887 %75 0.708955 0.712565
07266 0.7266 0.0306 05400
20° 0.743058 0.747415522 0.747415522 0.74332F7 0.745436
0.5864 0.5864 00295 03200
100" 0.766035 0.76924B6B6 0.76924B6B6 0.766223 0.76638
0.4195 0.4195 00245 0.0450
1o" 0.776727 0.77R682523 0. 77682523 0.776841 0.774595
0.2518 02518 00147 02744
120° 0.774385 0.775337331 0.775337331 0.774383 0.769562
0.1230 0.1230 0.9995%8 03278
1307 0.758335 0759113271 0759113271 0.758193 0.7505%08
01026 01026 0999813 09794
1407 0727766 0730134472 0.730134472 0727526 071875
0.3254 0.3254 0999670 1.3042
150" 0.6B1266 0.688685168 0.6BB685 168 0.68 1204 067 1047
10890 1.08%0 0999508 1 5000
160" 0.61552 0.635 109687 0.635109687 0.6168 0807849
11826 11826 02079 1 2463
170" 0.519821 0.569633982 0.56%633982 0.528323 0525362
95827 9.5827 01.6355 | 0660
Where Er(%) represents absolute percentage error.
2.5
. u(t) X _xx, ;
1.5 e x x .
1 \ x x
x
05 x\ -
0 \ — x__ x
\ 5 X 10 15 X 20 25
-0.5 * %
-1 x x
x x
1.5 x x - ‘\x
2 x. _— XX
2.5
I Exact GFM X First approximation (MHPM) I

Figure 4.2. Comparison among the solutions obtained by the modified homotopy perturbation method (MHPM)),
gamma function method (GFM) with exact solution for A = 0.1, A = 120°.
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10 1z

e Exact
uo(t)
= uy(t)

Figure 4.3. Comparison among the zeroth and first-order solutions obtained by the modified homotopy

perturbation method (MHPM) with exact solution for A =0.9, A = 170°.

70

o —a— A=1.0

50

a0

20

20

10

=

]

10 20 30 40 50 60 70 s0 a0 100

Figure 4.4. Variation of first approximate period obtained by the modified homotopy perturbation
method(MHPM) for various values of the parameter A.

V. Conclusion
This paper presents an enhanced application of the Modified Homotopy Perturbation Method (MHPM)

to study the nonlinear motion of a rotating pendulum. The method successfully provides high-accuracy
estimates for frequency and time period without linearizing the sine function, making it effective even at large
amplitudes. Results demonstrate the superiority of MHPM over traditional methods such as HAM, GFM, and
HBM in terms of accuracy and convergence speed. The study also highlights the influence of rotational speed
and amplitude on the system's behavior, underscoring the value of MHPM in analyzing complex nonlinear
dynamical systems.
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