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Abstract: 
This paper presents a development and enhancement of the Modified Homotopy Perturbation Method (MHPM) 

for solving strongly nonlinear oscillatory problems, with application to the rotating pendulum model. The 

method allows for obtaining highly accurate approximate solutions for frequency and time response without the 

need to expand trigonometric functions like sine into Taylor series, thereby preserving accuracy even at large 

deflection angles. The results are compared with other established methods such as the Homotopy Analysis 

Method (HAM), Gamma Function Method (GFM), and Harmonic Balance Method (HBM). MHPM 

demonstrates clear superiority in terms of accuracy and relative error, especially at large amplitudes and high 

rotational speeds. The study provides a detailed analysis of the influence of rotational speed (Λ) and amplitude 

(A) on the system's dynamics and confirms the method's efficiency in modeling complex nonlinear systems. 
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I. Introduction 
Many engineering problems can be modeled by nonlinear ordinary or partial differential equations, but 

obtaining exact solutions is often highly complex or even impossible, with only a few exceptions. This 

complexity arises from the intrinsic nature of nonlinearity, where interactions between variables are not directly 

proportional, leading to behaviors such as bifurcations, chaos, and other intricate dynamics. As a result, 

asymptotic solutions, which approximate solutions under specific limiting conditions, have gained significant 

attention among scientists and engineers tackling various nonlinear equations. 

For weakly nonlinear problems, classical methods like the averaging method  and the small parameter 

method have been commonly employed. These techniques simplify the original problem into a form that can be 

more easily analyzed, often by isolating dominant terms and treating others as perturbations. In addition to these 

foundational approaches, more advanced methods such as the multiple scales (MS) method  and the Lindstedt–

Poincare (LP) method have been developed. These methods offer valuable advantages in solving vibratory 

systems by addressing resonance and periodic solutions in nonlinear dynamics. However, their accuracy 

critically depends on the proper selection of a small parameter, and an incorrect choice may lead to erroneous or 

physically unrealistic solutions.[1] 
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II. Modified homotopy perturbation method 

For describing the method at first, we take into account an oscillator with strong nonlinearity as [2] 

 (1) 

 

 

where the dots over the variable u represent derivative with respect to time, t, unperturbed frequency of the 

oscillator is ω0 and the nonlinear function is represented by f )u,u,u(  . The initial conditions of the oscillator 

are given as 

                                                                                                     (2) 

 

If we chose τ = ωt, equation (1) is transformed to 

                                                                                                      (3) 

 

 

where primes on u represent derivative with respect to τ and the initial conditions are transformed as u (0) = A, 

u′(0)= 0. We consider the homotopy for the equation (3) as 

         ω2u′ + ω2u + p (‒ω2u + ω2
0u + f (u, ωu′,ω2u′′))= 0:            (4) 

According to the present MHPM, solution of the equation (4) is considered as 

                         u = u0 + pu1 + p2u2 + p3u3 + …,                                  (5) 

while the frequency response is considered as 

                         ω2 = ω2
0 (1 +  pω1 + p2ω2 + p3ω3 + …).                      (6) 

We now use the values of u and ω2 from equations (5) and (6) into equation (4) and expand the resulting 

equation in a power series of p and then equate the coefficient of various powers of p from both sides to get a set 

of linear differential equations. These equations are solved in sequence to determine the solution and frequency 

response.[2] 

We can see from equation (4), as p→1, it reduces to equation (1), whereas equations (5) and (6) are written as 

                        u = u0 + u1 + u2 + u3 + …,                                    (7) 

 and  

                        ω2 = ω2
0(1 + ω1 + ω2 + ω3 + …).                          (8) 

The MHPM solution and frequency response of equation (1) is thus represented by equations (7) and (8). 

III. Examples 

The rotating pendulum (3.1)[3] The subsequent implementation, as illustrated in Figure 3.1, utilizes nonlinear 

differential equations (NLDEs) to thoroughly simulate the dynamic behavior of a simple pendulum attached to a 

rotating solid framework. By integrating NLDEs, the model offers a more precise and realistic depiction of the 

pendulum’s response to rotational influences. The system’s governing equation of motion is 

                  0usin)ucosA1(u =−+ ,                                    (9) 

where 
g

r2= and the initial conditions are specified as u(0) =A, u (0)= 0. 
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If ω represents the frequency of the oscillator, equation (9) can be expressed as 

               ω2 u′′ + (1 ‒ Λ cos u) sin u = 0,                                         (10) 

where τ =ωt, u′ = 
dt
du

 and the initial conditions are converted to  u(0)= A,  

u′(0) = 0: According to the present method the homotopy for equation (10) is considered as 

                ω2u′′ + ω2u (‒ ω2u + sin u ‒ Λ cos x sin x) = 0,              (11) 

Substituting the values of u and ω2 from equations (5) and (6) into equation (11) and equating the terms from 

both sides with the same powers of p, we can derive a series of linear differential equations, of which we present 

only the first three as 

                                                                                                      (12)        

        

                                                                                                               (13) 

 

 

                                                                                                        

                                                                                                    (14) 

 

 

 

Figure 3.1. Schematic of a rotating pendulum. 

The solution of equation (12) is 

                             u0 = A cos τ                                                    (15) 

By substituting the value of u0 into equation (13) and simplifying, we obtain  

   

(16) 

Fourier series expansions for sin(A cos τ) and sin(2 A cos τ) are considered as  

                                                                                                    (17) 
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where 

                                                                                                       (18) 

and  

 

                                                                                                 (19) 

where 

  

                                                                                                          (20) 

 

 

We consider I2n+1(A)  as the Bessel function of the first kind of (2n+1)-order. The first term for both these series 

is obtained as l1 = 2J1(A) and e1 = 2J1(2A). Where J1(A) is the first-order Bessel function of the first kind. 

Substitution of these results into equation (16) gives 

(2

1)  

Avoiding secular term, we get 

 

                                                                                               (22) 

 

Thus, the zeroth-order approximate frequency is 

                                                                                                      (23) 

  

 

Which is same as the first-order approximate frequency determined by Moatimid et al. Remaining part of 

equation (21) is written as follows: 

 

(24) 

with initial conditions u1(0) = 0, u0
1(0) = 0. The solution to equation (24) is chosen as follows:  

                                                                                                     (25) 

 

Substituting equations (4.2.25) into (4.2.24) gives 

 

(26) 

and then we can write the following expression for the coefficients b2n+1: 
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(2

7) 

for n ≥ 1. Considering that u1(0) = 0, equation (25) gives 

                                                                                                        (28) 

 

 

From equation (14), it is obvious that the value of u1 is required to determine the higher-order approximate 

solution u2. But u1 has infinite number of terms, which will create difficulties to obtain the higher-order solution 

u2. However, we can truncate the series expansion of u1 presented in equation (25) and express an approximate 

equation 
)N(

1u in the form 

                                                                                                 (29) 

and 

                                                                                                  (30) 

 

 

which contains only a finite number of harmonics. By comparing equations (25) and (29), we find that 

                                                                                                     (31) 

                                                                                                      

                                                                                                    (32)                                                                                                           

 

 

For simplicity, we can consider N = 2 in equation (4.2.29) and we obtain 

(33) 

                                               

 

                                                                                                          (34) 

 

 

 

where l3,l5,e3 and e5 are given. Thus, the first-order approximate solution is 

                                                                                                    (35) 

 

 

The first approximate frequency ω1 can be derived by applying the no secular term condition on equation (14). 

Now substituting the value of u0 and 
)2(

1u , equation (14) becomes 
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                                                                                                          (36) 

It is possible to do the following Fourier series expansion 

                                                                                                         (37) 

 

                                                                                                         (38) 

 

                                                                                                         (39) 

and 

                                                                                                          (40) 

From equation (36), the secular term can be eliminated if 

                                                                                                          (41) 

 

 

 

where m1, n1, f1 and g1 are given. 

Thus, the first-order approximate frequency is 

                                                                                                       (42) 

 

 

where ω0,ω1 are given by equation (23) and (41), respectively, and the corresponding first-order approximate 

solution is 

                                                                                                        (43)  

 

 

where b3, b5 are given by equation (34). 

 

IV. Results and discussion 
We provide a comprehensive analysis of the accuracy and efficiency of the modified homotopy 

perturbation method (MHPM) across a range of parameters, highlighting its superior performance in frequency 

and period approximations. Notably, the first-order approximation of frequencies using MHPM delivers 

exceptionally accurate results for both examples. A critical advancement in this work is the decision to retain the 

sine function in its entirety rather than employing a Taylor series expansion, as is common in many traditional 

methods for solving the rotating pendulum equation. While Taylor series expansions are effective for small 

deflection angles, they introduce significant errors as the pendulum’s deflection approaches higher degrees. In 

contrast, retaining the full sine function allows MHPM to maintain high accuracy, even for large deflection 

angles.[4] 

Detailed comparisons with established methods such as the homotopy analysis method (HAM),  gamma 

function method (GFM), and the coupled method underscore the precision of MHPM. These comparisons, 

presented in Tables 4.1– 4.3, validate the efficacy of the method across various amplitude values. For instance, 
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in the case of a rotating frame pendulum with Λ = 0.1 and A = 170°, the maximum relative error for the first 

approximate frequency using MHPM is just 2.35%. In comparison, the Coupled Method  and HAM report 

significantly higher maximum relative errors of 16.97% under the same conditions. Additionally, the GFM 

demonstrates an even larger relative error of approximately 74.07% for the first approximate frequency at Λ = 

0.1 and A = 160°. 

Figures 4.2 and 4.2 visually corroborate these findings, illustrating the high accuracy of MHPM for 

larger amplitudes. The solutions obtained using MHPM closely align with exact solutions, demonstrating the 

method’s robustness and reliability. 

Figure 4.2 explores the dual effects of rotational speed (Λ) and amplitude (A) on the rotational 

pendulum’s time period when length r is constant, revealing two distinct trends: At low rotational speeds Λ = 

0.1, the time period increases with amplitude A, as the rotational speed has minimal influence on pendulum 

oscillations. Under these conditions, the system behaves similarly to a simple pendulum. At higher rotational 

speeds Λ ≥ 0.5, the rotational speed significantly affects the oscillatory dynamics, leading to a decrease in the 

time period as A increases. This behavior highlights the pronounced role of rotational speed in shaping the 

pendulum’s dynamics.[5] 

To further evaluate the performance of MHPM, the approximate period are compared to the exact period for the 

simple pendulum equation, given by 

                                                                                                     (44) 

 

 

 

where T0 = 2π k/l . 

The first approximate period using MHPM is 

                                                                                                         (45) 

 

 

with a limiting value 

                                                                                                          (46) 

 

 

By contrast, the second approximate period from the harmonic balance method (HBM) is 

                                                                                                        (47) 

 

 

 

with a limiting value of 

                                                                                                        (48) 

 

 

Similarly, the second approximate period from the standard homotopy perturbation method (HPM) is 

                                                                                                       (49) 

 

 

 

with a limiting value of 
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                                                                                                       (50) 

 

 

 

These comparisons highlight the superior performance of MHPM, which achieves lower relative errors even in 

its first approximation compared to the higher-order approximations of HBM and HPM. 

The results unequivocally demonstrate that MHPM provides a highly accurate and efficient framework for 

predicting the dynamics of pendulums, particularly under conditions of large deflection angles and for both high 

and low rotational speeds. By retaining the full sine function and employing a novel approach to 

approximations, MHPM overcomes the limitations of traditional methods, offering significant advancements in 

modeling complex nonlinear oscillatory systems.[6] 

 

Table 4.1. Comparison among frequencies obtained various methods for 

Λ = 0.1. 

 

Where Er(%) represents absolute percentage error. 
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Table 4.2. Comparison among frequencies obtained various methods for 

Λ = 0.5. 

 

Where Er(%) represents absolute percentage error. 
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Table 4.3. Comparison among frequencies obtained various methods for 

Λ = 0.9. 

 

Where Er(%) represents absolute percentage error. 

 

 

Figure 4.2. Comparison among the solutions obtained by the modified homotopy perturbation method (MHPM), 

gamma function method (GFM) with exact solution for Λ = 0.1, A = 120°. 
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Figure 4.3. Comparison among the zeroth and first-order solutions obtained by the modified homotopy 

perturbation method (MHPM) with exact solution for Λ = 0.9, A = 170°. 

 

 

Figure 4.4. Variation of first approximate period obtained by the modified homotopy perturbation 

method(MHPM) for various values of the parameter Λ. 

 

V. Conclusion 

This paper presents an enhanced application of the Modified Homotopy Perturbation Method (MHPM) 

to study the nonlinear motion of a rotating pendulum. The method successfully provides high-accuracy 

estimates for frequency and time period without linearizing the sine function, making it effective even at large 

amplitudes. Results demonstrate the superiority of MHPM over traditional methods such as HAM, GFM, and 

HBM in terms of accuracy and convergence speed. The study also highlights the influence of rotational speed 

and amplitude on the system's behavior, underscoring the value of MHPM in analyzing complex nonlinear 

dynamical systems. 
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