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Abstract.

M. Gupta. J. Tyagi [61] establish singular fractional Adams—Moser—Trudinger inequality for both
bounded and unbounded domains in the Heisenberg group H™. Follows [61] fractional Adams—Moser—
Trudinger type inequality on domain of R™ with finite measure show adding to it Hardy-Littlewood-
Sobolev inequality adapted to the result of R. O’Neil (1963). we show singular fractional Adams—Moser—
Trudinger type inequality on domain of R™ with finite measure. We also show singular fractional Adams—
Moser—Trudinger type inequality in H". using the work of N. Lam and G. Lu (2012, 2013). Our goal is
that any function in higher order fractional Sobolev space in Heisenberg group can be represented in
terms of Riesz potential, harmonic analysis and kernel properties of the associated operator, we show
fractional Adams— Moser—Trudinger type inequality in H™. This paper, is show free from symmetrization
arguments. We show the existence of solution to the following class of problems

Fil&u;) y-1_ .
Ty, =———XL +p u; u; in 0, ) .
J [E|1+e (§)| Jl J , where € is a bounded subset of H" of class C%! with bounded
u =0 in H™\Q,

boundary and € > 0. f; satisfies either the subcritical exponential growth or critical exponential growth

condition and b is a small L2-perturbation. then, there exists a small € = 0 with 0 < || b lp2ey< 1+

_ 1+2¢
£,0 =y <landa = >
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1. Introduction

Moser-Trudinger inequalities and Adams inequalities play an important role in geometric analysis
and partial differential equations. and have important applications in solving a class of equations which
involve exponential growth nonlinearity. M. Gupta, J. Tyagi [61] establish singular fractional Adams-
MoserTrudinger type inequalities for both bounded and unbounded domains in the Heisenberg group H™.
We extend several research works concerning this family of inequalities in Euclidean setting.
Let O R 2€ be an open, bounded domain. Then the classical Sobolev embedding theorem says that for

€ > 0.
(L+2e)(1+¢€)
W () s LM @Q), 1=1+e< —
In the limit case € = 0, we have
W2 Q) o [1re(n), 0= € < oo,

and it is well known that WL"'*?°(0) is not embedded in L™(Q). see Example 4.43 [2].
So. the natural question arises about the possibility of identifying a smallest space in which W' "?<(Q) is
embedded. This question was answered in [55] by Trudinger. who proved that %1’1+26(§1) is embedded
into Orlicz space L, (£1). where
1+2¢
A(t) = exp |t ze )71

is an V-function. see [2] for the definition of N-functions and of the space L, (£1). Later on this inequality
was sharpened by Moser [47]. He proved the following:

Theorem 1.1. Tet 2 — R?*€ be a bounded domain. € = 0. Then there exists k, € R*and a sharp constant
1

Azie = (2 + €)w]iS, where w; 4. is the area of the surface of the unit (2 + €)-ball. we have

1+e”
1), 2 e (i 8) ax = &
— ex] o |u;|1+e x =
A 4 P ' o

for any a = a,,. and u; € W2 () with _|(‘Q|Vuj|2"'E = 1. This constant is sharp in the sense that if
@ > az, .. then the above inequality can no longer hold with some kg, independent of u;.
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For Q € R2*€ be an open domain with measure |©2|. Then we know that for € = 0, WOI’HE(Q) embeds
(1+2€)(1+€) ) . i
continuously into L~ € (). while in the borderline case € = 0. one has WOI’HZE ¢ L”(Q). For

bounded domains in R!*2¢  while Theorem 1.2 was proved by Adimurthi and Sandeep [4]. similar
inequalities were studied by Troyanov [54] in compact Riemannian surfaces.
Theorem 1.2. Lete = O and u; € %1’2+E(Q). Then foreverya > 0 and f € [0,2 + €)

2+€
a'|u |1+€
————dx < .
f Z T x|F
Moreover.
2+€
a‘u]|1+e
sup f Z ———dx <o (1.1)
llugli=1 |)¢’|"rg
if and only if — +— < 1. where | u; = X; Un|V’u:,,|?"rf)“E

QXa4e
In [3]. Adimurthi ’illd O. Druet improved Trudinger-Moser inequality for a smooth bounded subset in R2.

There are also other improved Moser-Trudinger inequalities on the unit disk in R2, see, [5.44].

2+
It is well known that for a positive integer m< 2+e and for 1 =1+¢€ < —E Wm”E(Q) embeds

_2re)1+e) 2+€
continuously into L2+e-m+€)(Q), while in the borderline case m = 1— one has W, ™ & L%(Q).

The above sharp inequality by J. Moser (Theorem 1.1) was later extended by Ad’\ms [1] for higher order
Sobolev spaces which reads as follows:

Theorem 1.3. Let Q be a bounded and open subset of R**¢. If m is a positive integer less than 2 + .
then there exists a constant C, = C(m, 2 + €) such that for all u; € C™(IR2*€) with support contained in

Qand [¥; VMl =1m= i% we have

1 _2+e
@J’nz exp (,8|uj(x)|2+6—m) dx < Cy,
J

forall § < f(m,2 + €)., where

m

n Az, for m even,
VT = me1 i
VA 2 uj, for m odd,
And
1+e
m + INGE
2 +e :rr 2 2’“}" )

when m is odd,

wlte 3+e—m '
_ r (—z )
p(m,2+¢e) = Lte

2 i e[nz zmr(rg’) :

» W]lE‘.]] m is even
wl+e F(Z +e€— m) ’

e = 0,T is the Euler Gamma function. Furthermore, for any f = (i, 2 + €). the integral can be made as
latye as desired.

Recently, in the setting of the Sobolev spaces with homogeneous Navier boundary conditions, denoted by
2+€

W, (Q), which is defined as follows:

2+¢
2+e€
m—

— _ mZe G - m—1
W. (Q):=qu; e W™ m:Auy; =0on 0 for0=j =< > ,

2+e

2+E

the Adams inequality was extended by Tarsi [52]. Also. note that W "“ contains Sobolev space
2+€

I/I/Gm'W(Q) as a closed subspace. When Q € R?*€ is an open subset of R2*€ (not necessarily bounded)
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and m is an even integer, Ruf and Sani [50] extended the Adams-Moser-Trudinger type inequality to the
2+€

m— . . . .
Sobolev spaces W, ™ (). The statement of the inequality is the following:
Theorem 1.4. If m is an even integer less than 2 + ¢, then there exists a constant C,, ;. > 0 such that for
any domain Q C R?*€, we have

2+€
sup j Z ;i (Bo(2 + E,m)|uj|m—2+edx < Cgser

2+€ -
UEW, ]
where
2+€
2 e|nzomr (%) Zremm
_ 2
Bo(2+€em) = o r(z -I—E—m) ,
2
2+e
tl
B0 =ef— Yy —,
4 Jo:
Jo=0

) B ) N'>2+E >2+E
UoJzte  =m {]OE o= }7 m

m
Moreover, this inequality is sharp in the sense that if we replace S,(2 + €,m) by any larger £5. then the
above supremum will be infinity.
In the above result. Ruf and Sani used the norm

m
Il Uu; lin2+6= ||(7A +1)2 ujH2+el
m

which is equivalent to the standard Sobolev norm

2+€ 2+E
la; I 2 =Z g 117 +Z Vlu
i Wm,% : 2+E " 2+E
j
Since Ruf and Sani [50] only considered the case for m even. So for odd m. it was an open question.
Later. it has been settled by Lam and Lu [32]. Then, the result reads as follows:

_m_
2+€

Theorem 1.5. Let m be an odd integer less than 2 + e and m = 2k + 1,k € N. Then

sup j Z P; (ﬁ(z + €, m)|uj|2+6 m) dx < o,
R2+e

2+E

quW (R2+E) Iz v(- ﬂ+flku;\|z+e+|IZ; (= A+1)ku;||2+e <
m

Moreover, the constant £(2 + ¢, m) is sharp.
We remark that (1.1) was extended to the entire BR?>*¢ by Adimurthi and Yang. see [6]. For constants

€e=00=pF<1land0 <y =1-—f. the following holds:
k(2+€)

1+€
sup j Z pazerlu e Z(“ue}’) ll = )
2+€ R2+E€ |X|2+ES

+(1+6)|ug])2+Edx=1

Jaz+eZj (v

Then the application of Adimurtln-Yangs inequality [6] on partial differential equations was studied by
Yang [59] and recently the existence of extremals for the singular Trudinger-Moser inequality was
obtained by Li and Yang. see [39]. The Adams inequality was also extended to compact Riemannian
manifolds without boundary by Fontana [24] and to measure spaces by Fontana and Morpurgo [25].
Martinazzi [46] established Adams-Moser-Trudinger inequality for fractional Laplacian and the statement
for inequality reads as follows:

Theorem 1.6 ([46]). For any 0 < € < o and positive integer 2 + €. Set

1
X r (7) 24 L€
246,146 rer X24e1+el = pter
F(l + E) St Wite 2+ei

Then for any open set Q © R?*€ with finite measure. we have
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1+€
sup j Z az+£1+e|u1‘ € dx < C?.+El+€|'Q|

2+€
quﬁl"'E'l"'E(.Q),H E; (_A]2(1+€) Uj||L1+e(n)
Moreover. the constant @z 1+ 15 sharp in the sense that we cannot replace it with any larger one without
making the supremum infinite.
For the definition of A'*S1*€({)) space and related norms (see section 2). Now. in the setting of

Heisenberg group. it has been known for years that the following inequality holds for f; € Cg°(H**€)
1

1
1+€ 1+e€

X 1+
j 2 Z chr(zr r)|l+fdzdt = C1+e,1+£ J . Z |V|H12+sf:f(2, f)| f(izdt (1.2)
H2tE 5 HZteE 7

provided that € = 0. The Sobolev inequality no longer holds if e = 0. This inequality was first proved by
Folland-Stein [22,23]. Here. |V 2e-1 f}‘ is used to express the Euclidean norm of the subelliptic gradient
H 2

of :

1
261 2

szmfj Z Z(anj)Jr(Yf;) :

see Section 2 for the definitions of the vector fields X; and ¥;. It is then clear that the above inequality is

also true for functions in the anisotropic Sobolev space W," 1+E( ) (€ = 0), where W,"**¢(Q) for
2e—1
openset 0 € H z is the completion of Cy° (€2) under the norm

I fi Nprvecqy+ "VHze;f} ey’

Before the work of Jerison and Lee [29]. very little was known about sharp constants for Sobolev

inequality (1.2) in the Heisenberg group. The best constant Cy, ;.. for the Sobolev inequality (1.2) on
Ze—1
H 2 for e = 1 was found and the extremal functions were identified in [29].

-1

2
Theorem 1.7 (Jerison and Lee [29]). The best constant for the inequality (1.2) on H 2z 1is

c (4m)-t (25 — 1)‘2 r (25 + 1)]2 2
= I e+
e 2 2
and all the extremals of (1.2) are obtained by dilations and left translation of the function
2e—-1
K|t +i(lz2») + D] 2
Furthermore, the extremals in (1.2) are constant multiples of images under the Cayley transform of
extremals for the Yamabe functional on the sphere $2€ in C.
The sharp Sobolev inequality for € =1 is closely related fto the sharp Hardy-Littlewood-Sobolev

inequality. also known as HLS inequality (see [28]): For 0 <A< 2¢+1 and 1+ € = ;ﬁ%

the

following holds

Hly)g,(v) )
ff Z }( 1) ] I ———dwdy;| = Cﬁlz IIfi Nivell g llises (1.3)
2e—1 26—1 2

z xH z J |uj_lp }
where u; " v; 1s the group product and |. | 1s the homogeneous norm and du; is the Haar measure.
In fact, rhe 1esulr of Jerison and Lee is equivalent to the sharp version of HLS inequality (1.3) when
A=2¢—land1+e=2(1+2€)/(2(1+2€) — 1) = 2222
two natural questions. First question is: What is the best LO[lST"i]lT Citeq+e for the [1*€ to L1*€ Sobolev
inequality (1.2) forall e > 0 and 1+ € = %

sharp constant for the borderline case = 0 ? While the first question still seems to be open, the second
question is settled by Cohn and Lu[16] in Heisenberg group for the domain of finite measure and is given
as the sharp Moser-Trudinger inequality on any domain Q with |[Q| < o on the Heisenberg group.

. The work of Jerison and Lee [29] raised

? And the second posed question is: What is the
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The sharp constant for the Moser-Trudinger inequality on domains of finite measure in the Heisenberg

group is stated as follows:
1

2e—1 —_
Theorem 1.8. Let H = be an n-dimensional Heisenberg group. = 0, @45 = (1 + 2€)67%, G142 =

| p(.6)=1 |z|**2¢du. Then there exists a constant C, depending only on 1+ 2e such that for all Q c
2e-1
H =, |Q] < oo,
1 1+2€
sup E Z pd1+2elUyl 2 df( oo,
ujewol-““(n)sz V o2e-1u =1 o J
H 2 L1+2€

If @y, 5. 1s replaced by any larger number, then the supremum is infinite.
Remark 1.9. The constant a, ,,, was found explicitly in [16] and it is equal to

)

(26 — 1) "
5 !
where w,_, is the surface area of the unit sphere in R?¢ 2,

Using the sharp representation formula in [15]. Lam et al. [36] established the following version of sharp

singular Moser-Trudinger inequality on domains of finite measure on the Heisenberg group.
2e-1
Theorem 1.10. Tet Q c H 2z ,|Q] <o and 0 <[ < 14 2¢. Then there exists a uniform constant

Cy < oo depending only on 1 + 2¢, 1 + € such that

- e (awvae () O )

T142e = Wae—2

sup _— T dé < Gy,
wEWr QIS Tyl <1 |QTFZE S0 p()rre
where p(&) is the Koranyi norm of &, see Section 2 for the definition. The constant @, 5, (sze) is sharp

- - € - - . .
in the sense that if @, ,,, (E) is replaced by any larger number, then the supremum is infinite.
€

2e—1
There is an analog of works in Adimurthi-Yang [6] in the whole Heisenberg group H z , which is the
following theorem, see [14]:

Theorem 1.11. There exists some constant ¢ with 0 < a* < a;,,,. such that for any pair 1 + € and «

Ca . 1
satisfyinge > 00 <a = « and% + 1:;6 = 1, there holds
_ 142
1 142¢ el aklullk( 2€)
sup J’“*l —(f)“fz eyl 2 _ Z —}kT dé < oo,
. v =1 - H
"u]"WLHze(HZZ 1) w2z P 7 prrd
1+e | 1+€ . . . . ) . 11426 261
When St 1, the integral in the above is still finite for any w; € W+ (H 2 ) but the
.. . . 1+
supremum is infinite if further —  —>1

QA(1+26) 1+2e
See [60] for the similar results as above but by different approach. Like the integer case. there are some

works done for fractional case in the Heisenberg group. For example. Roncal and Thangavelu [53] proved
2e—-1

the Hardy type inequality for fractional powers of the sublaplacian £ on the Heisenberg group H 2 . We
2e—1 1+¢€ 26—-1

denote by Wite? (H—]IT) the Sobolev space consisting of all L* functions for which L™= f; € L? (]HIT)

Instead of considering powers of L, they considered conformally invariant fractional powers Ly, .. see

Subsection 2.3 [53] for definitions and proved a Hardy type inequality for £,,. with a non-homogeneous

weight.

We mention that there are several Moser-Trudinger and Adams type inequality and their applications to

partial differential equations, see [7-13. 17, 18, 26. 27, 30, 33. 37, 38, 40, 42, 43, 45, 49, 56, 57].

Now it is natural to ask:

Q. Can one establish fractional Adams-Moser-Trudinger type inequality on Heisenberg group?

We answer this question. M. Gupta, J. Tyagi [61] establish fractional AdamsMoser-Trudinger inequality

with singular potential and in unbounded domains.
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Now, we state the follows theorems (see [61]). which we prove in the next sections.
Ze—1

Theorem 1.12. Let Q C H z be an open set of class €% with bounded boundary and || < oo, Let

0<a<1+4+260<e< OO1+ZE—{I(1+E)_Olj:(1+26)/(1+26—({) Then there exists a

constant C;, such that

1+€
sup j Z exp Al+2£|u]| € )d‘f = Co,
u;ESFTE(Q),1Z; 8 2 u 19

Jj ,f||L1+E(n)‘ 1
where
1+2
Apire =—— 25—t el (| = 1} (14)
Sz Z5 vi@ED] € du
where v;(§) = Rg(€) is the R_iesz potential, as in Proposition 2.14, which is an allowed kermnel of order «

and SA*€ is the space Dom (77 ) equipped with the graph norm
£ =0 Narea=I fi et 17921,
where 7} +/E as defined in Definition 2.12 is the maximal restriction of 7°%/? that is, Dom( 7;%. ) is the

set of all f; € L**€ such that the distributional derivative 7%/2; is in L**€, and Jﬁf fi = T2f;.
Moreover, the constant A, 4. is sharp in the sense that we cannot replace it with any larger one without
making the supremum infinite.
Ze—1
Theorem 1.13. Let Q C I z be an open set of class C%! with bounded boundary and |Q| < 0,1 +
2e —a(1l+¢€) *Oﬁzi
(1+2e)—a

1 + € such that

,€ > 0. Then there exists a constant C, depending only on 1 + 2¢ and

e\ 1€
1 exP(Al+ZE(E) uj| € )
sup ﬁfﬂ Y e dé < C,, (1.5)

SN S

where |&] = (|z|* + t2)4 Aq 5. 1s defined in (1.4). Moreover. the constant 4, ,,, (1 ) is sharp in the
sense that we cannot replace it with any larger one without making the supremum mtmne.

2e—-1
Now., we state the Adams-Moser-Trudinger type inequality on Heisenberg group H 2z .
Theorem 1.14. Let 0 <e <o, 1+ 2¢c—a(l+¢€)=0, E =(1+4+2¢)/((1+ 2¢) —«). Then there

exists a constant Cy depending on 1 + 2¢ and a such that the follovm ing holds:
1+€
v (a+ o)
sup [ ——Ld=q,
5L ]

Ze—1
ujesé”(h' z ),uuju zen ISPl zen
L1+E(HT) L1+E(M e )51

where
Jive—2
— ot _
b =et= ) o
j=0
Jige =M JEN:j=1+e}=1+4¢
and 1 4+¢ = (Tezf) Aj49e. Moreover, the constant 1 + € is sharp in the sense that we cannot replace it
with any larger one without making the supremum infinite.

m
Sa*€, Yz and related norms. used in the above theorems, are defined in the second section. We remark
that our Theorem 1.14 does not require the restriction on the full standard norm and hence. even in
Euclidean sefting, this theorem extends the works in [34.58].
Now, we define subcritical and critical growth for f;(¢,1;). We say that a function fj: @ X R — R has

2e—-1

subcritical growthon Q € H 2z if

(&, uy
lim Z |f1 @ w)| = 0, uniformly on Q, Va > 0. (1.6)
I 500 exp(auz)

We say that f; has critical growth if there emsts o > 0 such that
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(S, .
lim z M = 0, uniformly on Q, Va > @, (1.7)
lujloe Zuexp(au?)
And
- b’ ]L.
M = oo, uniformly on Q, V& < a,. (1.8)
Jujl—+o0 ; exp(aujz)
We define

(1.9)

Il 117
A= inf Z —7 ————> 0, where || y; |2_f Z |(T)2UJ
02U ESE, (Q) L 1] d
Jb |¢‘2 f
We assume the following conditions on the nonlinearity :
(HI) f;: QX R— R is continnous. f;(¢,14;) =0 on QX [0,0),f;(¢,u;) =0 when u; = 0,v¢ € Q.
(H2) There exist Ry > 0, M > 0 such that, ¥[u;| = Ry, V& € Q.
0 < I w) = Mf;(¢,u),
- u
where F;(§,u;) = [ 7 X f;(§, 1+ )d(1+6).

(H3) limsup Siny 4 Y 2F}|' (i’r‘i ) A, where A is defined as in (1.9).
us
i)
. N —€-A
(H4) llIIluj_,m X uifi(é, uj}exp(fao\uﬂz) =By > m
in Lemma 2.19. (H5) b € L2(Q) and 3 small € = 0 such that 0 <|| b lzoy< 1+e.

Also. as next applications of fractional Adams-Moser-Trudinger inequality. we prove the existence of
solution of the following class of partial differential equations with singular nonlinearity:

strey; =f;‘;|"i’f§’+b(g)|uj|y—luj inQ,

2e—-1
w =0 inH =z \Q,
2e-1

where Q is an open. bounded subset of H 2 of class C%! with bounded boundary. f; satisfies either the
subcritical exponential growth or critical exponential growth condition (see. (1.6) —(1.8)),e > 0,0 =y <

, Where R, M and A5, are defined

(1.10)

1 and b is a small Lz-pemu‘bation. that is, there exists a small € = 0 with 0 <I|| b |2 @<l+tel0=y<
1+2¢

landa =

Next, we state the existence theorem illustrating the application of main theorems (see [61]).
Theorem 1.15. Assume that f; satisfies the subcritical growth condition and (H1)-(H3). (HS) hold.

Suppose that & = % and 0 = y < 1, then (1.10) has a weak solution for € > 0.
1+2€

Theorem 1.16. Assume that f; satisfies the critical growth and (H1) —(H5) hold. Suppose that @ =

and 0 < y < 1, then (1.10) has a weak solution for € > 0.

We deal with useful preliminaries on fractional Laplacian and Heisenberg group and several important
results which have been used. In the sequel.

2. Preliminaries

We show the fractional Laplacian on the Euclidean space. We denote

2e-1 26— 1 |z%(x)| )
LHE(R 2 ): ujeLm [R‘\ f”l Z 4E+ldx < o0 ¢,
R 2 1+ x| 2

2e—1
For functions u; € Ly, (]R‘\T) the fractional Laplacian (—A)Euj can be detined as follows:

T
o3 — -1 1+4e€
(—8)zgy: = FH(|E"Fo;)

2e—1

for ¢; belonging to Schwartz space & ]RT) of rapidly decreasing functions, where F denotes the
2e-1 3

unitary Fourier transform. Then for w; € Ly, (]R 2 ) we define (—A)zu; as a tempered distributions via
the formula
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1te lte 1te 2e-1
Z <(—A) 2 u.-,qoj) =Z <uj-,(—A) 2 (,0;):=JZE_1 Z u;(—A) 2 ¢;dx for ¢; € S([PC\ 2 )
- R 2z
i

J J
The right hand side being well-defined because

3 Co;
z (—A)2g; SZ —— e
7 7 1+ x| 2

2e—1 2e—1

for every ¢; €S (IF@T) For a set Q Cc Rz (possibly unbounded), € = —1 and 0 < € < o0, ), we

define
2e—1 2e—1 1+€ 2e—1
prvesee (R5) =y 10 (55°) 'S € 10 (55°))

which is equipped with the norm
1
1+€

2e—-1
Lm(,m = )

H** 1) = {u- € Hitelte (szz__l) = 0mR 7 n}
: j L. » L S \

and the norm is defined as
1
1+e
Il uj "1‘[1+E.1+E(QJ: z f (*ﬂ) 2 u;
- a
j

1+f)1+6
2e—1 2e—1

Now, we recall the basics on the Heisenberg group H 2z .H z = (IR2¢,") is the space R2¢ with the non-
commutative law of product

(o, t)- (X y,t) = (x +x,y+y,t+t'+2((y,x")— (x,y’})),
e—1

2

5 —1\ = . _ —AV2u;

Iy ||H1+E‘1+E(m252 ) Z Iy HLHE(RZEZ 1)+||( A2y,
]

and

Ze—1 2
where x,v,x",y' € Rz ,{,t" € R and () denotes the standard inner product in R 2 . This operation
2e-1
endows H z with the structure of'a Lie eroun. The vector fields
T d p d 5 a v a ) Ja . 123 2e—1
== i = —+ fiso Vi T — 24X, L= L,4,9, 0.,
T T A L P T: 2

2e—-1
are left invariant vector fields and generate the Lie algebra H 2 . These generators satisfy the non-
commutative formula

[0 %] = =487, [%uX)] = %3] = XuT] = [%,7] = 0.
Letz = (x,y) ER* L= (z,t) E H-]Izsz__l. The parabolic dilation is
5;¢ = (Ax, Ay, A%t)
. wWhere € = 0 is the homogeneous dimension of ]HIZET_1 and satisfies
6(§o - &) = 8¢ - 8380

infroduce a homogeneous norm

and the Jacobian of §; is A1*2¢

2e—-1
zZ

The anisotropic dilation on H
1 1
€] = (zI* +t2)2 = ((* +y?)? + 1D = p(), 1
which is known as Koranyi gauge norm N(zt). In other words. p(&) = (|z|* + t2)s denotes the
2e-1
Heisenberg distance between (z,t) and (z',t") on I 2z as follows:
p(z,t,2',t") = p((z', ') - (z,0)).

. . 2e—1
It is clear that the vector fields X;, V;,i = 1,2, ey =5 are homogeneous of degree 1 under the norm | - |
Ze—1
and T is homogeneous of degree 2. The Lie algebra of Heisenberg group has the stratification H™ 2z =

V, @ V,, where the (2¢ — 1)-dimensional horizontal space V; is spanned by {X;,V;},i = 1,2, g

while V, is spanned by T. The Koranyi ball of center £, and radius r is defined by

By, ,(&or) ={&:]E1- & =1}

2

and it satisfies
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- — A — 4-1+2¢
Bize s (Gor1) —|BH$(O,?)|—? BH$(0,1)|.

2e—1
where | - | is the (2€)-dimensional Lebesgue measure on H 2 and € = 0 is the homogeneous dimension

2e—1
of Heisenberg group H 2 . The Heisenberg gradient and Heisenberg Laplacian or the Laplacian-Kohn
2e—-1

operator on H 2z are given by

\Y 2e-1= (XIJXZ; "'JXZE_].J YIJ YZJ' ey yZE—l)
2

H z 2
and
2e—1
2
AH25—1 = Z Xi2+Yi2
= oy
2e—1
a2 a2 a? a2 a?
= - I — 4y, 2 2y
Z (ax§+a}:g+43faxiar g g +y‘)dt2)'

i=1
G.B. Folland [20] proved the existence of the fundamental solution for the sublaplacian —A ze-:, which
H 2

is given by fze-1|&| 2+ where
2
. 2¢ — 1\ 26 + 3 S e, -1
C2e-1 = ( )( )jze_l [z|*()€]* + 1) v 4 dzdt| .
2 2 2 )y

2e—1
Definition 2.1 (Convolution [23] ). If f; and g; are measurable functions on H z . then their

convolution f; = g; is defined as

Z (F+ 9,)() = jH_Z fL+Og,(L+e) DA +6)

]
= f s Y G+ O™ D1+ +0),
H 2 -
1

provided the integral converge.
26—1
Definition 2.2 (Distribution Function). Let f:Q CH 2 —» R be a measurable function then

distribution function of f; is given by
A () = [{x € L f;()| > t}],t > 0.
It is easy to see that distribution function is a monotonically decreasing function of ¢ and f;(t) = 0,Vt =
esssup(f;).
2e—1

Definition 2.3 (Decreasing Rearrangement). Let 0 € H 2z be a bounded set and let f;:Q — R be a
measurable function. Then the decreasing rearrangement of f; is defined as

;" (0) = esssup(|f;]).
frave =it () <1tee=o.

2e-1
Lemma 2.4. Let < z be a bounded set and let fj:Q — R be a measurable function. Then for

0=e€e < m,
If;(©)1ede = " 7 @] .
0 7 0 7

Lemma 2.5 (Hardy-Littlewood Inequality). Let 0 © H" be a bounded set and let f;, g;: Q2 — R be
measurable functions. Then

LZ I£;(€)g;(O)|dE < f

£

z f; (g (t)dt.
j

Let us recall that
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23 1 ® *
f, (f):?f > fra+eda+e.
¢

The following proposition is IeIaTed \'\ ith polar coordinates on H z .

2€
Proposition 2.6. Let X = {¢ EH =z :|&| = 1} be the unit sphere in a Heisenberg group H Then there

is a unique Radon measure dyu on I such that for all f; € L* (HT)

f% Z fi (w)du; = Joof Z fi(rw) )r2edu(u; )dr.

2e—-1

Remark 2.7. Let wy._5 = ZR/I'(—) be the swface area of the unit sphere in € 2z and for f > —(2¢€ —
1). let

Cp = L 1z* | dy,
which is the best constant for Moser-Trudinger inequalities and by doing computation, we can get
_ Wae oI (1/2)I[(26 — 1 + ) /4]
g T[(1 + 2€ + 8)/4]
We borrow the following definitions from [15].

2e-1
Definition 2.8 (Kernel of Order ). Let 1+ 2¢ denote the homogeneous dimension of H 2 and let

26—1
0 < a <1+ 2e. We say that a non-negative function v; defined on H' 2 — {0} is a kernel of order a if
2e—1
there is a function (also denoted by ) defined on the unit sphere I = {{ EH 2z ;|| = 1} such that for

& #0,1;(8) = 18197 0+291;("). where &' = /(]
Definition 2.9 (Allowed Kernel). Set z' = z/|é| and t' = t/|¢|? and &' = (z',t'). Then for § > 0. let
X5 be the subset of the sphere given by
Iy ={ens=v(&) =81}
We will need to assume that for every § > 0 and 0 << M < oo, there are constants C (8§, M) such that

1
f f Z lv; (G ((L+ )X +e))™H) — (&) ((l:;)du({’)iC(cS,M)

for all (1+¢€)" € X. A kernel v; of order a which satisfies the above estimate is known as "allowed
kernel".
Example 2.10. It is easy to verify that functions defined by v;({") = |z'|, & = (2',t") for B > —(2e —

26—-1
1) on the Heisenberg group H 2 are allowed kernels.

Let us state a theorem, which plays an important role to prove the main theorems.

2e—-1

Theorem 2.11([15]). Suppose v; is an allowed kernel of order a on Heisenberg group H 2z and
. 1+2e
1+2e—a(l+e)=0(Ge.a= "

1+ 2e
1+€

Iy [ @] € du

2e—-1
Then there exists a constant C, such that for any f; € L**€ (]HI z ) with support contained in Q C

Alv,1+¢€) =

2e—1

H =z, |2 < oo, the following holds:

o
|Q|J Z exp A(Ij'lJrE)(llfj JHE) dy; < C,.

Furthermore, if A(v;, 1 + €) is 1eplaced by a greater number, the resulting statement is false.
The next definition of complex power of T is motivated by the following formula, valid for € = 0, Re
a>0:

1 oo
(1+e)@ = —f ta-le=(ro) g,
L) Jo
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For more details, we refer to [21].
Definition 2.12 ([21]). Suppose 0 < € < o0,Rea > 0 and k is the smallest integer greater than Re «
(i.e., k = [Rea] + 1). The operator 7;%, is defined by
1 oo
T £ —1; k—a-1gk i
Tiiefy = m F(kf(r)je Z LRIyt
26-1 261 !
where J = -3 °? Xf + }jfz on H 2 and H, is the diffusion semigroup generated by —T.
Next, we see some principal properties of H, f; and some theorems required for further work adapted from
[21].
Theorem 2.13. There is a unique semigroup {H,: 0 <t < oo} of linear operators on L* + L satisfying
the following conditions:
2e—-1
(i) Hef; = f; = he. where he(x) = h(x,t) isC* on I 2~ X (0, 0), [ he(x)dx = 1 for all t. and for all x
and ¢, h(x,t) = 0 and

h(rx,r?t) = r-0+29p(x, 1).
(i) If w € D, limeo X [t (Hewy — ;) + Ty|| = 0. where D is the space of C* functions with
compact support.
Moreover, {H,} has the following properties:
(iii) {H,} is a contraction semigroup on L*¢,0 < e < oo, which is strongly continuous for € < oo. Also, if

0 <€ < o, H; can be extended to a holomorphic contraction semigroup {HZ: |arg z| <Z%n(1 —|1-
@/1+€))}on Lt

1+¢
(iv) H, is self-adjoint, i.e.. H, | L**€ is the dual of H, | L'e € > 0.

(v) fj =z 0implies H,f; = 0, and H,1 = 1.
Proposition 2.14([19,21]). Suppose 0 < @ < 1 + 2¢. Denote by h = h(x, t) the fundamental solution
2e—-1

£—

p a E m T — 2 2 2 5 -
of T + Pre where T = ijl X; +Y". Then the integral

1 @
R, (&) = F(G/Z)L to/2 (¢, t)dt

converges absolutely for & # 0. In addition, R, is a kernel of order a. Moreover,
(i) R, is the fundamental solution 7.

() Ifa € (0,2)andy; €D (H—H%) thenY; T7%%u; =%; Tu; * Ry_4.
(iii) The kernel R, admits the following rule: If @ > 0,5 > 0 and & # 0, then R, 3(&) = R (&) * Rp(&).
As a corollary of above proposition (see p. 4, [41] ). we have
Rq(§) ~ |§|7-(*29),
i.e.. there exists a constant ¢, (depending on ) such that
Rq(§) < cq|¢]*7*29). (2.1
We follow [21] for the following definitions and proposition:

Definition 2.15 (Fractional Sobolev Space on Heisenberg Group). For 0 < € < o and a = 0,51*¢ is
a/2

e ) equipped with the graph norm

pp— ¢ 2
0 f; Nisea =N et 172551,
where J"l‘ff as defined in Definition 2.12 is the maximal restriction of 7%/2, that is, Dom(b’ﬂf

of all f; € L**€ such that the distributional derivative T%/2f; is in L'*€, and fl‘ff f; =TY2f,.

S&*€ is a Banach space. An alternative characterization of Sg*. which will often be convenient is the
following.

Proposition 2.16([21]) - Sg*° = Dom((I + 73.+¢)**). and the norms || fj llyeq and [|(1 + )20,
are equivalent.

Some basic properties of S1*€ are following, we refer to [21] for the details.

HIF0 <y <p.thenSz* Sy and | Y fj livey< Cirepy Lj I fj lises-

({i)If1+e=Ref <=b < 0. then (I + T)? is bounded on SI*¢ for all 1 + €.  with bound < C|T'(1 —
ilm f3)|~*. where C depends only on 1 + ¢, . and b.

the space Dom(J

) is the set

DOI: 10.35629/0743-1112156183 www.questjournals.org 166 | Page



On Fractional Adams—Moser—Trudinger type inequality on Heisenberg group of General Domains

(iii) If f; € L**<, then H,f; € S'*¢ forall § = 0,t > 0. Also, if f; € S*<, then H,f; — f; in S**€ norm as
t— 0.
(iv) The space of C® functions with compact support (denoted by ) is a dense subspace of S1*¢ for all
1+¢a.
(W Iff; € **€and g; € D.then f; + g; € S7¢ forall .

2e-1 2e—-1
Theorem 2.17([51]).53% (H = ) © 1***(H = ) and [lll;1= C IFllyeq for some € = C(1+ €1+

2¢,) > 0 provided 0 < € < o and 1 + 2¢ = a(1 + €), where 1 + 2¢ is the homogeneous dimension of
Heisenberg group.
Proposition 2. 18([21]). Suppose f; € L'*€(0 < € < o) and the integral

gj(&) = Z fi * Ra(§) = j Z f;€Q +e) VR (1+6)d(1+€)(0<Rea < 1+ 2¢)
j J

converges absolutely for almost every ¢. If f; € Dc:)m(]"1 +f:/ . then g; € [**€ and T ‘“/2}3- =g;-

Next, we define Adams function. Let Bm B(0,m) denote the ball with center 0 and radius m and
B:= B(0,1) denote the unit ball in IHI z . Then we state the following result:
Lemma 2.19 ([1,31]). For all m € (0,1). there exists U, € D:= {uj € SZ(B): |B = 1} such that
Al+2€
1 !
(1+ ZE)IUgﬁ

where C(K, E) denotes the conductor capacity of K in E. whenever E is an open set and K a relatively
compact subset, which is defined as follows:

a .2
C(K,E) =i {"(T)zujnz € D(E) | = 1},
where D(E) denotes the set of all C® functions with compact support in E.
Let 0 € Q and R = dist(0, 00)), the Adams function is defined as below:

”Um";_(I =C(Bm,B) =

(1+ 2¢e)log (E) &
e Vez) <

0 l§l =R,

where 0 < r < R. We can check that |4, < 1 and denoting
M = lim L.;H exp((1 + 26)log k| Un i ()] de.

K
It is easy to see that M > 0. We refer to [1,31] for more details.
The next section deals with the proof of Theorem 1.12.
3. Proof of Theorem 1. 12 (see [61]).
Proof. Since  is an open set of class C®! with bounded boundary. so for any u; € SaTE(Q). we can

extend 1; by defining u; to be zero outside ) (extension is still denoted by w; itself) so that w; €

26 1 2e—1

Slte (]H] P ) Now. for any u; € Sz*¢ (]HI 2 ) we can write
u; (§) = f_ffzuj (),

Then by Proposition 2.18, we get

[74
5 (&) = (T2u; * Ry ) (©), (3.1)
where R, is defined in Proposition 2.14. So.
1+e 1+e
D e (A ) = ) exp (A1+ZE|T“f2uf Ry € ) (3.2)
j J
Using [|X; 7% I,,. =1inEq.(3.2). we get
1+€
|72, 5 R €
J, Z exp (Auuacly (@1 <) = | Z xp| Avsze T | (33)
Tlive
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Now. we want to apply Theorem 2.11. Let v;({) = Rq (). which is an allowed kernel of order . We get
1+€

1+e T 2w ()| €
fz exp (A1+2e|“j(‘f)| € )Ef Z Exp AHZEl H'f‘ifzu-jﬂ | '
A 0% Jl4e

With the choice of

1+ 2e
Alyze = ite

-[E E;’ Uj(f’n € dp
and applying Theorem 2.11, we get the conclusion. This completes the proof
To show the sharpness of A;,,e. one can proceed as in [1,35]. For the sake of brevity, we omit the
details.
4. Proof of Theorem 1.13 and Theorem 1. 14 (see [61]).
Lemma 4.1 [61]. Let 0 < @ = 1,0 < € < o0 and b(1 + ¢, ) be a non-negative measurable function on
(—o0,0) X [0, 20) such that almost everywhere,
b(l+et)<1,when0<1+¢e<t,
€

0 ® 1+e Tre
sup (j + f b(1+e€t)yed(l+ 5)) =bh < o,
—o It

>0 -
Then there is a constant C (1 + €, a) such that if for ¢»; = 0 and

fw Z pi(L+e) ™ d(1+e)=1,
B

Then

o0

Z exp (—(If})a(t)) dt = C,
—o
where
1+¢€
e

(F)a(t) = at —a fm Z (L +e Oy (1 +)d(1 +e)
A

Proof. In case of @ = 1. this lemma was proved by Adams in [1]. which was later modified for the case
0<a=<1 by Lam and ILu [34]. We refer to [1,34] for the details.

2e—1
Let U = f; » g; denote the convolution on H z . Then O'Neil [48] proved the following lemma:

Lemma 4.2.
UO=UT© <) 70570 +j > fa+ag a+eoda+e).
- t 7

j
Lemma 4.3 (see [61]). Let g; (&) = p(&)® (*29)_then

€

06~ ()

(1+ 2e)t
and
g;" () = (1+e)g; (t),
1
. _ _ 4 24> _ 1+2e 14€ _  1+2€ _
where p(&) = |&] = (|z|* + t°)+, 1+ € = T T T and ¢y = fzd,u.

Proof. We have
g;'(®) =i {1 +e>0:,,(1+6) < t},

where
;lgj(l +e)= |{§ €Q:g;(¢) > 1+ E}|
Since
g;(&) = |g|*-(+29),
therefore
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HEEQig; (D) >1+€} = {12 > 1 + ¢}
T .1
= |{g EQ:|E| < (L+€) 1+ze-a} .
Now, by polar coordinates, we get
1
1+efm
Ag,(1+e) =5 rédrdu, (4.2)
l+2€
1+2€(1 + E) 1+2e-a,
(4.2) yields that for all t > 0. we have
1+ZE
llg}.(l + E} <t == T1oc (1 —+ E) 1+ze—a < t
I (+2e)t )
= (1+¢€) =2 <—c0 (4.3)
1+2e—a €
. co 1+2¢ co 1+e
=1lte> ((’_1+2€)E) n ((1+2s)t) '
Then from (4.3). we see that
1te A .
9 ® = (55)™ @)
Now. forl+4+¢ = )E
(1+2e)t
Agj(l +e)=t. (4.5)
Hence
< 1+e 4
9j = ((1+25)t) ) (4.6)

Next. we do the computation of g;**(t).

. 1 ‘
0

t ) +€
:lf ((l+26C)0(1+E))1 dd+e)

1 -0 l+E
_?(1+25 f(1+e) THed(1 + €)

Co 1+E 1
=(1+ T+
(o (1 rr) ‘
= (1+6)g," (.
The proof completes here.
The next lemma has the same lines of proof as in [15,34,36]. For the sake of completeness. we reproduce
it here.

2e—1 N
Lemma 4.4 (see [61]). Let Q c H z be a bounded domain. Let g;(¢) = p(¢)*~(2*29) be an allowed
1426 1+e _ 1+2€

kernel of order ¢. Let1 + e = —,— =

T € > 0 and
4 € E—a

1+ 2e 1+ 2e
Al+2€ = A(gjr 1+ E) = 1+e = )

s g€ € du

2e-1
Then for all f; € Lite ( H = ) with support in Q. there exists a constant €, such that

1+e
€

Co

exp| Ajiae (1 :26) ‘" f(}fj]l;?:():;)l

= Tk Z P =t
Proof. Let 1(§) = (g; * /)(§). where
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9;®) = p(§)* 1+,

Then by Lemma 4.3. we get

97" (® = (c25) 9,70 = 1L+ gy (O, @7)

(1+26)t
By Lemma 4.2, we have

vt () =) =t (g () +J; Z f;'(1+e)g, (1+e)d(l+¢)
J

=t —(1+e)gj*(r}f Z 5 (1+e}d(1+e}+f z 5 (1+e)(1:02 )“‘(1+e} “TEEd(1 + €) by (4.7) (48)

:(lioze)m((ue)uisf > n‘(1+e1m(1+e:}+f > (l+Ej}1ie,ﬂ-‘(l+Ej}d(1+e)).
o 7 t }

Now. by using change of variables

1 . n
b;(1+€) = af=f;"(|0le~(+9)e 75, 4.9
we get
) 12 . \1te
[ Geyas =Y (5@ a
0 -
N (4.10)
_ f D @ +eyted(i+e),
o &
Let h(¢§) = (ﬂa then h*(t) = (61:25)”25 where Cpipe = % Now. by Hardy-Littlewood inequality

(Lemima 2.5). we get

exp Al+2€ 1 E2 )|17j(5)|1+6)
f Z 9(?)“i %

< (Crype)TH2e e dt. (4.11)

ti+ze

<[y e (s (1528) (5°0) )

J
Again, using change of variable
t = |0]e~(+) then dt = —|Qle~(*9)d(1 + ¢),
Obtain

o (Auvae (522) (') © )

_ 1+e (10l
(_C1+2e)1+25[ Z ite dt

7 tiv2e
1+e
€ e —(1+e))) €
Lie e-:»<;p(/—11+2E 1 +2€) (LJ (1ale )) )
= (C1+25)l+2‘f Z Tte
(10le-Gre)Trse
3 +e € Co €
= (Cl+25)l+2flﬂ|l+zej; Z exp A4z (m) (ﬁ) (1
J

|Qle—(1+e)

[Qle=C*9d(1 + €)

1+e

121

- E)(|Qle_(1+e-’)17i‘j ﬁ*(:z)dzjtf
0

|Q]e—(1+€)

ff*(z)zﬁdz} - (3 :25) €

+¢€)|d(1+¢€) (byEq. (4.8))

:(C1+25)1]::2€E|Qllfzej Z exp c ) (1 +E)efj Q‘)-(W)e_%dw
1+ 2e 7

d(1+¢€)

1+e
+L ¢J(w)dw) (1+E) € (1 +2€) (1+¢)
1+ 26)

X ( because A1 ;5. =
0

dte e [
— (Cpupo)itae|five jo Z exp [7(5.) )1+ e)] (L + e),
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where
=
F, < < : 1 1+e)d(1
B ® = (73t~ (722 t| |2, arenparadnra)
i
1, for0O<1+e<t,
e(t—(1+€))
a(l+6t)=9(1+e)e e , fort<l+4e<oo,
0, for —co<1+€<0.

Now, using Lemma 4.1. we get the conclusion.

Remark 4.5. We remark that Lemma 4.4 also holds for any allowed kernel g; of order a. see [15,36] for
the details.

Proof of Theorem 1.13 (see [61]). For any u; € Site ( 0z ) we have
a
5(§) = (T2 * Ry ) (©).

This implies

Y w@FE <Y |y RO (4.12)

j j
Let gj(§) = Ry(¢) and then using Lemma 4.4 (more precisely. Remark 4.5). we get

1+¢ &
1 J exp [A1+25 “1x 25) [u;]"e
Q

|Q|( l+25) 7 P

c . e
1 f EXD[A“ZE (22 77y = 9, L (4.13)
& < C,. 4.13

o 0

p(&)re

26—1
Proof of Theorem 1.14 (see [61]). If u; = 0. then we are done. Let u; € §lte (]H[ 2 )\{0}‘ and
Il ol 21\ + |7%/%u J|| 261 < 1. Then we have
wo{(=) ( )

e . 1te

( 1 —r .411+25|uj {)l e ) Y; ((m)x‘hnduj(iﬂ € )
f Z d¢ < f >
(1) j

<———
|Q|(m)- 7

d

]

|¢|1+E |€|1+€

" ((1 < ZE)AHzAuJ@)f?)
d

+ J ZE—1 Z EI
H 7 \E(w) & g1+

where E (1) = [f EH [w;(§)] = 1}. The measure of £ (u;) can be estimated as follows:
O Z 1d¢
E(u;) 7

< Z (1

<A™ (1+E_}
¢ 2€—1

o
U ;
J‘|l+E
L H 2

(Il ( 26—1)
LiteElm 2
Theorem 1.13, we get

‘!"j ((ﬁ) A1+2s|”j (€)|¥)
-L(u}-'

HEG dé = CIE()| (4.14)

I o5

) > 0. Hence |E(u;)| < . So by
ujeSgTe :

Where A = inf 2e—1 2
(=)o

< CA™0*9),
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for some universal constant C = 0. So now in the complement of E (). we have |1;(£)| < 1. Thus

1+e
(T552) Avezeliy (6 |T)

o (
2E—1 = df
J’]HI ] \E(uj) Z |C|1+€
1+e
5 W, ((—1 ) Avrely (O € )

_ _ de
f{|u;<f)|<.1;f-,=|<.1} - [g1t+e
: 1 )
1+e
" ((ﬁ) A1+25|u;<c‘)|7)
* f Z - dg. (4.15)
{u;(DI=<LIEl=13 5 [&It*e

Now

€ S
Y; ((m)fq1+2€|uj(§)| € )
L= > d
{u;@l<1igl<1} S 151
j 1
ge<ny 1€17F

dé

Y1 (4.16)
— € n - s
= J‘ [ W dudr (by Proposition 2.6)
re Ydrdu
I§ Il+E
=C [ j ““Ydrdu = Ccq,
Jr Jo
where ¢g 1s sirface measure of sphere of radius 1 . Then. we get I < co where € > 0. Now
€ o 1EE
U ((m) Apae|ui (§)] e )
nm = " Z Z|1te dg
S @n<nizrn 4 <1
c S Hre )d
< N (—mMm .
- fm—“{l\ﬁtu;) Z g (1+25) wzelty(OF € Jdé
@, g 9 (4.17)
<c Y Ff e @107 )a
k= f:l+e TUH 2 AE(y) J
<c Z . Z ()1
k=j1+e— \E(u)
= (;.

By (4.15). (4.16) and (4.17). we get
3 _ e
‘1“); ((* 2e—1 1) A1+2e|1‘j(§)| € )

j s z Rz dé < C. (4.18)
H 7

Z M\E(uy)

So by (4.14) and (4.18). we get the desired result.

5. Applications: Existence theorems

As an application of Adams-Moser-Trudinger inequality. we prove the existence of a solution of the
following class of problems:

Ty = %) + 5@yl iy in0,

(5.1)
2e—1
u; = 0 in H z \Q,
ZE—1L
where O < H =z is a bounded set of class €% with bounded boundary and 0 << & =<~ 1 + 2. Here. we
are taking € = 1 and so @ = % because we are considering the case a(1 + €) = 1 + 2e. The function
f;7Q x R — R satisfies (H1) — (H5). Let
2e—1
]:Sé+5 (]H[ 62 ) — R

be the functional defined by

1o =3 frz %] = [ Z G- yil.LZ By 7+,

Lemina 5.1 (see [61]). Assume that f; satisfies (1. 6) and suppose that (H1) — (H3) and (H5) hold. Then
there exists p = 0 such that

J(u;) = 0,if |l u; lI= p-
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Proof. By (H3). we have
I 2F(§,1+¢€)
im su — =<
1+e—>OP - [1+e€l?
which by definition is same as
2F(¢, 1+ €
mf sup Z { |£§+ E ).0 <l4e< ,8} <A
Since the above inequality is strict, “e can choose a real number € = 0 such that
f Z 2FG:H_E)O 1l+e<Br<A—(1+
U= < < — .
1n su 11 ep? € (L+¢)
As the infimum is strictly less than A — (1 + €). therefore 36 > 0 such that
2F({,1+¢) ) ) )
supz: iR —————:0<14+e<d <A-(1+¢).

Thus for |1 + €| < &, we ha\e
22 F( 1+¢)

e - A7049
or
FE1+e) <s(A—(1+e)|1+el (5.2)
Since f; has a subcritical growth. so 3 constants ¢ > 0 and u > 0 such that
If;(&,0)] < cexp(ut?),vé € O, vt ER (5.3)
Thus, we have
1+e
Y EEi+e| - f PG
j 0 j
1+e
< f Z ;€ D)ldt (5.4)
0 -
]
1+e
< CJ exp(ut?)dt
0

< Cexp(u(1+¢e)?).

Now. for |1 + €| = § and € > 0, there exists a constant K (J, 2 + €) such that
Z Fi(&,1+ )| < K1+ e exp(u(1+ €)?), V|1 + ] = 6. (5.5)
On using (5.2) and (5»1}1) we get
Z F(E1+6)|< %(A S ()4 el +KIL+ e exp(u(l + €)?), (5.6)

forall £ € 0,1+ ¢ € Rand for some y,1 + ¢ > 0and € = 0.

Now, consider r and ' such that% + T—l, = 1. Then by Hélder's inequality we have
1

e;>qJ(Ju|u}-|2)|uj|2+E o (j exp(;,u |1 2) ) (j )_’
d = R L (2+e)r’ d
sz: HEG ¢ —Z 0 |E|1+e [u | ¢

1

(57)

1
e

| [?
exp (ur Il 112 72

- . I '"2) r | 2+e)r
EZ jﬂ Fiee 5% g U luy ¢ )dr:)
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Now. if we choose r > 1 sufficiently close to 1 . so that € > 0 and |l u; I< ¢ such that uro* <
( ° ) 1+2¢- Then by Theorem 1.13 and by (5.7) we get

1+2e
exp(plyl?) g™ .
jz ( |€}|1+)E 7 df <C JZ |uj|(2+e)r dé ) (5.8)

)33, 1y Pt ““)f . fis

So. we obtain

"dE — y+1
-C LZ |Hj|(2+e)r d¢ Ty IZ Il bll2 ||uj ||L2' (5.9)
/ j
Now. we have
. I 117
A= inf Z —0 5 >0 (5.10)
Oqﬁuje.‘a'cz((ﬂ) - |uJT | _
7 o T
So. (5.10) implies that
Il w; 12 ,
As ) ——5—, VOzyESL(Q)
. |uj| d&
7 Jn |E|l+e ¢

or

[ 1
J Z —L_d¢ E—Z Il 12 (5.11)
0l T T AL
On using (5. 11) in (5. 9) we get

— 1-I-E
J () = Z Il I ( )Z
i IP—C ) Ny ||2+€ ! 1B Nzl gy 0+D (5.12)
t'(2+€) _|_1 L? 7 - -
i

2€6—-1
By Theorem 2.17. S1*€ is connnuously embedded into L1*€ (H‘H B ).Vl + € € [1+ €, ). Therefore, in
particular. for 1 + € = r'(2 + €). it gives that

Il lreea< C Iy Il
So we get

1 A—(1+¢) 1 _
J'r(uj) = E(l _f)z Il Nj ||2— Cl IIJ- ||2+E—mz Il b |IL2 Il Nj "(Y+l-}.
I j

Since € = 0. so we may choose p > 0 such that
1 A—(1+¢€)
(1-2=0r9),

- —Cpl*te = 0.
2 A p

This yields
1 A—(1 1
J@y) = Z | [5(1 —%} Iy 1= g I b il ||r] > 0.

j

Now. for || b ll;z sufficiently small. 3p,, such that J(u;) > 0 whenever || u; lI= pp. This completes the
proof.

Lemma 5.2 (see [61]). There exists e € S2(Q) with || e | pj, such that

j(e)c 1nf Z (uj)

tjll=pp

Proof. Let 0 = u; € SZ(0) and u; = 0. By (H2). there ex1st ¢ = 0 and d = 0 such that
F(14+e)zc(l+€) —d V(¢ 1+¢€) € QxR where 6 > 2. (5.13)
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Fort = 0. we have

18
J(ty;) —J Z |(r)zuj\ df—ctej Z |L|’1|+Ed€+d nlfl%d{
— Z By (@I 5.14)

]f+1

Using Sobolev's inequality. it is easy to see that
| Ie
Z |<|1+E
is finite and since 8 > 2, so by (5.14). we getj(tu ) = —oo as t — oo. By setting e = tu; with ¢ large
enough, we get || e [I> p;, and

J(e) < inf j(uj)

llhejli=pp

This completes the proof.

Lemma 5.3 (see [61]). Assume that f; safisfies subcritical growth condition. Then the functional ]
satisfies Palais-Smale condition at level , forall c € R.

Proof. Let {(uj)k} C S2(Q) be a PS sequence at level c, that is,

(& (w),
”J) ) Z”(“} JZ |€|l+e

y+1j d-:—»cas.kaoo (5.15)
And
Dj((uj)k) — 0ask - oo
Now
}f: ”J)
D 01 ()) = J e 2 @R D= | 3 2
j
- jz MOl O uE e (516)
i
Then

f §r u
D] = | s Z (T3(), (e = | Z : |¢(|f+)e

- L b(E) (u,-m) () (E)ry©)dE 1. (517)

) a a
By applying Cauchy-Schwarz inequality in JHE (7)2(u)k(T)zv;d¢ and by Adams-Moser-Trudinger
2

and Holder's inequality in J‘n 2 %

Z L u)k)vl—z el 1o 1+ | Z |f’(i§|f“+:)'

Z |D.]((Zuj)k)v}.| = Z 1|(uj:)k|[ v Il + ‘;Z E‘XP(JN Nj)k)l
i i g

|‘;|I+E
) . explu(u;)g )v;
Z D7 ((u)e) vy EZ el 1wy 0 +_‘; %

dé. we get the following:

¥-1

(e () 148 (5.18)

@+ | 2 110

a+ | 2. 1OI0 )

dg+ Y b iz l@w)inl, (5.19)
}_

-1

() (Hv;(8) 1 dE
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2
DI ()| = - Ny oy +LZ IEXPEEM . |d¢ +Ar e ) N’
j i r

s |(1+ej{1 —)| -~

v, 1 D7 ()| _Z el 1,
4

|I+Z (L expl(;i(:g)k)dc) (Lﬁ ‘) +cZ el (5.20)
> iy Z el 1

i
1

1 t(i+e)
I +Z j exp(:rp(t j v e g t(ite) J 1 d €
GG _ta+er 1
Q Qg e (=)

. cz el 11,

1
where (J 2 Wdi) is finite by (5.8) and > +— =1,e =0and t, 7,1+ € are chosen in such a

way that ats (1 - ;) < 1 + 2¢. and then using the fact that (u;)y is a Palais-Smale sequence. we get

Z DJ((upw)yy| < ekz o, I, (5.21)
j j
where €, — 0 as k — co. On taking v; = (u;), in (5.16). we get

Z DJ ((uj) ) uj) = L¥ Z (:T)%(uj)k(T)%(uj)kdf

f) (”})k (“;)k B NS las!
f Z Lo - | DECIG 5.22)

Z D] (()1e) ()i
i

f
J Z SREONE0) dﬁ_J Z : |I:|2+E (uj)"d“

- [ D vl i = ey el (523)
i i

On multiplying (5.15) with 8 and subtracting (5.22) from it. we get
] 1
(E - 1)2 ||(uJ)k"2 + LZ GBS (f; (f (uf)k) (”}')k — 0F; (f (”f)k)) d§
j J

7
0 +1
‘(m -1) fZ O] @[ dé < Omwz el (5.24)

By (H2). there exist R, > 0 and 6 > 2 such that. for || u; = R,

Z 0F; (%) < Z wfi(§, ). (5.25)
j j

So by (5.24) and (5.25). we get
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a
c (— - 1) Z ||(uj),;(||2 =0(1)+ Ekz I(u)ell (as0 <y < 1land I b Iz is very small ). (5.26)

mce = SOl —— 11 = mipiies that I is bounded. therefore up toasu sequence
Since 6 > 2. 1 LI > 0 implies  is bounded, thereft b

W — )o in SZ(1),
W) — (uj)o in L1*€(0), Ve = 0,

(k) — (y;)o(§) ae. in
From (5.26). there exists some constant mg such that [|(1;) || < m, and now. we have

J Z : |q¢|(11+e ((upe —uy)dé J Z . F‘fﬁigk ||(( uie —y)|dg

(f Bl ) (] Iwn-w)l e

1 1
(where r = 1 such that € = 0 and = + = = 1) .

[

1
T

[

Again, using Theorem 1.13 and note that [[(2;) || < m,. we have (see. [36])

(3 g
J Z J(I§|(11jr}3k ()i —w;)dg| < CZ IC)x = will,, — .

Similarly, we can show that
J’ 6 y)

HEG ((“j)k - ”j)df — 0ask — oo,

Also we have

Z (Dj((uj)k) D] (w;), (W)r — ) —0.as k — oo
Thus (uj)x — u; in SZ (Q) This completes the proof.

Subcritical growth. Proof of Theorem 1.15

Using Lemmas 5.1 and 5.2, we prove that | satisfies the geometric properties for mountain pass theorem
and by Lemma 5.3. we can show that ] satisfies Palais-Smale conditions. Hence. we conclude the proof
of Theorem 1.15 by applying mountain pass theorem.

The critical growth.

In this case, we need the following lemma to establish the existence of solution:

Lemma 5.4 (see [61]). Assume that f; satisfies critical exponential growth condition (1.7) and (1.8) and
suppose (H1)-(H5) hold. Thén theré exists k > 0 such that

€ A
m {J(tA,):t =0} < 112e

) 2(1+2¢) a '
where A, = Ap 1s defined in Lemma 2.19.
Proof. By the method of contradiction. firstly. we will prove the result for the following functional:

() = Z Iy = | 2. I i

Let us assume that inequality does not hold Then for all k. “e have
€ Ajiae

m {IIJJ(TA;‘:) t= O} = m (527)
Therefore. vk, 3 a t;, > 0 at which the maximum is attained and
_ Tk ”Ak” J Z F(¢, tk"lk) € Atz
Y;(teAy) = mEECE 72(14_26) w (5.28)

Using (5.28). we get
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t2 1A A tpA
il All™ 1426 J Z (& b k) :. (5.29)
2 2(1+2€) ay NEEGE
Since F;(¢,1+¢€) = 0. and IIAkII < 1. therefore from (5.29) we obtain
€ Aiize
t2 = 1726 a (5.30)
Also. fora given € = 0,3R;,4. = 0 such that for all |u;| = R,,.. we have
z wifi () = Z (By — (1 +€)) exp(ao|w;|?) (by(H4)). (5.31)
i i

j
On using this in (5.29), we obtain
2o (p ¢ exp(@ol tAkl*)
ti =(f1— (1L +¢) TR
Br
k

R\¢ ( (1 + 2¢)logk
g (A 20gk

d§

Woe
=B, —(1+¢€) —; (E) exp
This implies that
Wy RS Qlog k\* _ .
12 (B~ (1 +6)——exp [aorﬁ (Am ) —(e)log(k) —2log(t)|.  (5.32)

The above equation shows that t;, is a bounded sequence because if it is not a bounded sequence then up

to a subsequence right hand side tends to co.

We also have |4l — 1 as k — oo. By definition of A, we can also observe that as k — oo, we get
Ap(§) = 0ae e (5.33)

A1+26

) ) (by definition of Ak).

Let
X ={ € 1 i Ax = Rys e}
and
Ve =0\ X,
then the characteristic function of ¥, yy, — 1. a.e. { € Q. By the Lebesgue dominated convergence
theorem, we get

tpA .
f Z kAka(é l’if)d — 0 (by (5.33)). (5.34)
Y |§|
and
2 €
expaoltdil®) o wiRS 535
|§|l+€ €
43
Since t7 = ——2122¢ iherefore
) 1+2e ap
[ exp(aol|tpArl?)
B |E|l+€

i

€
. f exp (mn‘luzemﬂz) i
B

&1+
] HEG

€ €

f exp (mAl+26|Ak|2) f exp (m A1+25|Ak|2)
121 |$1**e Roje1<r 1§13+

Wy R®

=——+RM.
€

Since
& =(B-a+o)|
J1€1=R

tpA
- ey [ SRCAD)
J¥

eXp(ﬂo“kAkF) J Z kakf; & tieAy)
Vi

|§|1+E |§|1+6

DOI: 10.35629/0743-1112156183 www.questjournals.org 178 | Page



On Fractional Adams—Moser—Trudinger type inequality on Heisenberg group of General Domains

Therefore
€ Avee, g (14 e)RM
142 o '
- £
orff < RE;}Z: T30 Which is a contradiction to (H4). Hence the result holds for 1;(u;).

Now., notice that for [|X; b(’uj)kML1 =%; bl [y )kan =Nb iz X; [I(w)ll and for sufficient

small || b [z, we find that
Al+2€

2(14+2¢) ap

m {J(tAg):t =0} <
This completes the proof.
Lemma 5.5 (see [61]). Assume that f; satisfies critical exponential growth condition (1.7) and (1.8). Let
{(uj)k} C S2(01) be a Palais-Smale sequence at level ¢, where ¢ is the mountain pass level for J. Then
Ju; € SZ(Q) and a subsequence of {(u}-)k}. still denoted by {(u ;) k} such that
L. (), = u; in SZ(Q).

Fi@e) | FiGu) .
2' }|§|1+JE |Jﬂ1.+é Ll(ﬂ)

Proof. Let {(uj)k} be a Palais-Smale sequence, then

1((w),) ZZ o)~ | Z mm )

HJZ b® |(w), @ dg - cask — oo (5:36)
and
U (()e)e j Z (T2 (T)Zv;dé ‘JZ AGON v.dE
ik 7 ¢ |¢|1+e vpds
JZ b® (), @ | (e ©ry ()€ 1= T My 1. (5.37)

Also. by previous Lemma 5.4. we have

< € Aiyre
2(1+2€) a,

From (5.36) and (5.37). we get

¢+ Tusze ) Il

7
_(f 2 (6F;(&, (w)i) — F(¢ (w)e) (w)r)
;(5—1)2 (AN _LZ j j Ifllj’ff j 5)k) g

B (% -1) fﬂz b(©)|ue(®)|"
J

8
= (E —_ 1)2 ||(’Nj)k”2 (asO<y<1land I bl isverysmall),
i

which implies that
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Z (W)l =€,
FE @)
JZ ) Iug i P s < (5.38)
[ Z F(f (”})k)(“j)k <C
B

Since 52(Q) is a reflexive Banach space. thelefme by (5.38). up to a subsequence. we have
(U = w; in S5(Q),
(U — w; in L*4(Q),V0 < € < oo,
[uj)k(f) — u;(¢) ae. in .

Furthermore, using the arguments similar to previous lemma, we get

Z JL; (uj)$) (& w)

— .
|€|l+€ ; |€|l+€

Hence. we proved the desired result.

Proof of Theorem 1.16 (see [61]). By Lemmas 5.1 and 5.2. we can find Palais-Smale sequence (1), at
€

o A
level ¢ and by Lemma 5.4,0 < ¢ < % Thus. we have

2(1+2¢)
é,(u
”J) Z ”(uJ jz EEE E
=1l Z b @™ (539)
and
Z J' () vy
7

= JHZEZ__l Z Tg(uj)kj"%vjdf fz fj(fﬂ(lli}gk)
j

_ LZ b (), O] @@ ©)dé EEkZ o, Il (5.40)
j i

By Lemma 5.5. there exists u; € SZ(Q) such that
1 (uj) = u; € SZ(Q).

|ﬂ1+€ I%“1+E

strongly in L} (0).
Therefore by (5.40) and with the help of Lebesgue dominated convergence theorem. we can now pass the
limit and get

J'(w)v; =0
for all v; € D. Now. by density of D(€) in S2(Q),u ; is a weak solution of given problem. Next, we show
that v; is non-trivial. We prove it by method of contradiction. let if possible u; = 0. then by (H2) and
Lebesgue dominated theorem. one can see that

j Z |¢€|(ltije)k dé — 0in L*(Q) as k — oo.

From (5.39). we obtain
€  Ajyoe
1 + 26 ag

t)ill® — 2c < (541)
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Now. choosing € > 0, sufficiently close to 1 such that

Z (W)

i
for k large. Now because of the exponential growth of f;. we have

L2 Vel <o [ D, e (1+ ol el T

< 0(1)as k — co.
Thus. by taking v; = (;); in (5.40). we get || (uj)knz — 0 as k — oo, which is a contradiction to
(5.41). This completes the proof.

1+2e
2e—1

1+ 2¢

(1+6)ag < A4z

1+2e
;)k 2e—1

[

ds,
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