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Abstract

This study presents a comparative investigation into the efficacy of analytical approximation methods for
solving the governing equation of a strongly nonlinear, vertically excited pendulum. The pendulum's suspension
point is driven by a crank-shaft-slider mechanism (CSSM), leading to a complex nonlinear ordinary differential
equation. The primary objective is to obtain accurate approximate solutions for large oscillation amplitudes,
where classical perturbation techniques fail. We employ and refine the Modified Harmonic Balance Method
(MHBM) and apply He's Frequency Formulation (HFF) method to the derived model. The approximate periodic
solutions and system frequencies obtained from these methods are rigorously compared against numerical
solutions generated by the fourth-order Runge-Kutta (RK4) method, which serves as a benchmark. Furthermore,
a comparison with He's Perturbation Method (HPM) is included. Results demonstrate that the proposed MHBM
yields superior accuracy in both displacement solutions and period estimation across a wide range of

amplitudes, including extreme cases up to A=m f 2. The error analysis reveals that the MHBM achieves a

significantly lower absolute percentage error (2.34%) in the estimated period for large amplitudes compared to
HFF and classical harmonic balance. The study concludes that the MHBM is a robust and highly effective
analytical tool for strongly nonlinear oscillators like the excited pendulum model considered.
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L Introduction

Many manufactured structures incorporate different types of pendulums. To understand the oscillatory
motion and basics of mechanics, the study of the simple pendulums plays an important role. The deflection of
the simple pendulum is bounded within a very small angle to avoid the nonlinear oscillatory motion. But in the
actual situation, the governing equation for the pendulum is nonlinear differential equation. Many researchers
contributed to the development of different types of pendulums; for example, Lee and Park studied the chaotic
dynamics of a harmonically excited spring-pendulum system with internal resonance, Awrejcewicz, Starosta,
and Sypniewska-Kaminska investigated the model of non-" linear spring subjected to the action of two external
forces, Galal et al. studied about the dynamical analysis of a vertical excited pendulum, and so on.[1]

Different types of pendulums are modeled by nonlinear ordinary differential equations, and exact
solutions of these equations are rarely found. From last few decades, many researchers developed different
methods to deal with the nonlinear oscillators. The perturbation method was used by many researchers earlier
and was able to handle only weak nonlinear oscillators. Later, many analytical approximation methods were
developed to find approximate solution of the nonlinear oscillators such as the harmonic balance method
(HBM), the energy balance method, He’s frequency formulation (HFF) method, the homotopy perturbation
method, the iteration perturbation method, the max—min approach, and the VIM-Pade technique.[2]

DOI: 10.35629/0743-1112184200 www.questjournals.org 184 | Page


http://www.questjournals.org/
http://www.questjournas.org/

Nonlinear Analysis, Stability, and Bifurcation in a Compound Pendulum Model: An Analytical ..

II. Modified Harmonic Balance Method (MHBM)
Let us consider a strongly nonlinear oscillator

d+wa+ f(a)=0, a(0)=A4, &(0)=0, W

The function f(a) is nonlinear, satisfying f(—a) = — f(a), with ©¢>0 (as defined in Table(2.1). The over dots

represent derivatives with respect to t

In general, the nth order approximate solution of equation (1) has been found in of the form
at)=A((l—u—-v—...)coswt+ucos3ot+vcosSot+ - "), (2)

where u, v, . . . are unknown parameters depending on the amplitude of the oscillator and to be determined and ®
is frequency of the oscillator. The zeroth-order approximate solution of equation (1) is obtained by choosing u =
v =...=0, which is

oo(t) A cos wt. 3)
To present the modified form of HBM for higher-order approximate solution, equation (1) can be rewritten as
. 2
cx+w0(x+f((x)_0 (4)
2 - -
1+«

Equation (4) can be expanded in a Fourier series as

éic+w§a+f(a)

5
5 =ki(w, u, v,---) coswt + k5 (w, u, v, ...)cos3wt ©)
1+ a
+ ke (w, u, v,--+) cos 5wt + -+ -,
where a(t) and ao(t) are given by equations (2) and (3), respectively, and
. 2
4 ("fa+wa+ f(a)
kypq (Wt v, o0) =— J 0 2f cos(2n — 1)wt dt,
mJo 1+«
n=1,2,...
3 3 (6)
Equations (3.3.4) and (3.3.5) provide
ki(w, u, v, ...)coswt +ky (w, u, v, ...)cos3wt + ks (w, u, v, ...) cos 5wt +--- = 0. o
Equating the coefficients of like harmonic terms from both sides of equation(7), a system of nonlinear algebraic
equations is formed, involving the unknown parameters u, v, ... and the unknown angular frequency o, are
obtained. Ignoring the higher-order terms of u, v, ... and solving these algebraic equations, the values of u, v, ...
along with frequency ® can be found.
In particular, the first approximate solution is
a(t) = A((1 —u) cos ¢ + u cos 3my). ®)

Now substituting the values of o and ao from equations (8) and (3), respectively, in equation (5) and then
expanding the resulting equation in a Fourier series and ignoring the higher harmonic terms (more than third
harmonic) provides

9
&+wﬁa+f(a) ®

1+a§

=k, (w, u) cos ot + k5 (w, u) cos 3wt.
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From equations (4) and (9), the obtained equation is
ki(w, u) cos ot + ks3(w, u) cos 3wt = 0. (10)

Equating the coefficients of cos t and cos 3wt from both sides of equation (10), it gives

11
ky (@, u) = 0, (a

ks (w, u) = 0.

(12)

Ignoring the higher-order terms of u and solving above equations, the values of u and ® can be found. So the
first approximation solution is

a(t) = A((1 —u) cos ot + u cos 3mt), (13)

where u and o are the solutions of equations (11) and (12).[3]

Table 2.1: Nomenclature.

Nomenclature The meaning

A Amplitude of the oscillator

@y, Runge-Kutta fourth-order method solution

Oy HmM Maodified harmonic balance method solution

Mypy He's perturbation method selution

Qype He’s frequency formulation method solution

wy Natural frequency

w Frequency of the oscillator

U, V,... Unknown parameters for the MHBM
k(w0 ks (w00, Fourier series coefficients

HFF He's frequency formulation

HPM He’s perturbation method

MHBM Modified harmonic balance method

t Time

Wy Frequency obtained by the Runge-Kutta fourth-order method
OEBM Frequency obtained by the modified harmonic balance method
Wyrr Frequency obtained by He’s frequency formulation method

III.  The Solution of Vertical Excited Pendulum

Modified Harmonic Balance Solution (3.1)[4] Let us presume that the pendulum’s point of suspension
undergoes vertical motion through the CSSM as depicted in Figure 3.1. The system comprises a rigid,
weightless rod of length 1, connected at one end to a mass m. This mass experiences vertical excitation via the
CSSM. Additionally, a weightless rod of length a rotates at a constant angular velocity while a link b facilitates
vertical movement of the pendulum’s suspension point. In essence, the pendulum features a single mass m
situated at its extremity.

Let a denote the rotation angle of the pendulum, representing its generalized coordinate. In order to formulate
the Lagrange’s function for the system, the coordinates of the mass can be expressed as

x=I[sina, (14)

—acosf-bcos¢-Icosa,

Y

where 0 and ¢ represent the angles between OB and OA and OB and BA, respectively, as illustrated in Figure
3.1. Utilizing the trigonometric relationship between 6 and ¢, one can express cos ¢ as

2
cos ¢ =(1 —'rl;—zs.in2 9).
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Combining equations (14) and (15), the first derivative with respect to time t can be expressed as follows:

(16)

. . a*@sin6cosd L
y=absinf+ am +lasina.
b(1-(a’/b*)sin® 6)

Introducing a dimensionless variable F’ which depends on 0, we write:
asin 8 cos f (17

b(1 - a*/b* sin® 6) "

F = sinp+

Substituting equations (17) into (16), it becomes
. . (18)
x=lxcosa,

¥ =abF' +lasina.

The kinetic enerev T and potential enerev V can be computed using the nrovided information in the following

manner: 1 .
T = —m(fzaz cos” a + (aB'P' +lasin a)z),
2 (19)
2 (1/2)
V =-mgl cosa—mgb(l —Esin2 H) — mga cos 0,

Figure 3.1: The dynamical model for the excited pendulum by a crank-shaft-slider mechanism (CSSM)

where g represents gravitational acceleration and dots denote derivatives with respect to time, t. Lagrange’s
equation for the conservative system under consideration takes the form

d (oL (oL\_ ~c__ p (20)
a a - a _Gﬂ = =Cl «,

where L = T — V and GNS, represent the generalized force which has a dimension of moment and ¢ is the
coefficient of friction. Hence, the EOM may be reduced to

r 1)
mlit + maBF' sina + mg sin & = —cl@.

Introducing dimensionless time T, then according to the transformation
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T wot, where o=~/ £ /1 , We can write
. P 2.n ’ -
o= oo, a=myo’, F'=ongF, 0 =0 =e.

Using the above relations, the equation of motion of an excited pendulum formulated with the assumption that
its suspension point moves vertically and is supported by the CSSM becomes

" d . (22)
a+(1 +?QF sina = 0,
where Q and F are the dimensionless variables depending on the angle 6.
For convenience, equation (22) can be represented as
o +ksina=0, (23)

where k(1+(a/l)QF) is an arbitrary constant when QF is assumed as a constant and the initial conditions are
given as a(0) A, O (0) = 0. Taylor’s series expansion provides sin a = o — (a3/3!) + (¢5/5!) — ... Considering the
terms up to o’ of sin a series, equation (23) is then reduced to

; s (24)
itk a ay 0
a+ (24 30 + 5l = LU
According to the present modified method, equation (24) can be written as
(25)

i + k(a - (a3/3!) + (a5f5!)) o
1+ ocg -

Using the values of ao(t) and a(t) from equations (3) and (8), respectively, in equation (25) and expanding in a
Fourier series up to third harmonic terms, the equation becomes
(26)

i+ k(a: - (a3f3!) + (as,"S!))

2
1+ a

=k, (w, u) coswt + k;(w, u)cos3wt,

where ki(m, u) = by + by + (bs + bsw?)u + O(u?),
ks(o, u) = d; + d20? +(ds + dswd)u + dsu2+ O (), 27)
and
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(47!;) 7Ak Ak 47k
1

= — |- — —_— -
204 40 180 0441+ A%
b o 2+ 2
A A+ A

37k

. __(S?k) (3?k)+13Ak A3k+ Tk,
P\sA’) \ea) 4 48 314 3aVi+ A

72,20 72 56
e TAWI+A AVI+ AT

b, =

141k

d__(m) (47k)+Ak+ %
Vo\sa) \204) 7480 521 22 20414 A2

482 8 6
2= = -
ATA 1A Ve A
1= ) (wSk) (m) 13Ak+A3k 148k 259 37k
P 3“1’ 34° 24 9% 3451447 343W1+47 AVI+ AT
4 288 296 56 _ 288 440 168
P
A A A Aw’1+A Aw‘1+A Av'1+A
d__(mk) 168k 112k (49k)+?Ak A3k+ 24k elek  sebk 56k
o\ a8 A A 406 VA a1+ A 3V A AV A (g

Equations (25) and (26) provide
29
ki (w, u) coswt + ky(w, u)cos 3wt = 0. 29)

Using equations (27) in (29) and ignoring the higher-order terms of u and equating the coefficient of cos ®, and
cos 3w from both sides, it gives

by + byw? +(bs + baw?)u = 0, (30)
d; + dooro +(d3 + d4m2)u +ds u?=0. (3 1)
Eliminating »? from equations (30) and (31) and solving for u, it provides
(32)
—1, + 1.,,U,1 — 4,1,
= y
ﬂi‘.
where
lp=-bd,, (33)
11 = _b3d1 + bzdz - bld31
Solving equation (30) for o, it gives
34
\=b, — byu (34
w = A
Wby + byu
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So the first approximation solution of equation (23) is

a(t) = A((1 — u) cos wt + u cos 3wt), (39)

where u and o are given by equations (3.3.32) and (3.3.34),
respectively.
Iv. HFF Method Solution. According to HFF method,

considering the two trial solutions Oy = A cos 0)1t and Oy = A cos (1)2t for equation (23), the two

obtained residuals are as

(36)
_ 1 2 2, 2 4, 4
R,(t) = ﬁ(liﬂ(k — wl)Acos w,t —20A kcos” w,t + A'kcos wlr), 37
1
R,(t) = m(liﬂ(k wz)A COS Wyt — 20A%k cos® w,t + Ak cos? wzt)
_ 1T
_1qT
7 = ?I Rz (t) cos Wt dt (39)

334A((192 24A% + Ak - 19203).

For the oscillator equation (23), it is found that

» {W:R,- iR, Ar At (40)
w® = 2 =kl 1-=—+—).
R,-R, 8 192

Hence, the frequency of the oscillator represented by equation (23) is [5]

A? At @1
a(t)=Acosf 1kl 1 -——+—] |t
8 192
V. Method

When solving practical problems, we often encounter nonlinear physical equations. Consider the cubic nonlinear
Schrodinger equation, as follows:

(42)
2 1 Lap 4 e =0
- o 4
at 2 “3)
e, + ty + Vjuffu =0
To solve its traveling wave solutions, one can set:
(44)

ulx, 1) = eI (g)
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Where we set § = x — Dt , and transform the equation (2) into:
U-ou-vul=0 (45)
Perform first order integration with respect to &, equation (45) is converted to:
(46)

) v
1=C-[—-E¥II‘1—EH4

The problem of solving the nonlinear equation is transformed into solving equations (45) and (46).
In various fields, there are many other nonlinear physical equations, such as the Beam Propagation equation in
nonlinear optics

o O 3 , (47)
2EE + Vig + ZRpPY
dx H
The Korte Weg—de Vries equation under the shallow water wave approximation.
U+ Uty + Ul = 0 (48)
The Boussinesq-Schrodinger-Gardner (BSG) equation.
Ugt = Uxx = Uxxxx + 3(u2)xx = O (49)
The sine-Gordon equation and the double sine-Gordon equation in optics:
1 u
Uxx - U =sSinu+ —sin— (50)

2

This type of equations can be transformed into standard form of ¢* equation with different A and ¢ value through
appropriate transformations.

%=1 + o (51)
O — o = A0° + o) (52)

Or it’s one dimension form:

Solution for the ¢* equation (5.1)[6] For equation (52), when considering its traveling wave form, a new
independent variable 7 is defined, where

x — vt (53)
= —7——
W1 — 2

Therefore, transform equation (52) into the form:
b =29 + o0 (54)

The term ¢, represents the second order derivative of ¢ with respect to 1. By leveraging the relationship with ¢,

1d (53)
Py = EE#‘E';,
Substitute equation (55) into equation (54).
(56)

A
z 2
¢ =—d'+ o+ q
o2
Consider different values of A, ¢ and ci, the behavior ot the solution ot ¢ in equation (56) can be variable. By

analyzing the form of the solution, there will be 2 kinds of solution: the periodic solution and solution, the
solution solutions always appear with specific A, o, c; value.
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Form of solution when A< 1 (5.2)[6] Here, a new independent variable £ is defined, along with a function u(&)
of it.
— (57)
£=.,-—mn

2a (58)

I a
ot = [ Z-uf [ Zp (59)

2ad \Y 2a

ué = —u! + 200 + ¢
Typically, o is taken as:
og>0,a=+I1
o< 0, a=-—1

Comparing the equation (56) and equation (59), ¢ in equation (59) is:

47 (60)

£ = ——1)
ol

Since the A < 1, ¢ have same sign as ci, therefore, with different value of c, equation gets different series of
solution:

When ¢ > 0 (5.3)[6] When >0, o is+1, for ¢>0 the solution of equation(59) is:

W 1 14+ Y1+ (°1
ﬁ“H#-sd[ﬁmc}(s-:—fu}.—z T )

It can be observed that the solution exhibits periodicity under these conditions from figure 7.1.
When ¢ =0:

u(€) = +

u) ==+ \/E sech (\/5 (& -¢&o0) (62)

This time, a solution is obtained in figure 7.2.
When -1 <c <0:

u(® =1+ JT+¢ -dn{mtﬁ—w:liL %H

(63)

As shown in figure 7.3, when 6 > 0 and ¢ < 0, the solution of the equation is a traveling wave solution with
periodicity, Additionally, compared to the figure 7.1, it can be observed that the solution graph lies above the x-
axis (if the coefficient is negative, it lies below the x-axis; here we only consider positive coefficients). This is
because the solution includes the Jacobi elliptic function d,, whose values are always greater than 0. Where

Sda = ZLHE , &, dn &, sa & are all Jacobi elliptic functions.
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Figure5.1. The traveling wave solution of equation (60) when >0 and ¢>0.
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Figure 5.2. Solution of equation (60) when ¢ > 0 and ¢ =0.
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Figure 5.3. Periodic solution of equation (60) when 6 > 0 and ¢ < 0.
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Figure 5.4. (60): the calculation result of equation (60) when NS —> 1, (61): the approximate result of

equation (63) compared to the original result of equation (62).

In the situation corresponding to equation (62), when 12+ \/%: —1 , the equation (60) can be approximated as:

u(€) — iLsinh(\E{l + (€ — &)

—

V2 +oF

The function derived at this point loses its periodicity with respect to & For the Sine-Gordon equation, this

solution is a typical kink-type soliton solution.
The comparison between the two, as shown in figure 7.4, reveals that the difference between them is minimal.

When ¢ < -1, the equation has no real solutions.
When ¢ < 0 (5.4)[7] When 6<0, a is —1. Thus, the real solution only exists when

c>0:
(64)

\.|'1+r:—1}

_ T ] bg_ gy N2 TE T2
u(f) = + sd(v2(1 + cF (£ — &) Wi

N2(1 + o

As shown in figure 5.5, when 6 < 0 and ¢ > 0, this solution is also a traveling wave solution with periodicity,
similar to figure 5.1. However, under the same parameters, it has a smaller amplitude and period.

when ¢ = 0 we have trivial solution u(§) = 0. When c < 0, there are exclusively complex solutions.

By substituting equations (60), (62), (63), and (64) into the original equation (64), these solutions satisfy the
equation under their respective conditions.
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Figure5.5. The traveling wave solution of equation(62) when 6<0 and c¢>0
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Figure 5.6. The graph derived from equation (22) demonstrates that the solution exhibits periodicity.

Angle (rad)

VI Discussion on the simulation of the compound pendulum
The analysis of the solution forms reveals two distinct types: periodic traveling wave solution and soliton
solutions. If the physical problem involves damping, solving the corresponding equations and to identify soliton
solutions. It will be discussed by using a compound pendulum model below. Consider a compound pendulum in
a classical mechanics model. The dynamics equations are as follows:[8]

10 = —mgl. sin 0 (65)

Where 1 is the moment of inertia about the axis, 1. is the distance between center of mass and the axis.
Performing a single integration on the given equation yields the energy equation for a compound pendulum.

1 ..
ELE‘E = mgl (cosf — cosdy)

(66)
and the constant 0 is the amplitude of the pendulum. By introducing two new constants, equation (66) can be
rearranged as:

2
kO  =coso-c (67)

where k = = cos 0.

2mgl, > ©

Subsequently, define a new variable u = tan %, express the 0 cos and 0 in terms of u:
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T 1 — tan? (g) 1
ar(l) Tev )
. d 24
dt[ arctan(u)] T (69)

Substitute cos 0 and O back into equation (67) and simplify:

2= (1 + 00 + uz}[l —- - :E] 79
4k l1+4+¢

By comparing equation (70) with equation (69), it can be observed that this equation is identical in form to the
¢* equation with A < 0, we define a new variable t which represent the time, thus a solution can be obtained.
. B r—ty . .8
1 = 4sin— - sd(———; sin® —)
2 2k 2

(71)

Based on the relationship between u and 6, the complete mathematical solution to the compound pendulum
problem is given by

mgl

# = L2 arctan sin% sd - (t — tp); sinl% (72)

According to equation (71), the relationship between time and angle should be as shown in figure 6.1.

Example (6.1)[8] Table 8.1 shows the solution of the governing equation for an excited pendulum by a CSSM
obtained by Runge—Kutta fourth-order method, He’s perturbation method (HPM), HFF method, and MHBM
when A = 1.0, a=1.0,1=0.75, Q =5, F = 0.6. Similarly, Table 3 displays the solution obtained for the
pendulum equation by various methods. For both cases with similar conditions and with different lengths of
weightless rod a, the present method provides better solution. The comparison among the solutions, presented in
Tables 6.2 and 6.3, indicates the supremacy of the MHBM.

Here the error is considered as

Exact Value (Runge — Kutta 4™ order sc:—lution) — Present value

error% = x 100,

Exact Value ( Runge — Kutta 4™ order snlution)
(73)

In Figure 6.2, the solutions for the governing equation (73) obtained by different methods are displayed for the
parameters a=2.0, 1=0.75, Q=35,F =0.6 when amplitude is A = 1.0. From Figure 3.3.2, it is obvious that
all solutions show a good agreement with numerical solution except HPM solution. Figure 6.2 also shows that
HPM solution diverges after a certain time interval.

In Figures 6.3 and 6.4, the solutions for the governing equation (73) obtained by different methods are displayed
for the parameters a=1.0,1=0.75,Q=5,F=0.6 and a=2.0,1=0.75, Q =5, F = 0.6, respectively, when
amplitude is

A =m/2. It is worth mentioning that HPM solution] diverges for the amplitude A = m/2. If the length of the rod is
longer, then from both figures, it is obvious that the MHBM  solution shows better consistency than
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HFF solution. Figure 6.5 represents the MHBM solution of the present problem when time and amplitude vary
as 0<t<10.2and 0 <A <0.5, respectively, fora=1.0,1=0.75,Q=5,F =0.6.

Figure 6.6 represents the MHBM solution of the present problem when time and amplitude vary as 0 <t < 10.2
and 0.5 < A < 1.0, respectively, fora=1.0,1=0.75, Q@ =5, F = 0.6. All the figures and tables show the goodness
of the MHBM solution over the HFF method and HPM solutions.

The exact period of the pendulum equation (74) is given by

S Ar 114 1734%  220314° (74)
l{n:-:-: = j[) l+—+ + — + +
16 3072 737280 1321205760

The second approximate period obtained using the HBM and the first approximate period from the HFF method
are identical, given by

A? 10a*  9paf (73)
= Tn ]. + — .

T + + +
16 3072 737280

app2

laking terms up to ()(A6), we find that
. ] - ] ( )

= (.936.
A—isr T A—isr T

X

Table 6.2: Comparison among the solutions of the pendulum model obtained by numerical method (RK4), He’s
perturbation method, HFF method, and MHBM when A =1.0,a=1.0,1=0.75, Q=5,F =0.6.

Time “ Qpypm . ®pypr . Cprmm
t i error % error % error %
0 1.00000 1-3?00[?0 l-gl.J(?OOO 1.8%0000
1 -0.510575 ‘0-3.1115333 —0-?!138003 —06%20;13
2 -0.503852 —0-32%?69 _0'?.5;19?6 —0{.}5;3;353
3 0999971 1-8?77544 0-3%9()9;5 0.(91909051)59
‘
5 -0.497096 —0-;4}359233 —O.jﬁs% —Qé?ggs?
6 0.999386 1-2?65193 0.933f83 0.(9].909[?175
’ oot o5 e “ots2
s o Kis
9 0.999744 12-3?55; 0-{9}%925312 0.33]90?;13
10 ~0.530544 ‘0-1508.‘1*302 —%?f;’Sl —0.3;11660
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Table 6.3: Comparison among the solutions of the pendulum model obtained by numerical method (RK4), He’s
perturbation method, HFF method, and MHBM when A =1.0,a=2.0,1=0.75, Q=5,F =0.6.

Time o Tupy . Cupp P
t nu error % error % error %
0 1.00000 l-gg]ﬂém l-gf}[%lﬂ 1.8?00000
: 0948752 NS e ootz
2 0.798638 0-7[2{9}39? 0-3.96326544 0.?09.3250
3 -0.561673 —0-3.551623 —0.(']5;%16? —o{.f[s)gfs
4 0.260424 0-2;1.2?8 02&3243 0.20%269
5 0.0717943 0-;3_690535 0-(113%526{199 O'ngfém
6 -0.395393 —gﬁgl —0'2.851535? —0.331441
7 0.672607 0'3?5?136 0.625.?286 0.60731?
8 -0.87448 *223‘;96 —0.?35806? Pﬂﬁgﬁgﬁ
9 0.983185 I%U_E;‘* 0-32.3205;53 0.(9}%229535
10 ~0.990557 En o 002
8

—— Numerical solution —— HFF solution
e MHBM solution —— HPM solution

Figure 6.2: Comparison of the pendulum model solution obtained by numerical method (RK4), He’s
perturbation method, HFF method, and MHBM when
A=1.0,a=20,1=0.75,Q=5,F=0.6.
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Figure 6.3: Comparison of the pendulum model solutions obtained by numerical method (RK4), HFF method,
and MHBM when A= n/2, a =1.0,
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1=0.75,Q=5,F=0.6,and 16.5 <t < 20.
2

1.5
1
0.5
0 A

-15 o (f)

—— Numerical solution
--— MHBM solution
—— HFF solution

Figure 6.4: Comparison of the pendulum model solutions obtained by numerical method (RK4), HFF method,
and MHBM when A =n/2,a=2,
1=0.75,Q 5,F 0.6, and 17.3 <t <20.
Thus, the absolute percentage error is 6.39%, w he A — 180 for any choice of the parameter k(1 + (a/l) QF).
Therefore, variations in parameters a, 1, Q, and F do not affect the error.
The first approximate period obtained using the present method is

A% 11A* 133.75A° (77
=Tol 1+— :

T + +
16 3072 737280

appl

Taking terms up to O(A®), we find that for MHBM,

T
lim —MHBMI - 59766

A—130° ox

Thus, the absolute percentage error is 2.34% when A — 180° for any choice of the parameter k(1 + (a/)QF).
Therefore, again variations in parameters a, 1, Q, and F do not influence the error.

It is evident that the relative error for the second approximate period from the HBM and the first approximate
period from the HFF method is significantly larger than the error obtained using the present method, regardless
of the choice of parameters a, 1, Q, and F.

Figure 6.5: Modified harmonic balance method solution whena=1,1=0.75,Q=5,F=0.6,0<A <0.5,and 0
<t<10.2.
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VII. Conclusion
This study summarizes the findings of a comparative analysis of three analytical approximation methods
for solving the dynamics of a strongly nonlinear pendulum vertically excited via a crank-shaft-slider
mechanism. The results demonstrate a clear superiority of the Modified Harmonic Balance Method (MHBM) in

terms of accuracy and stability, particularly at large amplitudes (A =T f 2), where He's Perturbation Method

(HPM) failed to converge. The error in the estimated period using MHBM was only 2.34%, compared to 6.39%
for other methods, while maintaining high accuracy in modeling displacement over time. These findings
confirm the validity of MHBM as an effective and reliable tool for analyzing complex nonlinear oscillatory
systems. The paper recommends its adoption for similar dynamical models, as it provides highly accurate
harmonic solutions with reasonable computational complexity.
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