Journal of Research in Applied Mathematics Volume 11 ~ Issue 12 (December 2025) pp: 43-50

ISSN (Online): 2394-0743 ISSN (Print): 2394-0735

www.questjournals.org

Research Paper

Fixed point theorem for (ϕ, MF) – contraction on C^* –algebra valued b- metric space

Neetu, Ranbir Singh*

Department of Physical Science- Mathematics, Baba Mastnath University, Rohtak-124021, Haryana (*Corresponding Author)

Abstract: In this paper, we will introduce a new notion of (ϕ, MF) – contraction in C^* –algebra valued b-metric space and prove some fixed point theorem for the same. An example is also provided to prove the validity of our results.

2020 MSC: 47H10; 46L07, 54H25.

Keywords: Fixed point, C^* -algebra valued b- metric space, (ϕ, F) - contraction, (ϕ, MF) - contraction.

Received 05 Dec., 2025; Revised 13 Dec., 2025; Accepted 15 Dec., 2025 © The author(s) 2025. Published with open access at www.questjournas.org

I. Introduction:

Banach [1] contraction principle is a very useful simple and classical tool in modern analysis and plays an important role for solving existence problem in various field of sciences. It is the first principle to get a fixed point for a self mapping on a complete metric space. Many researchers had generalized the Banach contraction principle see [3,4,5,10].

In 2012, D. Wardowski [9] introduce the concept of (ϕ, F) – contraction in metric space and proved some fixed point theorems. In 2022, Mohamed Rossafi [7] proved the fixed point theorem of (ϕ, MF) – contraction in C^* –algebra valued metric space.

In 2015, Ma and Jiang [3] established the notion of C^* –algebra valued b- metric space and proved some fixed point theorem for contractive type mappings.

Throughout this paper, we suppose that \mathbb{A} is a unital C^* - algebra with a unit I_A . Set $\mathbb{A}_h = \{x \in \mathbb{A}: x = x^*\}$. We call an element $x \in \mathbb{A}$ a positive element, denote it by $x \geq \theta$. Using positive elements, one can define a partial ordering \leq on \mathbb{A}_h as follows: $x \leq y$ if and only if $y - x \geq \theta$, where θ means the zero element in \mathbb{A} . Now $\mathbb{A}_+ = \{x \in \mathbb{A}: x \geq \theta\}$ and $|x| = (x^*, x)^{\frac{1}{2}}$.

II. Preliminaries:

In this section, we shall give some basic definition which will be used in sequel.

Definition 2.1.[3] Let X be a non-empty set $s \ge I_A$. Suppose the mapping $d: X \times X \to A$ satisfies:

(i) $\theta \le d(x, y)$ for all $x, y \in X$ and $d(x, y) = \theta \iff x = y$;

- (ii) d(x, y) = d(y, x) for all $x, y \in X$;
- (iii) $d(x, y) \le s[d(x, z) + d(z, y)]$ for all $x, y, z \in X$.

Then d is called C^* algebra valued b- metric on X and (X, A, d) is called C^* - algebra valued b- metric space.

Definition 2.2.[3] Let (X, \mathbb{A}, d) be a C^* - algebra valued b- metric space. Let $\{x_n\}$ be a sequence in X then

- (i) $\{x_n\}$ is said to be Cauchy if for all $\theta \leq c$, there is $N \in \mathbb{N}$ such that for all $n, m \geq N$ $d(x_n, x_m)$
- (ii) $\{x_n\}$ is said to be converges to x if for all $\theta \leq c$ there is $N \in \mathbb{N}$ such that for all $n \geq N$
- (iii)(X, A, d) is a complete C^* algebra valued b- metric space if every Cauchy sequence is convergent in X.

Definition 2.3.[9] Let \mathcal{F} be the family of all functions $F: \mathbb{R}_+ \to \mathbb{R}$ and Φ be the family of all the functions $\phi: [0, \infty) \to [0, \infty)$ satisfying:

- (i) F is strictly increasing.
- (ii) For each sequence $\{x_n\}$ of positive numbers $\lim_{n \to \infty} \lim_{n \to \infty} f(x_n) = -\infty$ $n \to 0$ $n \to \infty$
- (iii) $\lim \inf_{s\to a^+} \phi(s) > 0$ for all s > 0.
- (iv) There exists $k \in [0,1]$ such that $\lim_{x\to 0} x^k F(x) = 0$.

Definition 2.4[9] Let (X, d) be a complete metric space. A mapping $T: X \to X$ is called $a(\phi, F)$ – contraction on (X, d) if there exists $F \in \mathcal{F}$ and $\phi \in \Phi$ such that

$$(d(Tx, Ty)) > 0 \Longrightarrow Fd(Tx, Ty)) + \phi(d(x, y)) \le F(d(x, y))$$

For all $x, y \in X$ for which $Tx \neq Ty$

Definition 2.5[10] Let (X, d) be a complete metric space. A self-map $T: X \to X$ is called $a(\phi, MF)$ – contraction on (X, d) if there exists $\tau > 0$ such for $x, y \in X$

$$M(Tx, Ty) > 0 \Longrightarrow \tau + F(M(Tx, Ty) \le F(M(x, y))$$
, where

$$M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2}\}\$$

Definition 2.6[11] Let the function ϕ : $[0, \infty] \rightarrow [0, \infty]$ be positive if having the following constraints:

- (i) ϕ is continuous and non-decreasing
- (ii) $\phi(a) = \theta$ if and only if $a = \theta$
- (iii) $\lim_{n\to\infty} \phi^n(a) = \theta$

Definition 2.7[11] Suppose that *A* and *B* are C^* –algebras.

A mapping $\phi: A \to B$ is said to be C^* –homomorphism if:

- (i) $\phi(ax + by) = a\phi(x) + b\phi(y)$ for all $a, b \in \mathbb{C}$ and $x, y \in A$
- (ii) $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in A$
- (iii) $\phi(x^*) = \phi(x)^*$ for all $x \in A$ (iv) ϕ maps the unit in A to the unit in B.

III. Main Results:

In this section, we shall prove some fixed-point results for the (ϕ, MF) - type contractions in

*C**- algebra valued b- metric space.

Definition 3.1. Let

$$F: \mathbb{A}_+ \to \mathbb{A}$$

be a function satisfying followings

- (i) F is continuous and non decreasing.
- (ii) $F(t) = \theta$ if and only if $t = \theta$.

A mapping $T: X \to X$ is said to be a (ϕ, MF) - C^* -algebra valued b- contraction if there exist $\phi: \mathbb{A}_+ \to \mathbb{A}$ a mapping such that

$$M(Tx, Ty) \ge \theta \Rightarrow F(M(Tx, Ty)) + \phi(M(x, y)) \le F(M(x, y))$$
 for all $x, y \in X$ (1)

Where
$$M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2s}\}.$$

Theorem 3.2.Let (X, A, d) be a complete C^* -algebra valued b-metric space and let $T: X \to X$ be a (ϕ, MF) - C^* -algebra valued b-contraction mapping.

Then T has a unique fixed point.

Proof: Let $x_0 \in X$ be arbitrary and fixed. Define a sequence $\{x_n\}$ by $x_{n+1} = T$ x_n for all $n \in \mathbb{N}$.

Clearly, if xn+1 = xn, then x_0 is a fixed point of T and is unique.

Define
$$d_n = d(x_{n+1}, x_n)$$
; $n = 0,1,2,3,...$

Suppose that $x_{n+1} \neq x_n$ for every $n \in X$ then $d_n > \theta$ for all $n \in \mathbb{N}$ and using (1)

$$F(M(Tx_n, Tx_{n+1})) + \phi(M(x_n, x_{n+1})) \leq F(M(x_n, x_{n+1}))$$
Where $M(xn, xn+1) = \max\{d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1), \frac{d(x_n, Tx_{n+1}) + d(x_{n+1}, Tx_n)}{2s}\}$

$$= \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \frac{d(x_n, Tx_{n+1}) + d(x_{n+1}, Tx_n)}{2s}\}$$

= max {
$$d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \frac{d(x_n, x_{n+2})}{2s}$$
}

Using the triangle inequality, we have

$$\frac{d(x_n, x_{n+2})}{2s} \leq \frac{s[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2})]}{2s}$$

$$=\frac{d(x_n,x_{n+1})+d(x_{n+1},x_{n+2})}{2}$$

 $\leq \max \{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}$

Consequently, we drive that

 $M(xn, xn+1) = \max \{d(xn, xn+1), d(xn+1, xn+2)\}.$

And

 $M(Txn, Txn+1) = \max \{d(xn+1, xn+2), d(xn+2, xn+3)\}.$

If $d(x_n, x_{n+1}) \le d(x_{n+1}, x_{n+2})$ for all $n \in \mathbb{N}$, then

M(xn, xn+1) = d(xn+1, xn+2) and M(Txn, Txn+1) = d(xn+2, xn+3).

Then

$$F(M(Tx_n, Tx_{n+1})) + \phi(M(x_n, x_{n+1})) \le F(M(x_n, x_{n+1}))$$

Implies

 $F(d(x_{n+1},x_{n+3})) \le F(d(x_{n+1},x_{n+2})) - \phi(d(x_{n+1},x_{n+2})) \le F(d(x_{n+1},x_{n+2}))$ which a contradiction.

Now $x_{n+1} \neq x_n$ for every $n \in X$ then $d_n \geq \theta$ for all $n \in \mathbb{N}$ and using (1) the following holds for every $n \in \mathbb{N}$

$$F(d_n) \le F(d_{n-1}) - \phi(d_{n-1}) < F(d_{n-1}) \tag{2}$$

Hence F is non decreasing and so the sequence (d_n) is monotonically decreasing in A. So there exist $\theta \leq t \in A$ such that

 $d(x_n, x_{n+1}) \to t$ as $n \to \infty$ From (2) we obtain $\lim F(d_n) = \theta$ that together with (ii) gives

$$\lim_{n\to\infty} d_n = \theta$$

Now we shall show that $\{x_n\}$ is a Cauchy sequence in (X, \mathbb{A}, d) .

Let $n, p \in \mathbb{N}$. Then

$$d(x_n, x_n+p) \leq s\{d_{(x_n, x_{n+1})} + d_{(x_{n+1}, x_{n+p})}\}$$

$$\leq sd_{(x_n, x_n+1)} + s^2\{d_{(x_n+1, x_n+2)} + d_{(x_n+2, x_p)}\}$$

.

 $\leq Sd(xn, xn+1) + S^2d(xn+1, xn+2) + \dots + S^{p-1}d(xn+p-1, xn+p)$. Taking the limit as $n \to \infty$ we get

 $limd(x_n, x_{n+p}) = \theta.$

Thus $\{x_n\}$ is a Cauchy sequence. Since the space is complete,

There exist $x \in X$ such that $\lim_{n \to \infty} x$.

Again *T* is continuous. Therefore $\lim Tx_n = Tx$ i.e. $\lim x_n + 1 = x = Tx$.

Thus x is a fixed point of T.

To show the uniqueness, let y be another fixed point of T.

Then by given condition

$$F(M(Tx, Ty)) + \phi(M(x, y)) \leq F(M(x, y))$$

$$\Rightarrow F(M(x,y)) \leq F(M(x,y)) - \phi(M(x,y))$$

Which is a contradiction.

Therefore T has a unique fixed point in X.

Example 3.3 Let X = [0,1] and $A = \mathbb{R}^2$ Then A is a C_* -algebra valued b-metric space with norm defined by $\|(x,y)\| = (x^2 + y^2)^{1/2}$

And let $d: X \times X \to \mathbb{A}$ on X be defined by

$$d(x, y) = (|x - y|, 0)$$

Then (X, d) is a C_* -algebra valued b-metric space with s = 2

A mapping $T: X \to X$ given by $Tx = \frac{x+1}{2}$ is continuous with respect to \mathbb{A} . Let $F: \mathbb{A} \to \mathbb{A}$. Define by

$$F(x,y) = \left(\left(\frac{x-y}{2}\right)^2, 0\right)$$

It is clear that F satisfies (i) and (ii).

Now M(x, y) = d(x, y) and

$$(M(Tx, Ty)) = d(Tx, Ty) = d\left(\frac{x+1}{2}, \frac{y+1}{2}\right) = \frac{x+1}{2} - \frac{y+1}{2} = \frac{x-y}{2}$$
We have $F(M(Tx, Ty)) = F(d(Tx, Ty)) = F\left(d\left(\frac{x+1}{2}, \frac{y+1}{2}\right)\right) = (\frac{x+1}{2} - \frac{y+1}{2})^2 = (\frac{x-y}{2})^2$
And $\frac{1}{4}\left(\frac{x-y}{2}\right)^2 - \left(\frac{x-y}{2}\right)^2 \le -\frac{1}{2}\left(\frac{x-y}{2}\right)^2$.

T satisfies all the condition of (ϕ, MF) contraction with

$$\Phi(M(x,y)) = \frac{1}{2} \left(\frac{x-y}{2}\right)^2$$

Therefore T has a unique fixed point. Clearly 1 is the unique fixed point of T.

Theorem 3.4 Let (X, \mathbb{A}, d) be a complete C - algebra valued b-metric space and let $T: X \to X$ be a (ϕ, MF) - C^* —algebra valued b- contraction of Hardy Rogers type where

$$_{M}(x, y) = \alpha_{1}d(x, y) + \alpha_{2}d_{(x, Tx)} + \alpha_{3}d_{(y, Ty)} + \alpha_{4}d_{(x, Ty)} + \alpha_{5}d_{(y, Tx)} \text{ and } \alpha_{i} \ge 0, i \in \{1, 2, 3, 4, 5\} \text{ and } \alpha_{1} + \alpha_{2} + \alpha_{3} + 2s\alpha_{4} + \alpha_{5} < 1.$$

Then T has a unique fixed point in X.

Proof: Let $x_0 \in X$ be arbitrary and fixed we define a sequence $\{x_n\}$, $x_{n+1} = T$ x_n for all $n \in \mathbb{N}$. Clearly, if $x_n + 1 = x_n$, then x_0 is a fixed point of T and is unique. Now we show that

$$\lim_{n\to\infty} d(x_n, x_n+1) = \theta$$
. We have

$$M(xn, xn+1) = \alpha 1d(xn, xn+1) + \alpha 2d(xn, Txn) + \alpha 3d(xn+1, Txn+1) + \alpha 4d(xn, Txn+1) + \alpha 5d(xn+1, Txn)$$

$$= \alpha 1 d(xn, xn+1) + \alpha 2 d(xn, xn+1) + \alpha 3 d(xn+1, xn+2) + \alpha 4 d(xn, xn+2) + \alpha 5 d(x_{n+1}, x_{n+1})$$

$$\leq (\alpha_1 + \alpha_2 + s\alpha_4)d_{(xn, xn+1)} + (\alpha_3 + s\alpha_4)d_{(xn+1, xn+2)}$$

and
$$M(Txn, Txn+1) = \alpha 1d(Txn, Txn+1) + \alpha 2d(Txn, T2xn) + \alpha 3d(Txn+1, T2xn+1) +$$

$$\alpha_4 d(Tx_n, T^2x_{n+1}) + \alpha_5 (Tx_{n+1}, T^2x_n)$$

$$= \alpha_1 d(x_{n+1}, x_{n+2}) + \alpha_2 d(x_{n+1}, x_{n+2}) + \alpha_3 d(x_{n+2}, x_{n+3}) +$$

$$\alpha_4 d(x_{n+1}, x_{n+3}) + d(x_{n+2}, x_{n+2})$$

$$\leq (\alpha_1 + \alpha_2 + s\alpha_4)d(x_{n+1}, x_{n+2}) + (\alpha_3 + s\alpha_4)d(x_{n+2}, x_{n+3}),$$

If
$$d(xn, xn+1) \leq d(xn+1, xn+2)$$

Then

$$M(x_n, x_{n+1}) \leq (\alpha_1 + \alpha_2 + \alpha_3 + 2s\alpha_4)d(x_{n+1}, x_{n+2})$$

And

$$M(Tx_n, Tx_{n+1}) \le (\alpha_1 + \alpha_2 + \alpha_3 + 2s\alpha_4)d(x_{n+2}, x_{n+3})$$

Then

$$F((\alpha_1 + \alpha_2 + \alpha_3 + 2s\alpha_4)d(x_{n+2}, x_{n+3})) \leq F((\alpha_1 + \alpha_2 + \alpha_3 + 2s\alpha_4)d(x_{n+1}, x_{n+2}))$$
$$-\phi(\alpha_1 + \alpha_2 + \alpha_3 + 2s\alpha_4)d(x_{n+1}, x_{n+2})$$

Using the property of F and ϕ we have

$$F(d(x_{n+1}, x_{n+2})) \leq F(d(x_n, x_{n+1})) - \phi(d(x_n, x_{n+1})).$$

Since
$$(\alpha_1 + \alpha_2 + \alpha_3 + 2s\alpha_4) \le 1$$
.

There exists $x \in A$ such that $\lim_{n\to\infty} d(x_n, x_{n+1}) = x$.

Taking
$$n \to \infty$$
 in $F(d(x_{n+1}, x_{n+2})) \le F(d(x_n, x_{n+1})) - \phi(d(x_n, x_{n+1}))$

We have $F(x) \le F(x) - \phi(x)$ which is a contradiction unless $x = \theta$.

Hence $\lim_{n\to\infty} d(xn, xn+1) = \theta$.

Now we shall show that $\{x_n\}$ is a Cauchy sequence in (X, \mathbb{A}, d) . Let $n, p \in \mathbb{N}$. Then

$$d(x_n, x_{n+p}) \leq s\{d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+p})\}$$

$$\leq sd(x_n, x_{n+1}) + s^2\{d(x_n + 1, x_n + 2) + d(x_n + 2, x_p)\}$$
.

•

 $\leq sd(x_n, x_{n+1}) + s^2d(x_{n+1}, x_{n+2}) + \dots + s^{p-1}d(x_{n+p-1}, x_{n+p})$. Taking the limit as $n \to \infty$ we get $limd(x_n, x_{n+p}) = \theta$.

Thus $\{x_n\}$ is a Cauchy sequence. Since the space is complete. Thereexist $x \in X$

such that $\lim x_n = x$.

Again *T* is continuous. Therefore $\lim Tx_n = Tx$ i.e. $\lim x_{n+1} = x = Tx$. $n \to \infty$ $n \to \infty$

Thus x is a fixed point of T.

To show the uniqueness, let y be another fixed point of T. Then by given condition

$$F(M(Tx,Ty)) + \phi(M(x,y)) \leq F(M(x,y))$$

$$\Rightarrow F(M(x, y)) \leq F(M(x, y)) - \phi(M(x, y)) \leq F(M(x, y))$$

Which is a contradiction.

Therefore T has a unique fixed point in X.

Corollary 3.5. Let (X, \mathbb{A}, d) be a complete C^* - algebra valued b-metric space and let $T: X \to X$ be a (ϕ, MF) - C^* -algebra valued b- contraction of Banach-type, where

$$M(x, y) = \alpha d(x, y)$$
 and $0 < \alpha < 1$.

Then T has a unique fixed point in X.

Corollary 3.6.Let(X, A, d) be a complete C^* - algebra valued b-metric space and let $T: X \to X$ be a (ϕ, MF) - C^* -algebra valued b- contraction of Kannan-type, where $M(x, y) = s\{\alpha d(x, Tx) + \beta d(y, Ty)\}$ and $0 \le \alpha + \beta < 1$.

Then T has a unique fixed point in X.

Corollary 3.7. Let (X, A, d) be a complete C^* - algebra valued b-metric space and let $T: X \to X$ be a (ϕ, MF) -Chatterjea-type C^* -algebra valued b- contraction, where $M(x, y) = s\{\alpha d(x, Ty) + \beta d(y, Tx)\}$ and $\forall \alpha, \beta \geq 0, \alpha + \beta < 1$.

Then T has a unique fixed point in X.

Corollary 3.8 Let (X, A, d) be a complete C^* - algebra valued b-metric space and let $T: X \to X$ be a (ϕ, MF) -Reich-type C^* -algebra valued b- contraction, where

$$M(x, y) = s\{\alpha d(x, y) + \beta d(x, Tx) + \gamma d(y, Ty)\}\$$
 and $\forall \alpha, \beta, \gamma \ge 0, \alpha + \beta + \gamma < 1.$

Then T has a unique fixed point in X.

References:

- [1]. Banach S., Sur les operations dans les ensembles abstraits et leur application aux équations integrals, Fundam. Math., 3(1)(1922), 133–181.
- [2]. Barman D., Tiwary K., Fixed point theorems for generalized F-contraction on metric space, Sarajevo J. Math. 17(2021),119-128.
- [3]. Ma Z. and Jiang L. "C*- Algebra Valued -b Metric Spaces and related fixed point theorems", Fixed Point Theory and Applications, 2015(1)(2015): 222.
- [4]. Piri H.,Kumam P., Some fixed point theorems concerning F-contraction in complete metric spaces ,Fixed Point Theory Appl., 2014 (2014) 210.
- [5]. Piri H., RahroviS., ZarghamiR., somefixed point theorems on generalized asymmetric metric spaces, *Asian-European J.Math.* 14 (2021) 2150109.
- [6]. Piri H., RahroviS., MarasiH., Kumam P., F-contraction on asymmetric metric spaces, J. Math. Computer Sci. 17 (2017) 32-40.
- [7]. Rossafi M., Massit H., Kabbaj S., Fixed point theorem for ((φ, MF)-contraction on C*- algebra valued metric spaces, Assian J. Math Appl. (2022) 2022 7
- [8]. Samet B., Vetro C. and Vetro P., Fixed point theorems for α-ψ- contractive type mappings, Nonlinear Analysis Theory Methods and Applications, 75(2012),21542165.
- [9]. WardowskiD.,Fixed points of a new type of contractive mappings in complete metric space, Fixed Point Theory Appl., 2012 (2012) 94.
- [10]. Wardowski D., Solving existence problems via F-contractions. Proc. Amer. Math. Soc. 146 (2018) 1585-1598.
- [11]. Zhu K., An introduction to operator Algebras, CRC Press, Boca Raton, FL, USA, 1961.