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Abstract 
We study, following the authors in [27], the estimates boundedness of unimodular Fourier multipliers on 

Wiener amalgam spaces. For a real-valued homogeneous function 𝜇 on ℝ1+𝜖 of degree 𝜖 ≥ 0, we also show 

the estimate boundedness of the operator 𝑒𝑖𝜇(𝐷) between the weighted Wiener amalgam spaces𝑊𝑠
1+𝜖,1+2𝜖

 and 

𝑊1+𝜖,1+2𝜖 for all 0 ≤  𝜖 ≤  ∞ and 𝑠 > (1 + 𝜖) [𝜖 |
1−𝜖

2(1+𝜖)
| + |

𝜖

(1+𝜖)(1+2𝜖)
|]. This inference is shown to be optimal 

for regions max(
1

1+2𝜖
,
1

2
) ≤

1

1+𝜖
 and min(

1

1+2𝜖
,
1

2
) ≥

1

1+𝜖
.Hence, we show sufficient conditions for the 

boundedness of 𝑒𝑖𝜇(𝐷) on 𝑊1+𝜖,1+2𝜖 for 0 < 𝜖 <  2. 

Keywords: boundedness of unimodular Fourier; Wiener amalgam spaces; real-valued homogeneous function; 

estimate boundedness; regions max.  
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I. Introduction 

A Fourier multiplier 𝜎(𝐷) in ℝ1+𝜖 is an operator whose action on a sequence of test functions𝑓𝑟 is formally 

defined by 

𝜎(𝐷)𝑓𝑟(𝑥) =
1

(2(1 + 𝜖))1+𝜖
∫
ℝ1+𝜖

∑

𝑟

𝑒𝑖𝜉·𝑥𝜎(𝜉)𝑓𝑟(𝜉)𝑑𝜉. 

The function 𝜎 is called the symbol of the multiplier or simply the multiplier. One can rewrite this operator as a 

convolution operator 

𝜎(𝐷)𝑓𝑟(𝑥) = �̌� ∗ 𝑓𝑟(𝑥), 

where �̌� is the (distributional) inverse Fourier transform. These operators are closely related to bounded 

translation invariant operators(see [14, 15]) and have immense applications to PDEs (see [5, 17, 20]). 

In particular, unimodular Fourier multipliers 𝜎(𝐷)  =  𝑒𝑖|𝐷|
2+𝜖

 arise naturally as formal solutions for Cauchy 

problem for dispersive equations. The cases (2 + 𝜖)  =  1, 2, 3 are of greatest interest because they correspond 

to theresearch in wave equation, Schrödinger equation and Airy equationin order. Estimates boundedness of 

these multipliers on a particular space 𝑆 means that the 𝑆-properties of the initial condition are preserved by 

time evolution. 

The study of Fourier multipliers (problems) is to relate the boundedness of 𝜎(𝐷) on certain spaces to that of the 

properties of the symbol 𝜎. In 𝐿1+𝜖 the full resolution of this study is known as the Hörmander-Mihlin multiplier 

theorem (see [15]).Unfortunately, unimodular Fourier multipliers excludes the use of Hörmander-Mihlin due to 

singularity of the derivatives at the origin and large derivatives at infinity. In fact, the operator 𝑒𝑖|𝐷|
2+𝜖

 is 

bounded on 𝐿1+𝜖 if and only if 𝜖 = 1 (see [16]). In view of this unboundedness in 𝐿1+𝜖 ,unimodular Fourier 

multipliers are studied in [3] and [18] in more suitable space, the modulation space 𝑀1+𝜖,1+2𝜖, where they 

proved boundedness. Now we say thatmodulation spaces are defined by measuring the time-frequency 

http://www.questjournals.org/
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concentration of functions or distributions in the time-frequency plane. Concrete definition of modulation spaces 

will be given in the nextsection. 

In [3] they showed the boundedness of 𝑒𝑖|𝐷|
2+𝜖

 on 𝑀1+𝜖,1+2𝜖 for 0 ≤ 𝜖 ≤  2(the result for 𝜖 = 0 has been 

already known before from [25]). An extention of this result was given in [18] which is stated as follows: for 

𝜖 > 0 the Fourier multiplier operator 𝑒𝑖|𝐷|
2+𝜖

 is bounded between the weighted modulation space 𝑀𝑠
1+𝜖,1+2𝜖

 and 

𝑀1+𝜖,1+2𝜖, for 𝑠 ≥  (𝜖)(1 + 𝜖)|
1−𝜖

2(1+𝜖)
|. Here 𝑀𝑠

1+𝜖,1+2𝜖  =  {𝑓𝑟 ∈ 𝑆
′ (ℝ1+𝜖) ∶  (1 − Δ)

𝑠

2𝑓𝑟 ∈ 𝑀
1+𝜖,1+2𝜖} and 𝑠 

represents loss of derivatives. 

We study following, J. Cunaran M. Sugimoto [27],  the boundedness of the unimodular Fourier multipliers 

𝑒𝑖|𝐷|
2+𝜖

 with 𝜖 > 0 on Wiener amalgam spaces 𝑊1+𝜖,1+2𝜖 . Similar to modulation spaces, Wiener amalgam 

spaces have been recognized to be appropriate in studying PDE problems since they treat local and global 

beheaviour of functions separately. There exist an important relationship between modulation spaces and 

Wiener amalagam spaces, namely, 𝑊1+𝜖,1+2𝜖  =  ℱ𝑀1+2𝜖,1+𝜖. It is good to remark that boundedness of Fourier 

multipliers in 𝑊1+𝜖,1+2𝜖 is equivalent to boundedness of pointwise multipliers in 𝑀1+2𝜖,1+𝜖 and vice versa. 

The main result is stated as follows. 

Theorem 1.1 (see [27]). Let 𝜖 ≥ 0 and 𝜇 be a real-valued homogeneous function on ℝ1+𝜖 of degree (2 + 𝜖) 

which belongs to 𝐶∞(ℝ1+𝜖\{0}). Let 0 ≤  𝜖 ≤  ∞ and 𝑠 ∈  ℝ. Then Fourier multiplier operator 𝑒𝑖𝜇(𝐷) is 

bounded from 𝑊𝑠
1+𝜖,1+2𝜖(ℝ1+𝜖) to 𝑊1+𝜖,1+2𝜖(ℝ1+𝜖) whenever 

𝑠 > (1 + 𝜖) [𝜖 |
1 − 𝜖

2(1 + 𝜖)
| + |

𝜖

(1 + 𝜖)(1 + 2𝜖)
|]. 

We note the analogy of this theorem with the result in [18] for the case on Wiener amalgam spaces. 

In the following theorem we prove optimality of the threshold in Theorem 1.1 for certain values of (1 + 𝜖) and 

(1 + 2𝜖). 

Theorem 1.2 (see [27]). Let 𝜖 ≥ 0 and 𝜇 be a real-valued homogeneous function on ℝ1+𝜖 of degree (2 + 𝜖) 
which belongs to 𝐶∞(ℝ1+𝜖\{0}). Suppose there exist a point 𝜉0  ≠  0 at which the Hessian determinant of 𝜇 is 

not zero. Let max(
1

1+2𝜖
,
1

2
) ≤

1

1+𝜖
 or min(

1

1+2𝜖
,
1

2
) ≥

1

1+𝜖
. Let 𝑠 ∈  ℝ and suppose the Fourier multiplier operator 

𝑒𝑖𝜇(𝐷) is bounded from 𝑊𝑠
1+𝜖,1+2𝜖(ℝ1+𝜖) to 𝑊1+𝜖,1+2𝜖(ℝ1+𝜖). Then 

𝑠 ≥ (1 + 𝜖) [𝜖 |
1 − 𝜖

2(1 + 𝜖)
| + |

𝜖

(1 + 𝜖)(1 + 2𝜖)
|]. 

Although we have yet to prove Theorem 1.2 for any 0 ≤  𝜖 ≤ ∞, the case 𝜖 = 0 recaptures [4, Proposition 6.1]. 

It states that if the pointwise multiplier operator 𝐴𝑓𝑟(𝑥)  =  𝑒
𝑖|𝑥|2𝑓𝑟(𝑥)is bounded from 𝑀𝑠

1+𝜖,1+2𝜖
 to 𝑀1+𝜖,1+2𝜖 

then 𝑠 ≥ (1 + 𝜖)|
𝜖

(1+𝜖)(1+2𝜖)
|. The significance of this proposition is that it showed sharpness of the threshold 

computed for boundedness of Fourier integral operator(FOI) on modulation spaces 𝑀1+𝜖,1+2𝜖 with decay 

condition on its symbol. One should observe the fact that A is a FOI whose phase Φ(𝑥, 𝜂) =  𝑥𝜂 +
|𝑥|2

2
 and 

symbol 𝜎 ≡  1. 

We give the basic notations and definition of terms to be used within this paper. Also, we define Wiener 

amalgam spaces, modulation spaces and give some of their important properties. In particular, we state 

thedilation property of Wiener amalgam spaces and a lemma that provides sufficient condition for the 

boundedness of Fourier multipliers on 𝑊1+𝜖,1+2𝜖.We layout the proof for Theorem 1.1. Moreover, we give 

sufficient conditions for the boundedness of 𝑒𝑖𝜇(𝐷) for 𝜖 > 0 (not contained in Theorem 1.1). Finally we prove 

Theorem 1.2. 

II. Preliminaries 

We denote the Schwartz class of test functions on ℝ1+𝜖 by 𝑆 =  𝑆(ℝ1+𝜖) and its dual, the space of tempered 

distributions, by 𝑆′  =  𝑆(ℝ1+𝜖). The Fourier transform of 𝑓𝑟 ∈  𝑆 is given by 

ℱ𝑓𝑟(𝜉)  =  𝑓𝑟(𝜉)  =  ∫
ℝ1+𝜖

∑

𝑟

𝑒−𝑖𝑥·𝜉𝑓𝑟(𝑥) 𝑑𝑥 
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which is an isomorphism of the Schwartz space 𝑆 onto itself that extends to the tempered distributions 𝑆′ by 

duality. The inverse Fourier transform is given by ℱ−1𝑓𝑟(𝑥) =  𝑓𝑟(𝑥) =
1

(2(1+𝜖))1+𝜖
∫
ℝ1+𝜖

𝑒𝑖𝜉·𝑥𝑓𝑟(𝜉) 𝑑𝜉. Given 

0 ≤  𝜖 ≤  ∞, we denote by (
1+𝜖

𝜖
) the conjugate exponent of (1 + 𝜖) (i.e. 

1

1+𝜖
 +

𝜖

1+𝜖
 =  1). We use the notation 

𝑢 ≲ 𝑣 to denote 𝑢 ≤  𝑐𝑣 for a positive constant 𝑐 independent of 𝑢 and 𝑣. Also, we use the notation 𝑢 ≍ 𝑣 to 

denote 𝑐𝑢 ≤  𝑣 ≤  𝐶𝑢 for universal positive constants 𝑐, 𝐶. The translation and modulation operators are 

defined by 𝑇𝑥𝑓𝑟(𝑡)  =  𝑓𝑟(𝑡 −  𝑥) and 𝑀𝜉𝑓𝑟(𝑡)  =  𝑒
𝑖𝑡·𝜉𝑓𝑟(𝑡), respectively. The scaling operator is given by 

𝑈𝜆𝑓𝑟(𝑡)  =  𝑓𝑟(𝜆𝑡). 

Let 𝑠 ∈ ℝ , we denote the weight function 〈𝜉〉𝑠  =  (1 +  |𝜉|2)𝑠/2, 𝜉 ∈ ℝ1+𝜖. For 0 ≤  𝜖 ≤ ∞, 𝑠 ∈ ℝ , the 

Wiener amalgam space 𝑊𝑠
1+𝜖,1+2𝜖

 is defined as the closure of the Schwartz class with respect to the norm 

||𝑓𝑟||𝑊𝑠
1+𝜖,1+2𝜖  =

(

 ∫

ℝ1+𝜖

( ∫

ℝ1+𝜖

∑

𝑟

|𝑉𝑔𝑟𝑓𝑟(𝑦, 𝜔𝑟)|
1+2𝜖

〈𝜔𝑟〉
𝑠(1+2𝜖) 𝑑𝜔𝑟)

1+𝜖

1+2𝜖

𝑑𝑦

)

 

1

1+𝜖

, 

where 𝑉𝑔𝑟𝑓𝑟 is the short-time Fourier transform (STFT) of 𝑓𝑟 ∈ 𝑆
′ with respect to the window 0 ≠  𝑔𝑟 ∈  𝑆 

defined by 

𝑉𝑔𝑟𝑓𝑟(𝑦, 𝜔𝑟)  =  ∫
ℝ1+𝜖

∑

𝑟

𝑓𝑟(𝜉)𝑔𝑟(𝜉 −  𝑦)𝑒
−𝑖𝜉·𝜔𝑟𝑑𝜉. 

If 𝑠 =  0 we simply write 𝑊1+𝜖,1+2𝜖 instead of 𝑊0
1+𝜖,1+2𝜖. Moreover, in some event, we use the notation 

𝑊(ℱ𝐿1+2𝜖 , 𝐿1+𝜖) =  𝑊1+𝜖,1+2𝜖. We note that this definition is independent of the choice of window 𝑔𝑟 . 
Alternatively, we could use the following equivalent norm 

||𝑓𝑟||𝑊𝑠
1+𝜖,1+2𝜖  =  ‖||{〈𝑘〉𝑠𝜑𝑟(𝐷 −  𝑘)𝑓𝑟}||ℓ1+2𝜖‖𝐿1+𝜖

, 

where 𝜑𝑟 ∈  𝑆 satisfying 

supp𝜑𝑟 ⊂ (−1, 1)1+𝜖and ∑

𝑘∈ℤ1+𝜖

∑

𝑟

𝜑𝑟(𝜉 −  𝑘) = 1       ∀𝜉 ∈ ℝ1+𝜖. 

Here we collect some properties of Wiener amalgam spaces. 

Lemma 2.1 (see [27]). Let 1 ≤ 𝜖 ≤ ∞ and 𝑠𝑗 ∈  ℝ, 𝑗 =  1, 2. Then 

(1) 𝑆 → 𝑊1+𝜖,1+2𝜖 → 𝑆′; 

1

1+2𝜖
  

1

1+2𝜖
 

11 

 

1

2

1

2
 

 

0
1

2
1

1

1 + 𝜖
0
1

2
1

1

1 + 𝜖
 

Figure 1. The index sets(see [27]). 

(2) 𝑆 is dense in 𝑊1+𝜖,1+2𝜖 if 𝜖 <  ∞; 

(3) If 𝜖 ≥ 0, then 𝑊1+3𝜖,1+4𝜖  →  𝑊1+5𝜖,1+6𝜖; 

(4) 〈𝐷〉−𝑠 ∶  𝑊1+𝜖,1+2𝜖  →  𝑊𝑠
1+𝜖,1+2𝜖

 is an isomorphism. 
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(5) (Convolution) If ℱ𝐿1+4𝜖 ∗  ℱ𝐿1+6𝜖 →  ℱ𝐿1+2𝜖 and 𝐿1+3𝜖 ∗ 𝐿1+5𝜖 → 𝐿1+𝜖, then 

𝑊(ℱ𝐿1+4𝜖, 𝐿1+3𝜖)  ∗  𝑊(ℱ𝐿1+6𝜖 , 𝐿1+5𝜖)  →  𝑊(ℱ𝐿1+2𝜖, 𝐿1+𝜖). 

In particular, ||𝑓𝑟 ∗  𝑢||𝑊(ℱ𝐿1+2𝜖,𝐿1+𝜖) ≤ ||𝑢||
𝑊(ℱ𝐿∞,𝐿1)

||𝑓𝑟||𝑊(ℱ𝐿1+2𝜖,𝐿1+𝜖); 

(6) (Complex interpolation) For 0 < 𝜃 <  1. Let 
1

1+𝜖
 =

𝜃

1+3𝜖
 +

1 −𝜃

1+5𝜖
,

1

1+2𝜖
 =

𝜃

1+4𝜖
 +

1 −𝜃

1+6𝜖
 and 𝑠 =  𝜃𝑠1  +

 (1 − 𝜃)𝑠2. Then 

[𝑊𝑠1
1+3𝜖,1+4𝜖,𝑊𝑠2

1+5𝜖,1+6𝜖][𝜃]  =  𝑊𝑠
1+𝜖,1+2𝜖; 

(7) (Duality) (𝑊𝑠
1+𝜖,1+2𝜖)

′
 =  𝑊−𝑠

1+𝜖

𝜖
,
1+2𝜖

2𝜖 . 

For the proofs of these statements (see [9, 10, 11, 13, 25]). 

We now recall the definition of modulation spaces 𝑀1+𝜖,1+2𝜖. For 0 ≤  𝜖 ≤  ∞, 𝑠 ∈  ℝ, the modulation space 

𝑀𝑠
1+𝜖,1+2𝜖

 is defined as the closure of the Schwartz class with respect to the norm 

||𝑓𝑟||𝑀𝑠
1+𝜖,1+2𝜖 =

(

 ∫

ℝ1+𝜖

( ∫

ℝ1+𝜖

∑

𝑟

|𝑉𝑔𝑟𝑓𝑟(𝑦, 𝜔𝑟)|
1+2𝜖

𝑑𝑦)

1+2𝜖

1+𝜖

〈𝜔𝑟〉
𝑠(1+2𝜖) 𝑑𝜔𝑟

)

 

1

1+2𝜖

. 

Analogous properties to Lemma 2.1 are known for modulation spaces. We introduce the following indices 

𝜇1(1 + 2𝜖, 1 + 𝜖)  =

{
 
 

 
 −

1

1 + 2𝜖
if (

1

1 + 𝜖
,

1

1 + 2𝜖
) ∈ 𝐼1

∗

−𝜖

1 + 𝜖
if (

1

1 + 𝜖
,

1

1 + 2𝜖
) ∈ 𝐼2

∗

−
𝜖

(1 + 2𝜖)(1 + 𝜖)
if (

1

1 + 𝜖
,

1

1 + 2𝜖
)  ∈ 𝐼3

∗.     

       (1) 

and  

𝜇2(1 + 2𝜖, 1 + 𝜖)  =

{
 
 

 
 −

1

1 + 2𝜖
if (

1

1 + 𝜖
,

1

1 + 2𝜖
) ∈ 𝐼1

−𝜖

1 + 𝜖
if (

1

1 + 𝜖
,

1

1 + 2𝜖
) ∈ 𝐼2

−
𝜖

(1 + 2𝜖)(1 + 𝜖)
if (

1

1 + 𝜖
,

1

1 + 2𝜖
)  ∈ 𝐼3 .     

          (2) 

Here we collect properties of the dilation operator in Wiener amalgam spaces by extending the result in [23]. 

Lemma 2.2 (see [27]). Let 0 ≤ 𝜖 ≤  ∞, and 𝜆 ≠  0. We have the following inequalities. 

(1) 

‖∑

𝑟

𝑈𝜆𝑓𝑟‖

𝑊1+𝜖,1+2𝜖

 ≲ |𝜆−1|1+𝜖+(1+𝜖)𝜇2(1+2𝜖,1+𝜖)∑

𝑟

‖𝑓𝑟‖𝑊1+𝜖,1+2𝜖∀ |𝜆|  ≥  1,

∀𝑓𝑟 ∈ 𝑊
1+𝜖,1+2𝜖(ℝ1+𝜖) 

(2) 

‖∑

𝑟

𝑈𝜆𝑓𝑟‖

𝑊1+𝜖,1+2𝜖

 ≲ |𝜆−1|1+𝜖+(1+𝜖)𝜇1(1+2𝜖,1+𝜖)∑

𝑟

‖𝑓𝑟‖𝑊1+𝜖,1+2𝜖∀ 0 <  |𝜆|  ≤  1,

∀𝑓𝑟 ∈ 𝑊
1+𝜖,1+2𝜖(ℝ1+𝜖) 

(3) 
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‖∑

𝑟

𝑈𝜆𝑓𝑟‖

𝑊1+𝜖,1+2𝜖

 ≳ |𝜆−1|1+𝜖+(1+𝜖)𝜇1(1+2𝜖,1+𝜖)∑

𝑟

‖𝑓𝑟‖𝑊1+𝜖,1+2𝜖∀ |𝜆|  ≥  1,

∀𝑓𝑟 ∈ 𝑊
1+𝜖,1+2𝜖(ℝ1+𝜖) 

(4) 

‖∑

𝑟

𝑈𝜆𝑓𝑟‖

𝑊1+𝜖,1+2𝜖

 ≳ |𝜆−1|1+𝜖+(1+𝜖)𝜇2(1+2𝜖,1+𝜖)∑

𝑟

‖𝑓𝑟‖𝑊1+𝜖,1+2𝜖∀ 0 < |𝜆| ≤  1,

∀𝑓𝑟 ∈ 𝑊
1+𝜖,1+2𝜖(ℝ1+𝜖) 

Proof. We use the dilation property of Fourier transforms and thefact that ℱ𝑀1+2𝜖,1+𝜖 = 𝑊1+𝜖,1+2𝜖. We know 

that 𝑈𝜆𝑓�̂�(𝜉)  =  𝜆
−(1+𝜖)𝑓�̂�(𝜆

−1𝜉). Based on [23] we have 

‖∑

𝑟

𝑈𝜆𝑓𝑟‖

𝑀1+2𝜖,1+𝜖

≲ |𝜆|(1+𝜖)𝜇1(1+2𝜖,1+𝜖)∑

𝑟

‖𝑓𝑟‖𝑀1+2𝜖,1+𝜖             |𝜆|  ≥  1 

Equivalently, we have 

|𝜆|−(1+𝜖) ‖∑

𝑟

𝑓�̂�(𝜆
−1𝜉)‖

𝑊1+𝜖,1+2𝜖

≲ |𝜆|(1+𝜖)𝜇1(1+2𝜖,1+𝜖)∑

𝑟

‖𝑓�̂�‖𝑊1+𝜖,1+2𝜖        |𝜆|  ≥  1 

Inequality (2) follows from the change of variable 𝜆 ↦  1/𝜆. All the remaining estimates follows the same proof 

by using the appropriate inequality in [23]. 

In the following lemma we give sufficient conditions for a Fourier multiplier to be bounded in 

𝑊1+𝜖,1+2𝜖(ℝ1+𝜖). 

Lemma 2.3 (see [27]). A Fourier multiplier operator 𝜎(𝐷) is bounded on all Wiener amalgam spaces 

𝑊1+𝜖,1+2𝜖(ℝ1+𝜖) for 𝜖 ≥  0 and 0 ≤  𝜖 ≤  ∞ whenever 𝜎 ∈ 𝑀∞,1. 

Proof. We use the convolution property of Wiener amalgam spaces stated in Lemma 2.1. Since ℱ𝐿∞ ∗
 ℱ𝐿1+2𝜖 →  ℱ𝐿1+2𝜖 and 𝐿1 ∗ 𝐿1+𝜖 → 𝐿1+𝜖 , we have 𝑊(ℱ𝐿1+2𝜖 , 𝐿1+𝜖)  ∗  𝑊(ℱ𝐿∞, 𝐿1)  ↪ 𝑊(ℱ𝐿1+2𝜖 , 𝐿1+𝜖) with 

||∑

𝑟

�̆� ∗ 𝑓𝑟||

𝑊1+𝜖,1+2𝜖

≤ ||�̆�||
𝑊(ℱ𝐿∞,𝐿1)

∑

𝑟

||𝑓𝑟||𝑊1+𝜖,1+2𝜖 . 

By the relation ℱ𝑀1+2𝜖,1+𝜖  =  𝑊(ℱ𝐿1+2𝜖 , 𝐿1+𝜖) we conclude that if 𝜎 ∈ 𝑀∞,1, 𝜎(𝐷)𝑓𝑟  =  �̆� ∗ 𝑓𝑟 is bounded on 

𝑊1+𝜖,1+2𝜖(ℝ1+𝜖). 

The next corollary follows directly from Lemma 2.3 and [3, Cor. 15]. 

Corollary 2.1. If 0 ≤ 𝜖 ≤ 1, then 𝑒𝑖|𝐷|
2+𝜖

 is bounded on 𝑊1+𝜖,1+2𝜖 for all 0 ≤  𝜖 ≤ ∞. 

III. Sufficient Conditions for the Boundedness of 𝑒𝑖𝜇(𝐷) 

This section contains the proof of Theorem 1.1. In addition, we give sufficient conditions for the boundedness of 

𝑒𝑖𝜇(𝐷) on 𝑊1+𝜖,1+2𝜖 for 0 < 𝜖 <  2 which is not covered by Theorem 1.1. Throughout, 𝜒 ∈ 𝐶0
∞(ℝ1+𝜖) will 

denote a test function such that 

𝜒(𝜉)  = {

0                             if |𝜉|  ≥  2           

1                             if|𝜉| ≤  1            
0 ≤ 𝜒(𝜉)  ≤  1  if 1 ≤  |𝜉|  ≤  2.

 

Moreover we let 𝛷(𝜉)  =  (1 − 𝜒(𝜉)). 

Lemma 3.1 [27]. Let 𝐽 =  [
1+𝜖

2
] +  1. Suppose that 𝜕𝛾𝑟𝑚 ∈ 𝐿2(ℝ1+𝜖) for all 𝛾𝑟 ∈ 𝑁

1+𝜖, |𝛾𝑟|  ≤  𝐽. Then 
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‖ℱ−1(𝑚)‖𝐿1  ≤  𝐶‖𝑚‖
𝐿2

1−
1+𝜖

2𝐽 ( ∑

|𝛾𝑟|=𝐽

∑

𝑟

‖𝜕𝛾𝑟𝑚‖𝐿2)

1+𝜖

2𝐽

.                          (3) 

The proof of this lemma can be found in [21]. 

Lemma 3.2 (Lemma 3.1 of [18]). Let 𝑚 be a bounded function on ℝ1+𝜖 with compact support. Suppose that m 

is of class 𝐶[
1+𝜖

2
]+1(ℝ1+𝜖\{0}) and suppose there exists 𝜖 >  0 such that 

|∑

𝑟

𝜕𝛾𝑟𝜇(𝜉)|  ≤  ∑

𝑟

𝐶𝛾𝑟|𝜉|
𝜖−|𝛾𝑟| 

for |𝛾𝑟|  ≤  [
1+𝜖

2
]  +  1. Then 𝑚 ∈  ℱ𝐿1. 

For the reader convenience we have the following lemmas: 

Lemma 3.3 (see [27]). For 𝑠 >  0, the function |𝜉|𝑠/(1 + |𝜉|2)
𝑠

2 is an element of 𝑀∞,1. 

Proof. We write 

|𝜉|𝑠

(1 +  |𝜉|2)
𝑠

2

 =
|𝜉|𝑠

(1 + |𝜉|2)
𝑠

2

𝜒(𝜉)2  +
|𝜉|𝑠

(1 +  |𝜉|2)
𝑠

2

(1 − 𝜒(𝜉)2). 

The second term in the sum can be distinguished as an element of 𝐶𝑘 ⊂ 𝑀∞,1 for some 𝑘. For the first term, we 

split into |𝜉|𝑠𝜒(𝜉)  ·
𝜒(𝜉)

(1+|𝜉|2)
𝑠
2

 where the second factor is again in 𝐶𝑘 and by Lemma 3.2 the first factor belongs to 

ℱ𝐿1 ⊂ 𝑀∞,1. This ends our proof. 

Lemma 3.4 (see [27]). Let 𝜖 >  0, 𝑠 ∈  ℝ and let 𝜇 be a real-valued function on ℝ1+𝜖 which belongs to 𝐶[
1+𝜖

2
]+1

 

supported away from the origin satisfying 

|∑

𝑟

𝜕𝛾𝑟𝜇(𝜉)| ≤ ∑

𝑟

𝐶𝛾𝑟|𝜉|
(1+𝜖)−|𝛾𝑟|for 𝛾𝑟 ∈ 𝑁

1+𝜖, |𝛾𝑟| ≤ [
1 + 𝜖

2
] +  1    (4) 

Set 𝑚(𝜉)  =  Φ(𝜉)|𝜉|−𝑠𝑒𝑖𝜇(𝜉), 𝜉 ∈ ℝ1+𝜖. If 𝑠 >
(1+𝜖)2

2
, then 𝑚 ∈ ℱ−1𝐿1. 

Proof. Let Φ0(𝜉)  =  Φ(𝜉)  − Φ(𝜉/2) and let Φ𝜈(𝜉) = Φ0(2
−𝜈𝜉) for 𝜈 ∈  ℕ so that Φ(𝜉)  =  ∑𝜈∈ℕ Φ𝜈(𝜉). 

Let 𝑚𝜈(𝜉) = Φ𝜈(𝜉)|𝜉|
−𝑠𝑒𝑖𝜇(𝜉). Then from (4) and Leibniz rule we have 

|∑

𝑟

𝜕𝛾𝑟𝑚𝜈(𝜉)|  ≤ ∑

𝑟

𝐶𝛾𝑟2
𝜈(−𝑠+|𝛾𝑟|(𝜖))for        |𝛾𝑟|  ≤  [

1 + 𝜖

2
]  +  1. 

Hence, 

‖∑

𝑟

𝜕𝛾𝑟𝑚𝜈(𝜉)‖

𝐿2

≲∑

𝑟

2
(1+𝜖)𝜈

2
−𝜈𝑠+𝜈|𝛾𝑟|(𝜖) 

and 

‖𝑚𝜈‖𝐿2 ≲ 2
𝜈(1+𝜖)

2
−𝜈𝑠

 

for |𝛾𝑟|  ≤  [
1+𝜖

2
]  +  1.Therefore, by Lemma 3.1 we have 

‖ℱ−1(𝑚𝜈)‖𝐿1 ≲ 2
𝜈(1+𝜖)2

2
−𝜈𝑠. 

Finally, we see that 
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‖ℱ−1(𝑚)‖𝐿1  ≤  ‖∑

𝜈∈ℕ

ℱ−1(𝑚𝜈)‖

𝐿1

≲∑

𝜈∈ℕ

2
𝜈(1+𝜖)2

2
−𝜈𝑠, 

where the series converges whenever 𝑠 >
(1+𝜖)2

2
. 

Lemma 3.5 (Lemma 3.2 of [18]). Let 𝜖 >  0. Suppose 𝜇 is a real-valued function of class 𝐶[
1+𝜖

2
]+1(ℝ1+𝜖\{0}) 

satisfying 

|∑

𝑟

𝜕𝛾𝑟𝜇(𝜉)| ≤∑

𝑟

𝐶𝛾𝑟|𝜉|
𝜖−|𝛾𝑟| 

for |𝛾𝑟|  ≤  [
1+𝜖

2
]  +  1. Then 𝜂𝑒𝑖𝜇 ∈  ℱ𝐿1 for each 𝜂 ∈  𝑆 with compact support. 

Proposition 3.1 (see [27]). Let 𝜖 ≥  0, 𝑠 ∈  ℝ and 𝜇 be a real-valued function on ℝ1+𝜖 which belongs to 

𝐶[
1+𝜖

2
]+1(ℝ1+𝜖\{0}) satisfying 

|∑

𝑟

𝜕𝛾𝑟𝜇(𝜉)| ≤ ∑

𝑟

𝐶𝛾𝑟|𝜉|
(1+𝜖)−|𝛾𝑟|for𝛾𝑟 ∈ 𝑁

1+𝜖, |𝛾𝑟| ≤ [
1 + 𝜖

2
] +  1.   (5) 

If 𝑠 >
(1+𝜖)2

2
, then 𝑒𝑖𝜇(𝐷) is bounded from 𝑊𝑠

1+𝜖,1+2𝜖
 to 𝑊1+𝜖,1+2𝜖. 

Proof. We use property 4 of Lemma 2.1.Hence, by Lemma 2.3 we have 

‖𝑒𝑖𝜇(𝐷)‖
ℒ(𝑊𝑠

1+𝜖,1+2𝜖,𝑊1+𝜖,1+2𝜖)
 

≍ ‖𝐷−𝑠𝑒𝑖𝜇(𝐷)‖
ℒ(𝑊1+𝜖,1+2𝜖,𝑊1+𝜖,1+2𝜖)

≲ ‖〈𝜉〉−𝑠𝑒−𝑖𝜇(𝜉)‖
𝑀∞,1 .          (6) 

Now, we only need to show that 𝜉−𝑠𝑒𝑖𝜇(𝜉) ∈ 𝑀∞,1. To do so, we rewrite 

𝜉−𝑠𝑒𝑖𝜇(𝜉)  =  𝜎1  +  𝜎2                                                       (7) 

where 𝜎1  =  𝜒(𝜉)𝜉−𝑠𝑒−𝑖𝜇(𝜉) and 𝜎2  =  (1 −  𝜒(𝜉))𝜉
−𝑠𝑒−𝑖𝜇(𝜉). Then by Lemma 3.5, 𝜎1 ∈  ℱ𝐿

1 ⊂ 𝑀∞,1. 

Meanwhile, we write 𝜎2  =
|𝜉|𝑠

(1 + |𝜉|2)
𝑠
2

· Φ(𝜉)|𝜉|−𝑠𝑒𝑖𝜇(𝜉). By Lemma 3.3 and Lemma 3.4, both factors of 𝜎2 are in 

𝑀∞,1. We conclude that 𝜎2 is also in 𝑀∞,1. by using the multiplication property of modulation spaces. This ends 

our proof. 

Remark 3.1.1. By interpolation, Proposition 3.1 implies Theorem 1.1 for 1 + 𝜖 ≤  1 + 2𝜖 ≤
1+𝜖

𝜖
 and 

1+𝜖

𝜖
 ≤

1+2𝜖

2𝜖
≤  1 + 𝜖. Indeed, take (1 + 𝜖, 1 + 2𝜖)  =  (1,∞), then interpolating with [18, Theorem 1.1] for 𝑊1+𝜖,1+𝜖 

yields the desired threshold for 𝑠. 

Remark 3.1.2. For 0 ≤ 𝜖 ≤ 2, an improvement of the estimate 𝑠 >
(1+𝜖)2

2
 can be done with the use of [3, 

Theorem 1], where the boundedness of 𝑒𝑖𝜇(𝐷) on 𝑀1+𝜖,1+𝜖  =  𝑊1+𝜖,1+𝜖 is known. We interpolate with the case 

(1 + 𝜖, 1 + 2𝜖)  =  (1,∞) to get the improved estimate 𝑠 >
(1+𝜖)2

2
|

𝜖

(1+𝜖)(1+2𝜖)
|. 

The proof of Theorem 1.1 relies on the following lemma that gives sufficient condition for the inclusion 

property of weighted Wiener amalgam spaces. 

Lemma 3.6(see [27]). Let 0 ≤  𝜖 ≤ ∞and 𝑠1, 𝑠2 ∈ ℝ.If 𝜖 < 0 and 𝑠1 − 𝑠2 > (1 + 𝜖) (
−𝜖

(1+3𝜖)(1+2𝜖)
),then 

𝑊𝑠1
1+𝜖,1+2𝜖 → 𝑊𝑠2

1+𝜖,1+3𝜖. 

Proof.We write 
1+3𝜖

1+2𝜖
+

−𝜖

1+2𝜖
=  1 and 𝑠2 = 𝑠1 + (𝑠2 − 𝑠1).By Hölder’s inequality we have 

‖𝑓𝑟‖𝑊𝑠2
1+𝜖,1+3𝜖 = ‖∑

𝑟

‖{〈𝑘〉𝑠2𝜑𝑟(𝐷 −  𝑘)𝑓𝑟}‖ℓ1+3𝜖‖

𝐿1+𝜖

 



Various Unimodular Fourier Multipliers on (Weighted) Wiener Amalgam Spaces 

DOI: 10.35629/0743-11021524                                    www.questjournals.org                                         22 | Page 

≤∑

𝑟

‖‖{〈𝑘〉𝑠1𝜑𝑟(𝐷 −  𝑘)𝑓𝑟}‖ℓ1+2𝜖‖𝐿1+𝜖‖{〈𝑘〉
𝑠1𝜑𝑟(𝐷 −  𝑘)𝑓𝑟}‖

ℓ
(1+2𝜖)(1+3𝜖)

−𝜖
. 

Since (𝑠1 − 𝑠2)
(1+2𝜖)(1+3𝜖)

−𝜖
> 1 + 𝜖,we have our desired result.  

We are now ready to prove Theorem 1.1. 

Proof of Theorem 1.1(see [27]).Using the fact that 𝑀1+𝜖,1+𝜖 = 𝑊1+𝜖,1+𝜖together with the result in [18], 

we conclude the boundedness of the operator 

𝑒𝑖𝜇(𝐷): 𝑊𝑠2
1+𝜖,1+𝜖 → 𝑊1+𝜖,1+𝜖, 

where 𝑠2 ≥ (1 + 𝜖)(𝜖)|
1−𝜖

2(1+𝜖)
|.By Lemma 2.1 𝑊1+𝜖,1+𝜖 → 𝑊1+𝜖,1+2𝜖for 𝜖 > 0. On the other hand, setting 𝜖 =

0and 𝑠 =  𝑠1in Lemma 3.6 gives us the inclusion 𝑊𝑠
1+𝜖,1+2𝜖 → 𝑊𝑠2

1+𝜖,1+𝜖
when 𝑠 − 𝑠2 > (

𝜖

(1+2𝜖)
) and 𝜖 >

0.Thus, the multiplier operator 𝑒𝑖𝜇(𝐷): 𝑊𝑠
1+𝜖,1+2𝜖 → 𝑊1+𝜖,1+2𝜖is bounded for 𝜖 > 0whenever 𝑠 >

(1 + 𝜖) [𝜖 |
1−𝜖

2(1+𝜖)
| +  |(

𝜖

(1+𝜖)(1+2𝜖)
)|].The case for 𝜖 < 0is achieved by duality. This ends our proof. 

4. Necessary Condition 

Here we give the proof of Theorem 1.2 which establishes the optimality of the threshold obtained in Theorem 

1.1. We need the following lemmas. 

Lemma 4.1. Consider the function 𝑀𝜉1(𝑥)  =  𝑒
𝑖𝑥𝜉 . Its short-time Fourier transform is given by 

𝑉𝑔𝑟(𝑀𝜉1)(𝑦, 𝜔𝑟)  =  𝑒
𝑖𝑦.(𝜉−𝜔𝑟)𝑔�̂�(𝜔𝑟 −  𝜉)). 

This follows easily from direct computation. 

Proof of Theorem 1.2(see [27]).Our proof is an adaptation of the arguments used in [18, Section 5]. 

It suffices to prove Theorem 1.2 only for pairs (1 + 𝜖, 1 + 2𝜖) satisfying 1 + 𝜖 ≤  1 + 2𝜖 ≤  2,that is, the 

shaded region in Figure 2. Indeed, suppose, for contradiction, that 𝑒𝑖𝜇(𝐷)is bounded from 𝑊𝑠
𝑝0,𝑞0to 𝑊𝑝0,𝑞0for 

some (1/𝑝0, 1/𝑞0) in 𝑇1\𝑇1
′such that 𝑠 < (1 + 𝜖)(𝜖)(1/𝑝0 − 1/2) + (1 + 𝜖)(1/𝑝0 − 1, 𝑞0).Then, 

interpolating with the estimate for point (1, 0) and 𝑠 =  (𝜖)(1 + 𝜖)/2 (by Theorem 1.1) would yield an 

improve estimate for all points of the line segment joining (0, 1) and (1/𝑝0, 1/𝑞0) inside 𝑇1
′, which is not 

possible. 

From the assumption we have the estimate: 

‖∑

𝑟

𝑒𝑖𝜇(𝐷)〈𝐷〉−𝑠𝑓𝑟‖

𝑊1+𝜖,1+2𝜖

≤  𝐶∑

𝑟

‖𝑓𝑟‖𝑊1+𝜖,1+2𝜖∀𝑓𝑟 ∈  𝑆(ℝ
1+𝜖)                     (8) 

 
1

1 + 2𝜖

1

1 + 2𝜖
 

11 

 

 
1

2

1

2
 

 

 

0
1

2
1

1

1 + 𝜖
0
1

2
1

1

1 + 𝜖
 

 

Figure 2(see [27]). 

 

Let 𝑓𝑟be a fixed Schwartz function whose Fourier transform is supported in a small neighborhood 𝒰 ⊂
ℝ1+𝜖\{0}of the point 𝜉0in the assumption and is equal to 1 in some neighborhood of 𝜉0.Using the dilated 

𝑈𝜆𝑓𝑟 , 𝜆 ≥  1,in the above estimate gives us 

‖∑

𝑟

𝑈𝜆𝑒
𝑖𝜇(𝜆𝐷)〈𝜆𝐷〉−𝑠𝑓𝑟‖

𝑊1+𝜖,1+2𝜖

≤  𝐶∑

𝑟

‖𝑈𝜆𝑓𝑟‖𝑊1+𝜖,1+2𝜖 , 

since 𝑒𝑖𝜇(𝐷)〈𝐷〉−𝑠𝑈𝜆 = 𝑈𝜆𝑒
𝑖𝜇(𝜆𝐷)〈𝜆𝐷〉−𝑠.Using the dilation properties of Wiener amalgam 

spaces given in Lemma 2.2 we have 

|𝜆|1+𝜖+(1+𝜖)𝜇2(1+2𝜖,1+𝜖) ‖∑

𝑟

𝑒𝑖𝜇(𝜆𝐷)〈𝜆𝐷〉−𝑠𝑓𝑟‖

𝑊1+𝜖,1+2𝜖
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≤  𝐶|𝜆|1+𝜖+(1+𝜖)𝜇1(1+2𝜖,1+𝜖)∑

𝑟

‖𝑓𝑟‖𝑊1+𝜖,1+2𝜖 .                        (9) 

We now compute for a convenient lower bound of (9). Applying Lemma 4.1 and by interchanging the integrals 

we see that 

|∑

𝑟

𝑉𝑔𝑟(𝑒
𝑖𝜇(𝜆𝐷)〈𝜆𝐷〉−𝑠𝑓𝑟)(𝑦, 𝑤)|

=  (2(1 + 𝜖))−(1+𝜖) |∫
ℝ1+𝜖

∑

𝑟

𝑒𝑖𝑦𝜉+𝑖𝜆
2+𝜖𝜇(𝜉)𝑔�̂�(𝜔𝑟 −  𝜉)〈𝜆𝜉〉

−𝑠𝑓�̂�(𝜉)𝑑𝜉|. 

Taking the integral over |𝜔𝑟|  ≤  1 we have 

∑

𝑟

‖𝑉𝑔𝑟(𝑒
𝑖𝜇(𝜆𝐷)〈𝜆𝐷〉−𝑠𝑓𝑟)(𝑦,·)‖𝐿1+2𝜖

 

≥ (2(1 + 𝜖))−(1+𝜖)(∫
|𝜔𝑟|≤1

|∫
ℝ1+𝜖

∑

𝑟

𝑒𝑖𝑦𝜉+𝑖𝜆
2+𝜖𝜇(𝜉)𝑔�̂�(𝜔𝑟 −  𝜉)〈𝜆𝜉〉

−𝑠𝑓�̂�(𝜉)𝑑𝜉|

1+2𝜖

𝑑𝜔𝑟)

1

1+2𝜖

 

≳ |∫
ℝ1+𝜖

∑

𝑟

𝑒𝑖𝑦𝜉+𝑖𝜆
2+𝜖𝜇(𝜉)𝑔�̂�(𝜔𝑟 −  𝜉)〈𝜆𝜉〉

−𝑠𝑓�̂�(𝜉)𝑑𝜉|.           (10) 

Hence by a change of variables 𝑦 ⟼ 𝜆2+𝜖𝑦we get 

(∫
ℝ1+𝜖

∑

𝑟

|∫
ℝ1+𝜖

𝑒𝑖𝑦𝜉+𝑖𝜆
2+𝜖𝜇(𝜉)𝑔�̂�(𝜉)〈𝜆𝜉〉

−𝑠𝑓�̂�(𝜉)𝑑𝜉|

1+𝜖

𝑑𝜔𝑟)

1

1+𝜖

 

= 𝜆2+𝜖 (∫
ℝ1+𝜖

∑

𝑟

|∫
ℝ1+𝜖

𝑒𝑖𝑦𝜉+𝑖𝜆
2+𝜖𝜇(𝜉)𝑔�̂�(𝜉)〈𝜆𝜉〉

−𝑠𝑓�̂�(𝜉)𝑑𝜉|

1+𝜖

𝑑𝜔𝑟)

1

1+𝜖

  (11) 

Let 𝑦0  =  −∇𝜇(𝜉0).Since the Hessian matrix 𝑑2𝜇(𝜉0) of 𝜇at 𝜉0 is invertible, it follows from the implicit 

function theorem that we can find a neighborhood 𝒱of 𝑦0 such that for a small 𝒰, the phase Φ(𝜉)  =  𝑦𝜉 +
 𝜇(𝜉) has a unique non-degenerate critical point 𝜉 =  𝜉(𝑦)  ∈  𝒰, for every 𝑦 ∈  𝒱.Also, choose 𝑔𝑟 ∈  𝑆(ℝ

1+𝜖), 

with 𝑔�̂�(𝜉)  =  1 on the support of 𝑓�̂� .Now it follows from the stationary phase theorem that for 𝑦 ∈  𝒱, 

|∫
ℝ1+𝜖

∑

𝑟

𝑒𝑖𝜆
2+𝜖(𝑦𝜉+𝜇(𝜉))𝑔�̂�(𝜉)〈𝜆𝜉〉

−𝑠𝑓�̂�(𝜉)𝑑𝜉|

=  𝜆−𝑠 |∫
ℝ1+𝜖

∑

𝑟

𝑒𝑖𝜆
2+𝜖(𝑦𝜉+𝜇(𝜉))𝑔�̂�(𝜉)𝜆

𝑠〈𝜆𝜉〉−𝑠𝑓�̂�(𝜉)𝑑𝜉| 

≍ |det (𝑑2𝜇(𝜉(𝑦)))|
−
1

2 〈𝜆𝜉(𝑦)〉−𝑠𝜆−
(2+𝜖)(1+𝜖)

2  +  𝑂(𝜆−
(2+𝜖)(3+𝜖)

2
−𝑠), 

where det(𝑑2𝜇(𝜉(𝑦))) is the Hessian matrix of 𝜇at the critical point 𝜉(𝑦). Indeed, here we use the uniform 

estimates |𝜆𝑠〈𝜆𝜉(𝑦)〉−𝑠|  ≥  𝐶𝜆 on the support of 𝑓�̂�and the fact that all derivatives of the phase are uniformly 

bounded with respect to 𝑦 ∈  𝒱.Hence, for some 𝐶 > 0, 

|∫
ℝ1+𝜖

∑

𝑟

𝑒𝑖𝜆
2+𝜖(𝑦𝜉+𝜇(𝜉))𝑔�̂�(𝜉)〈𝜆𝜉〉

−𝑠𝑓�̂�(𝜉)𝑑𝜉|  ≥  𝐶𝜆−
(2+𝜖)(1+𝜖)

2
−𝑠𝑦 ∈  𝒱 

Combining this estimate with equations (10) and (11) we arrive to the following estimate 

∑

𝑟

‖𝑒𝑖𝜇(𝜆𝐷)〈𝜆𝐷〉−𝑠𝑓𝑟‖𝑊1+𝜖,1+2𝜖 ≳ 𝜆
(
(2+𝜖)(1−𝜖)

2
)−𝑠.                               (12) 

Using this last estimate with equation (9) and letting 𝜆 →  +∞gives 

𝑠 ≥
(2+𝜖)(1−𝜖)

2
+ (1 + 𝜖)(𝜇2(1 + 2𝜖, 1 + 𝜖)  −  𝜇1(1 + 2𝜖, 1 + 𝜖))Substituting appropriate values of 𝜇1 and 𝜇2 

for 2(1 − 𝜖) ≤  2 − 𝜖 ≤  2 we have 𝜇2(2 − 𝜖, 2(1 − 𝜖)) − 𝜇1(2 − 𝜖, 2(1 − 𝜖)) = 1 −
1

2(1−𝜖)
−

1

2−𝜖
.Thus, 𝑠 ≥

 
𝜖(1+𝜖)(1+2𝜖−𝜖2)

2(1−𝜖)(2−𝜖)
 as desired. 
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