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ABSTRACT: To investigate the relationship between personal consumption expenditure and personal 

disposable income, this paper combines them into multivariate time series data and conducts a detailed 

discussion on the model of this data. With multiple candidate models obtained, the best model is finally selected 

by analyzing their goodness of fit and autocorrelation. Furthermore, the causal relationship, namely the 

dynamic dependence, between personal consumption expenditure and personal disposable income is explored. 
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I. INTRODUCTION 
Time series data analysis has been around for quite some time, but the real research began with the AR 

model proposed by Yule [1]. After its introduction, it has been widely applied across multiple disciplines. 

Walker [2] proposed the MA model and the ARMA model, which have since become the foundation of time 

series analysis. Subsequently, Box and Jenkins [3] introduced the ARIMA model, which, together with the AR, 

MA, and ARMA models, forms the basis for the study of stationary linear models. For identification and 

estimation of AR, MA, and ARMA models in the context of univariate data, references [4]-[10] can be 

consulted. 

Regarding the research on multivariate time series, it is typically an extension of the methods used for 

univariate time series models, such as the vector autoregressive (VAR) model, VARMA model, and so on. Sims 

[11] proposed the relevant theory of the VAR model, which is an extension of the AR model. Under specific 

conditions, multivariate MA and ARMA models can also be transformed into VAR models. Therefore, it is 

often used for the estimation and prediction of multiple related variables or indicators. However, the VAR 

model also has significant drawbacks: first, as shown in the article by Lütkepohl and Poskitt [12], they are 

generally not as concise as VARMA models. Second, Lütkepohl [13] proved in 1999 that the VAR model 

family is not closed under marginalization and temporal aggregation. Tiao and Box [14] proposed methods for 

modeling multivariate time series analysis and studied the properties of VARMA models. For the non-stationary 

multivariate case, Granger [15] proposed cointegration theory to characterize the long-term change relationships 

between sequences. Hendry and Anderson [16] provided the ECM (Error Correction) model to describe the 

short-term change relationships between sequences. 

Theoretical research on VARMA models can be found in [17] and [18]. What has attracted the interest 

of many researchers is how to estimate the parameters, especially the parameter estimates obtained by 

maximizing the nonlinear likelihood function, which still lack analytical forms to date. Whittle [19] and Durbin 

[20] developed approximations for the univariate MA model. Godolphin [21] extended Whittle's method to the 

univariate ARMA model and showed how to compute parameter estimates directly from the sample 

autocorrelations of the observed data. Durbin's approximation leads to an algorithm where the MA coefficients 

are calculated from the coefficients of a long autoregression. Hannan and Rissanen [22] and Koreisha and 

Pukkila [23] extended the Durbin method to univariate and multivariate ARMA models, respectively. Similar 

approximate MLE methods have been proposed by Tunnicliffe-Wilson [24], Reinsel et al. [25], and DeFrutos 

and Serrano [26]. 

The structure of this paper is as follows: Section 2 introduces the VARMA model. Section 3 discusses 

the methods for identifying dynamic dependence, namely Granger causality. Section 4 estimates the model 
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parameters using the conditional maximum likelihood method. Section 5 examines the relationship between 

personal consumption expenditure and personal disposable income. 

 

II. VARMA MODEL 

The definition equation of the VARMA  model is:  

 

where  is a  dimensional time series data,  is a -dimensional constant vector,  and  (for ) 

are  matrices, and  is a sequence of independently and identically distributed random vectors with mean 

0 and covariance matrix , which is a positive definite matrix. Using a compact notation, Equation (1) can be 

rewritten as follows: 

 

Where  and , The backshift operator is 

defined as: 

 

Next, we will present several theorems that are useful for the subsequent formula derivation and 

application. However, we will not provide the proofs of these theorems. For detailed proofs, please refer to 

Reference [27]. 

 

Theorem 2.1: For the model in Equation (2), the sufficient conditions for the identifiability of the VARMA 

model are: 1.  and are left coprime. 2.The order of the MA part q and the order of the AR part p 

should be as small as possible, while the matrices  and  satisfy that the rank of the 

combined matrix  is , where  is the dimension of . 

Note: Condition 1 means that if  is a common left factor of  and ,then  is a 

nonzero constant, and the polynomial matrix  is called a unimodular matrix. For more discussion on 

Condition 2, please refer to [28] and [29].  

The identifiability of VARMA models indicates that the specification of these models involves not only 

the identification of the orders  but also the structure. 

 

Theorem 2.2: The process  in Equation (2) is weakly stationary if and only if all the roots of the determinant 

 lie outside the unit circle, meaning that their absolute values are all greater than 1. 

 

Theorem 2.3: For the model in Equation (2), the necessary and sufficient condition for the invertibility of  is 

that all the roots of the determinant  lie outside the unit circle, meaning that their absolute values are 

all greater than 1. 

 

III. DYNAMIC DEPENDENCE                                                                                                              
Granger causality can be used to determine whether there is dynamic dependence between a 

component at the current time and all components at the previous time or several previous times, that is, whether 

the information from the previous time or several previous times improves the prediction of a component at the 

current time. The MA representation of the VARMA model is used to judge the dynamic relationships between 

variables. When  is stationary, the MA representation can be written as: 

 

Among them, the definition of  is given by: . The unified equation for  is: 
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In particular,  for  and . Considering the simple partition: and 

, Equation (4) can be rewritten as: 

 

It should be noted that if , but , then there exists a unidirectional relationship 

from  to .  does not depend on any past information of , but  depends on some lagged values of 

. This indicates that  is a cause of , and it also suggests the existence of a linear transfer function model 

within the VARMA model. Similarly, the VARMA model in Equation (2) can also be rewritten after mean 

adjustment as: 

 

Using the definition of , we have: 

 

Thus, we obtain the following equation: 

 

where  is defined as follows: 

 

By substituting Equation (9) into Equation (8), we can obtain that when , it is equivalent to 

 

When , it is equivalent to 

 

Therefore, if Equations (11) and (12) hold, it indicates that there is a Granger causality from  to . 

 

IV. MODEL ESTIMATION  

Before proceeding with the calculations, we first apply the three theorems mentioned in Section 2. The 

VARMA model must satisfy these three theorems—identifiability, stationarity, and invertibility—in order to 

proceed with the subsequent derivations. We assume that the sequence values before all sampling times are zero, 

i.e.,  and  for , where  is the sample mean, and . Define  and 

, for . The general VARMA model in Equation (1) can be rewritten as: 

 

Where  
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Both and  are  matrices,  is a  zero matrix, and . Let , then 

. The transformation from  to  has a unit Jacobian. Under the assumption of normality, 

. Therefore, the conditional log-likelihood function of the data is: 

 

Where , Taking the derivative of Equation (15) yields: 

 

Therefore, given , the conditional MLE (Maximum Likelihood Estimation) for  is: 

. Since , combining this with the general VARMA model in 

Equation (1) yields: at= 

 

Taking the expectation first and then the partial derivative of Equation (16) yields: 

 

 

Define  and , then Equations (18) and (19) can be transformed into: 

 

 

From the log-likelihood function of Equation (15), we can derive that: 

 

Therefore, the partial derivative of  with respect to  can be calculated and denoted as : 

 

It is not difficult to see that  is a  matrix. Therefore, the matrix form of the partial 

derivative of  with respect to  is , where  is a  matrix. Combining 

Equations (20) and (21), the matrix  is defined as follows: 
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then 

 

Where . Therefore, the following partial derivatives can be obtained: 

 

By combining Equations (22) and (26), we have: 

 

Setting the above equation to zero yields the normal equations for the log-likelihood function of a 

stationary and invertible VARMA model. When divided by , the neglected terms converge in 

probability to zero. The Hessian matrix of the log-likelihood function is: 

 

 

V. EMPIRICAL ANALYSIS 
The data used in this section, covering 639 observations of personal consumption expenditure (PCE) 

and personal disposable income (DSPI) from January 1959 to 2012, can be accessed via the following link: PCE 

AND DSPI. 

The raw data are bivariate, with  denoting personal consumption expenditure and  denoting 

personal disposable income. Since the raw data are not stationary, this paper takes the logarithm of the data and 

then applies differencing to achieve stationarity. 

q      

p 

0 1 2 3 4 5 6 

0 00000  0.0000 0.0000 0.0000 0.0000 0.0001 0.0120 

1 0.0000     0.0005 0.0003 0.0874 0.2523 0.2738 0.7914 

2 0.0000    0.0043 0.0054 0.9390 0.4237 0.3402 0.8482 

3 0.0000     0.8328 0.9397 0.9965 0.9376 0.9100 0.8193 

4 0.0003      0.9643 0.9797 0.9937 0.9701 0.9810 0.9620 

5 0.0150    1.0000 1.0000 1.0000 0.9995 0.9997 0.9851 

6 0.1514   1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 

Table 5-1: p-values of the Extended Cross-Correlation Matrix 

https://kimi.moonshot.cn/chat/cs8tl8o3qffd3q9nsf60
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Table 5-1 presents the p-values of the extended cross-correlation matrix for the differenced logarithmic 

data. The maximum autoregressive order and the maximum moving average order are both set to 6. The rows 

and columns of the table represent the changes in p-values as the autoregressive and moving average orders 

increase from 0 to 6, respectively. It should be noted that these orders are different from the autoregressive order 

p. As the AR order increases, the p-values gradually increase, indicating a gradual decrease in the 

autocorrelation of the residual series. For the MA order, when the AR order is fixed, increasing the MA order 

typically leads to an increase in p-values, indicating a decrease in the autocorrelation of the residual series. 

Therefore, the autoregressive order of the VARMA model may be 2, 3, or 4, and the moving average order may 

be 1 or 2. Further experiments will be conducted to select the best model. 

 (2,1) (3,1) (4,1) (2,2) (3,2) (4,2) 

AIC -2.086201 -2.102131 -1.998464 -2.027707 -2.081865 -1.002797 

BIC -2.002346 -1.990323 -1.928584 -1.908911 -1.942105 -0.821109 

Table 5-2: Goodness-of-Fit Test 

From Table 5-2, it can be seen that the AIC and BIC values for VARMA(2,1) and VARMA(3,1) are 

significantly lower than those of the other four models. Lower AIC and BIC values indicate better model fit. 

Specifically, VARMA(2,1) has a lower AIC value than VARMA(3,1), but VARMA(3,1) has a lower BIC value. 

However, this alone does not definitively determine which model is better, hence further analysis is conducted 

to select the optimal model. 

 

Figure 5-1: The autocorrelation tests for VARMA(2,1) 
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                    Figure 5-2: The autocorrelation tests for VARMA(3,1). 

 

From the above two figures, it can be seen that although the p-values of the Ljung-Box test for both 

models are greater than 0.05, indicating that the null hypothesis of no significant autocorrelation in the residuals 

cannot be rejected, Figure 5.2 shows that almost all p-values are higher than those in Figure 5.1. This suggests 

that the autocorrelation in the residuals of the VARMA(3,1) model is even less significant, indicating a better 

model fit. 

 
Figure 5-3: P-value Plot for the Ljung-Box Test 

 

In Figure 5-3, from left to right are the VARMA(2,1) and VARMA(3,1) models. It can be more 

intuitively observed that the p-values for the Ljung-Box test of the VARMA(3,1) model are generally higher 

than those of the VARMA(2,1) model. If a 99% confidence level is chosen, the VARMA(2,1) model would 

have several points (e.g., at the fourth lag) where the null hypothesis is rejected, whereas the VARMA(3,1) 

model does not exhibit any such rejections. 

In summary, the final model selected in this paper is VARMA(3,1). The specific parameters of the 

model are obtained using the maximum likelihood estimation method as follows: 
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where the sequence  is a vector that follows a normal distribution. 

 
Figure 5-4: Residual Plot 

 

Figure 5-4 indicates that the two time series variables are relatively stable over the observation period, 

fluctuating around a certain mean without any obvious trend or seasonality. However, there are some outliers 

present. This paper does not conduct a specialized analysis of these outliers. The residual series of the model 

appears to be white noise, suggesting that the model may have adequately fitted the data. 

 F-statistic p-value 

 5.0520  0.02494 

 9.0171  0.00278 

 11.1422  0.0008933 

 3.3293  0.0685267 

Table 5-3: Granger Causality Test 

 

As shown in Table 5-3, the second row indicates that the F-statistic is 5.0520 with a corresponding p-

value of 0.02494, which is less than 0.05 but greater than 0.01. At the 5% significance level, we can reject the 

null hypothesis of Model 2, concluding that the lagged terms of  significantly contribute to the prediction of 

. The third row assesses whether the time series  significantly contributes to z2 given the lagged terms of 

. Similarly, the 4th and 5th rows can be interpreted in the same manner. Therefore,  is a cause of , but  

is not a cause of . 
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VI. CONCLUSION  
This paper provides a detailed analysis of the multivariate data composed of personal consumption 

expenditure and personal disposable income. Given the non-stationarity of the data, logarithmic differencing 

was initially applied. Rather than relying on automatically identified models, this study compares potential 

models and selects two superior ones. Subsequently, by comparing the autocorrelation of residuals, the optimal 

model is determined to be VARMA(3,1). The parameters of this model are estimated using maximum likelihood 

estimation. Incorporating Granger causality analysis, the study concludes that personal consumption expenditure 

is a cause of personal disposable income, but the reverse is not necessarily true. 
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