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Abstract:

Diamantopoulos and Siskakis shown that the Hilbert matrix induces a bounded operator on most
Hardy and Bergman spaces. M. Dostani¢, M. Jevti¢, D. Vukoti¢ [19] generalize this for any Hankel
operator on Hardy spaces by using a result of Hollenbeck and Verbitsky on the Riesz projection and
also compute the exact value of the norm of the Hilbert matrix. Using the same new technique, we
follow [19] to show the validity of the determination norm of the Hilbert matrix on a wide range of
small Bergman spaces.
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0. Introduction

A Hankel operator on the space [2 of all square-summable complex sequences is an operator

- T " i . i . —

defined by a matrix whose entries ay, _,,,. depend only on the sum of the coordinates: @y, 4,5, =

€:ae for some sequence (¢, .)52,. Hankel operators on different spaces are related to many areas

such as the theory of moment sequences, orthogonal polynomials, Toeplitz operators, or analytic
Besov spaces.

Nehari's classical theorem states that every Hankel operator S on [? can be represented by an
essentially bounded function g; on the unit circle T, in the sense that 3. = §,(1 + €) forall e = 0:
moreover, a function g; can always be chosen so that || g; ||Loo{1-)=|| S ll;zjz. See [12, Theorem
4.1.13], [15. Section 1.1, p. 3] or [16, Theorem 1.3, p. 4].

A typical Hankel operator is the Hilbert matrix H. an infinite matrix whose entries are ai1+e,1_2€ =
(3(1 + €))% e > —1. It is relevant in many fields ranging from number theory or linear algebra to
numerical analysis and operator theory. For this operator. the following choice: g;(t) = ie " (m —
£),0 < t < 2w, in Nehari's theorem wyields || Gj llgomy=m =l H llj2_=. Several interesting facts
about the Hilbert matrix are desecribed in [1] and [7. Problems 46-48] and further results about the
specttum of H ecan be found in [15].

The Hilbert matrix can be viewed as an operator on other spaces and it is a basic question to determine
its operator norm. One form of Hilbert's classieal inequality [3]. [8, Section 9.2]:

+ 1/1+e
1+e, L 1f1+e

Z Z Z 32111:355) im ;Z |ai+e|1+e)

e=—1 E___

can be used to compute the norm of H on the space [*+€ of all (1 + €)-summable sequences:
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T
| H |l;2+¢ 1+£=|7,0{E{O'J
et sin (/1 + €)

The Taylor coefficients of the functions in the Hardy spaces H*¢ are closely related to [**€ spaces.
Thus, it is natural to consider the Hilbert matrix as an operator defined on H*¢ by its action on the

coefficients:
. T fi(1+ 26)
it +e) - Z Z 3(1+€)
j
that is, by defining

- (142
Hf;(z) = Z Z Z (11 ;) z'*, f; e H'" .,z €D (1)
E:—z ]

e==1

It is possible to write Hf}, f; € H 1*€ in other forms which are convenient for analyzing this operator
(see [3]). for example:

Hf}(z)—f Z %d(l—e} zeD (2)

The equality of the expressions in (1) and (2) can be verified in a straightforward way from the Taylor
series expansion of f;.

The most basic question is: on which Hardy spaces i1s H bounded? The authors in [3] showed its
boundedness on any H**€ with 0 < € < 0. By establishing another useful representation of H as an
average of weighted composition operators and integrating over semi-circular paths, they obtained
the following upper bound:

T
H — 0 ge<ow
e sin (/1 + €) <

In view of Nehari's 12 theorem, this result is sharp when € = 0.

In the case 0 < € < 1 it was also shown in [3] that the above estimate continues to hold for the
restriction of the operator to the subspace {j} € H'™: f;(0) = 0}. Two natural questions come to
mind (see [19]):

(A) Can the above norm estimate for H be extended to the case 0 < € < 1 without restrictions?
(B) What is the actual value of the norm of H as an H** operator, 0 < € < o ?

In the present paper we give a more general answer to the above question (A) by deducing the
following Nehari-type result: an arbitrary Hankel operator Hg; associated with a function g; € L*(T)

is bounded on H'*5,0 < € < oo :

> 5

J

gyl
< Z sin (/1 + €)
j

glte_gite
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The key point is that every Hankel operator on H'*< has a representations as a composition of a (non-
analytic) isometry and a multiplication, followed by the Riesz (Szegd) projection P, from L1*<(T)
onto its closed subspace H***. It is well known that this projection is bounded for 0 < € < co. In
1968, [6] showed that
1P S—— 0
AW — 0 <e<w
LHEM-HY = sin (m/1 + €)

and conjectured that equality should hold. The authors in [11] proved this conjecture in 2000. Their
result allows us to deduce the estimate for “H 9 ” above.

Using some Hardy spaces techniques and splitting H into a difference of two operators, we also get
a lower bound which yields

T 0
sin(m/1+¢€)’

| H l[gi+e_gr+e= < g <

thus answering the above question (B) for all admissible values of (1 + €).

The behavior of the Hilbert matrix as an operator defined by (1) turns out to be similar in the classical
Bergman spaces A'7¢ of functions (1 + €)-integrable in I} with respect to the area measure. The
author in [2] recently proved that H is bounded on A**< if and only if € > 1. Inthe case 0 < € < 0
he obtamed the estimate

T

H 1 _
WE e pures sin (2m/1 + €)

(This is what one may expect by the "rule of thumb" that says that for many operators and functionals
defined on both H**¢ and A*, their norm when acting on A'*F is obtained by doubling an
appropriate quantity in the norm when acting on H'*¢.) A less precise estimate for the norm of H on
A" when 0 < € < 2 was also obtained in [2].

As a main result of this paper, we obtain a lower bound valid for all € > 0 which coincides with the
upper bound from [2] when € = 0, thus yielding the exact value of the norm for these exponents:

s

T — 0 !
sin (2m/1+€) sEs®

| H |l jote_, gr4e=

In the case 0 < € < 2, although we are currently not able to identify the exact value of the norm, we
do improve the bound obtained in [2]. We also point out that the Hilbert matrix has an integral
representation with respect to the area measure with a kernel rather different from the usual Bergman
space kernels.

1. Norms on Hardy Spaces

We briefly review the minimum background needed. Throughout the text, ) = {z € € : |z| < 1} will
denote the unit disk in the complex plane € and H () will signify the algebra of holomorphic
functions in . For f; in H (D) and 0 < € < 1, the integral means M, (1 — €, f;) are defined by

s 1/1+e

) 1 [ ) ) +e
My (1-€f)= Ef Z IF(2—e)e®®)| " as
[4] -
X ] ,
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and are increasing with (1 — €). The Hardy space H**<(0 < e < o) is the space of all fiin H(D)
for which I f; lgi+e= limy_c.;-M1, (1 — €, fj) < oo, and H® is the space of all bounded f; in
H (D). We will denote by T the unit circle. The standard Lebesgue space L*+5(T) of the circle is to
be considered with respect to the normalized measure dm(z) = (2m)7'dt, where z = e, 0 < t <
27. It is a well-known fact that the space H*® is the closed subspace of L1*¢(T) consisting of all
functions whose Fourier coefficients with the negative index vanish. The Riesz (Szegd) projection P,
from [**¢(T) onto H**€ is defined by

P,u;(2) —ijmz WO sep (3)
i oam ), £u 1—ze-it ™
J

For more details, the reader is referred to [4], among other sources.

1.1. A Nehari-Type Theorem for Hankel Operators on Hardy Spaces

One can define Hankel operators on any space H'*,0 < € < co. Given an arbitrary g; € L=(T),
consider its Fourier coefficients with non-negative indices:

i 1 . \
g’;(_l +e) = EJ‘ Z e_‘[l"'f,'fgj(t)dt €= —1
0 -
]

We can formally define the associated Hankel operator H 4 by

oo

Hfi@= > | > ) ge+30fi+2e |zt 0
e=—1 ]
2

e=—1

for an analytic function f; with the Taylor sertes f;(z) = E:‘;U}i (1 + €)z**¢ in . In particular, when
g;(t) =ie™(m —1),0 < t < 27 a straightforward calculation shows that

1 %" ) 1
i(1+e)=— “tFelt g ()dt = —— -1
g,(1+¢€) ZIEJ; Z ¢ 9;® 2re ©7

I

hence Hy, = H. the Hilbert matrix. This 1s well known: see [4. Chapter 3. Corollary on p. 48]. [12. p.
159], or [15. p. 6].

We will compute the norm of the Hilbert matrix H as an H* operator, 0 < € < ©, as a consequence
of an upper bound for the norm valid for an arbitrary operator Hy, as above. To this end, we consider

the 1sometric conjugation operator (also called the flip operator) for the functions on the unit circle T
as (1 + E)f'}-(eit) = }‘}-(B_ft). It is obvious that (1 + €) is an isometry from H'*¢ into L**<(T). Next,
let M 4; denote the operator of multiplication by the essentially bounded function g;: ng_u ;= gl

this is clearly bounded by || g; llz as an operator acting on L'**(T). We will now establish an
equality Hy, = P_ng(l + €) which is known to hold in {? context (see [12, Theorem 4.1.13]), thus
obtaining a Nehari-type theorem for Hankel operators on Hardy spaces.

Theorem 1 (see [19]). Let 0 < € < o and g; € L*(0,21). The operator Hg, defined as in (4) is
bounded on H'*<, the equality H g; = P+Mg (1 + €) holds and. consequently.
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g lle
< Z sin (m/1+ €) ©)

HLtE_py1+e i

o8

In particular, when g,(t) = ie T —1),0 <t < 2. we get Hy =H and

m

H 1 - - . -
W lyssepree< sin (/1 + €)

Proof. Given f; € H'*¢, denote by (f;), its m th Taylor polynomial: (f}),,(z) = E:l_i Y, f}(l +
2

2€)z'*2¢, The following result [18] will be useful: if 0 <e <o and f; € Hit¢ then

||Z; {(f:r)m - f;‘)HHHE — Dasm — oo,

Given f; € H'**, we first verify that the power series for A, jf converges in D. To this end. it suffices

to show that

[=]

Z Z 4,2+ 36)f,(1+ 2¢) gllz 9; ol £ lgave (6)
1 i

E=——

For (f;)m instead of f;. this follows immediately by recalling that (1 + €) is an isometry of H*** info
I}+¢(T) and applying Hélder's inequality:

[

N . " x e a Ciisze At
Z Z 4,2+ 3e)f;(1+ 2¢)[ = fo Z Z g;(0)e T WEF (1 + 26)e T2
i =

E=—,J: i £
F

ml

o —i &)t - it dt
= L Z g;()e™ (1 + ) () le )ﬂ

= Z I g; ”o-u ”(fj)r"”HHe
7

A similar argument applied to the differences (f;),, — (fj)14+e shows that (Z:i_ 25 §,2+
Tz

3Ej)f;{j'l + 2[—'}) is a Cauchy sequence uniformly in (1 + €), so it 1s legitimate to let m — o to
m=0

obtain (6).

We will now establish the formula ngj} =P, M, (1+e)f; forall fj in H*,0 < € < 0. By the

theorem of Hollenbeck and Verbitsky this will immediately imply that Hy, 1s bounded and, moreover,

(5) holds:

S &,

J

TAR
S IPllreepy ppave Z “MWH:ﬁ*‘[r)ar*{?] < Z sin (/1 +€)
] I

glte_pgite

Given f; € H'**, we get the identity Hg (fj)m = P+Mg (1 + €)(f;)m and the bound

D Hy ()
i

for the m th Taylor polynomial (f;)m of f; by an easy computation involving (4) and (3):

< z & ”(ﬂ':)mnﬂﬁg (7)

sin (/1 + €)

gite J
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Hy,(f)m(2) = Z Z Z fi( 1+2e)f Z —i(2+3e)t ft)gd_i 1+

e=—1 p—

:J' HZ g;(t)(ﬂ)m(e‘“)ﬁ

1—e-itz 2T

The interchange of the series and the integral is justified by uniform convergence of the geometric
series ¥ o2, |z|**€ on compact sets in I,

To extend the identity ng{:)?)m = P+ng[:l + €)(f;)m and (7) for arbitrary f; in H 1*€ note that

o
(Hgf(ﬂ)m) is a Cauchy sequence in H1*€ in view of
m=0

> Hy((Fm— U})M)

1

Ig;llos
. gz sm(;rr;l—i—ej 10m = (f:r)1+e||HL+s

so the standard H**¢ pointwise estimate | Y, f;(z)| < (1 — |z|?)~Y/ite 2; I fj lga+e [4, Chapter
8] implies uniform convergence of Hy (f;)m on compact sets. Next, our earlier observation that

Z Z 4,(2+ 36)f,(1 + 2¢)

oo

m=0

1s a Cauchy sequence uniformly in (1 + €) and standard estimates for the (1 4+ €)-th Taylor
coefficients based on the Cauchy integral formula allow us to conclude that actually ng(}j-:)m —

H,, f; uniformly on compact sets. Finally. the statement follows by Fatou's lemma after taking the
limit as m — oo in the inequality (7).

1.2, The Norm of the Hilbert Matrix on Hardy Spaces

The main theorem of this section gives the lower bound for the norm.

Theorem 2 (see [19]). Let 0 << € < 0o, Then the norm of the Hilbert matrix as an operator acting on
H*€ satisfies the lower estimate

m

" ”Hl 5—)Hl+€> i] { "1] ) ( )
Pl‘DOf. ir-\"'e bl'eﬁk Up Tlle argument i]’.]'[{} f-Oul' key Steps.

Step 1. We begin by selecting a family of test functions. Let £ be fixed, 0 < £ < 1, and choose an
arbitrary y/ such that ¢ < y/ < 1.1t is a standard exercise to check that the function (fj),;(2) = (1 -

~ =y o
z) 7Y /1*€ belongs to H*€ [4, Chapter 1]; it is also easy to see that

lim ”(f:i }"‘r||HJ.+£ = 9

yir

Step 2. Set f; = {jf})}_; in the representation formula (2). The change of variable —¢ = x yields
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)" ¥l i1+e
H(ff}f"z) J‘z 1{ El—e)z (1-e)= J‘Z lr—z+rz x

Now define
}r l,r 1+e

9;(2) = f Z 1- z+1:zdx R(z) = J‘ Z lr_it :z * (10)

so that obviously
H(f;),i(z) = g;(z) — R(2) (11)

where each of the three funetions in (11) makes sense almost everywhere on T. Thus we can consider
their L*¢(T) norms.

Step 3. Note that z17¥ Iave g;(z) can be defined as an analytic function in the complex plane minus
two slits: one along the positive part of the real axis from 1 to o and another along the negative part
of the real axis from 0 to oo. These values of z will always avoid the real value (1 — x)~2.

Now, whenever Z is a real number such that 0 << z < 1, after the change of variable xz/(1 — z) = y;
we get

A
) Zl—yjj1+€ oo x—}-rjl,r'1+e - w gy 1€
Zl—}.rJJ."1+egj{:Z:} — Z 0 j . dx = Z {l _ Z:}—};J;1+e[ lJ’+ duj
-z - U;
7 o 1+x - 5 0 i)
- Z Ty /1+ (1 —p//1+e)(1—z) Y/ = Z — (1 z) /e
: : — sin(myl/1+¢€)"
i j

by a well-known identity for the Gamma function [17,12.14]. Hence

l—yjl.n’l—f . :Z < '—].sz9’1+€ i
Z z 9;(2) (1-2) sin (/1 + €)

i i

holds throughout the slit disk I § (—1,0]. Both sides are defined almost everywhere on T, hence their
[**¢(T) norms make sense and

||Z QJ(Z) ||LJ.+£[-|I~:I= Z Zl—yf,f1+egj(z:}
J J

whenever £ < y/ < 1.

-Y gDl @2

L_'.+£{T:] 7]

Step 4. We now obtain an upper bound for the L'*(T)-norm of the remaining integral R in (10).
Note that R can be defined as analytic function in the plane minus a slit from 0 to <o along the negative
part of the real axis, so it also makes sense almost everywhere on T. It follows from the definition of
the operator norm and by (11), the triangle inequality, and (12) that
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| H llyyate_pase Z I(f; },;||HJ+€>- Z |5 ;) },J||LL+E > Z [ g; Npareery =l R llpsecp|

‘Z T e B v

hence

I H | > Z t IR Ve (13)
1+E_ prlte - - - :
S = sin (my7/1+€) ()l e

Minkowski's mequality in its integral form (see [4.8]). followed by a change of variable x — 1 = u;
and some simple estimates yields

1+e 1/1+e
2 — —vif1+e
IR llpavecpy = Ef f Z ool @

1/1+€

w1 rom v
— . dt dx
<\, 2 ire-pe
j
= X — . — X
A 2wty 11+ (x — 1)et|t+e
i
1/1
- —ylji+e L dt o
=j0 Z (1+u)™ EL — e du;
i

|1+ uyeit]

1/1+¢

jz . 1 J-Zﬁ Z dt 4
< — e U;
27 L 1+e 7
o \¢Mh & |1+ uet]
1/1+e
O asupee ([T )
U — e U
2z - ! 21 J, |'1+u-e"f|1+e ’
j ]
where £ was the number fixed in the first step of the proof.

. . 2 -1
An easy modification of a standard lemma: ifﬂ " X |1 + uje”| U9 gr = O(|u}. — 'l|‘€)

as U; —
]
1[4, p. 65], both from below and from above, justifies the convergence of the integral
. y 1/1+e
J-Q 1 J-Z:II Z dt
e d.

o \ 2 /g |1+ e |1+€ !

On the other hand, — f o Y 1 +we [t| Y9t <Y; (— 1) foru; > 2.0
1/1+
oo . . 1 2m df e (1 +H) gfl+e
[ Z (1+ u}-.}‘ff“f —j — s du; < f Z —dy;
2 < 2ty |1+ yyet| j
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This shows that || R [l 1+ is bounded by a constant independent of our choice of ¥’ € (g,1). Now
by (9) we get || R ||L'-+E{T)x||l:ﬂ:}y‘f”Hl+E — 0asy/ 7 1 and taking the limit in (13), we finally obtain

(8)-
Corollary 1. Let 0 < € < @, The norm of the Hilbert matrix as an operator acting on H'*€ equals

T

H He= —|T————————
WH llpsve e sin (/1 + €)

1.3. An Application to Hardy Inequality
For g; € L=(0,2m). let Hy, be the operator defined by (4), i.e.

oo

Hy fi(z) = Z i Z §,(2+36)f,(1 + 2¢) |z***

' W
=732

and Ag :H 1 — I* be the coefficient multiplier operator defined by
i

Ag fi=(f(1+€)g,(1+€))Zo
See [4, Chapter 6] for a detailed account of the theory of coefficient multipliers on Hardy spaces.

The author in [10], showed that if §,(1 + €) = 0 whenever € > 0, then the norm of the operator H 3

viewed as an [? operator (which is equivalent to being an H? operator) equals the norm of the
coefficient multiplier operator A g from H* to the space [* of absolutely summable sequences. This

is implicit in the proof of Theorem 1 in [10]. Thus,

Z |Z fj(ﬁ'l +26)g,(1+26)| < Z ||11’9,J_||H‘_4_HZ A f; g2, forevery f; € HY (14)
j j

1
=
The standard choice g;(t) = fe”(r —t),0 <t <21 vields as a corollary Hardy's classical
inequality (see [4, p. 48] or [8]):
1+ 2¢
Z Z If}(l—l-EjN s’;n‘Z I f; s, forevery f; € HY (15)
j

There is a slight improvement which is also sharp and can be found in [14, Theorem 5.3.7, p. 78]:

|f,(1 + 2¢)] ) L
Z Z 2}(1 o2 < HZ I f; Ngs, forevery f; €H (16)

E=—=

A=
This result can also be obtained from our Theorem 1 and (14) by choosing g,;(t) = TIBEQTJ. 0gt<
2m. Sinee || g; llo= 7. a straightforward caleulation shows that

: R O _ _ 1
4,(1+¢€)= —f Z 3_3[1+5)Sg}_{.f)df =—7F, €20
2m o Fi 2 +§
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and (16) follows. It is interesting to notice that the constant 7 is best possible in both inequalities (15)
and (16), even though this may look paradoxical at a first glance.

2, Hilbert Matrix as an Operator on Bergman Spaces

Let dA(z) = mYdxdy = m~1(1 — €)d(1 — €)dt denote the normalized Lebesgue area measure on
D, z=x+ yi = (1 — €)e’. Recall that the Bergman space A* is the set of all fy in H (D) for
which

y 1/1+€

I f; lgate= fmz |f;(2)|**<dA(z) < oo
J .

It is known that H'*¢ c A2(2*€) Actually, the functions in Bergman spaces exhibit a behavior
somewhat similar to that of the Hardy spaces functions but often a bit more complicated. For more
about these spaces, see [5] or [9].

2.1. The Hilbert Matrix Does Not Act On A?

It was shown in [2] that the Hilbert matrix operator is unbounded on A2. The situation is actually even
worse: there exists a funetion f; in A? such that not only H f; & A? but even the series defining H f;(0)

is divergent. Indeed, consider the function f; defined by

. 1
— = Sl+4e
(2) = Z} log(2+e)-

Then f; € A since || f; ||jz= Yo, (24 €) Mog™? (2 + €) < . However,

oo 1
HJ;(0) = ; (2+e)log (2+e)

2.2. An Integral Representation and Action on Smaller Bergman Spaces

It 1s well known that there exists a constant € = 0 such that

1+2
Z Z M (1+E)Z ||jG | ga+e
J J

for every f;(z) = E:j:_i X; jz;(l + 2€)z1*2¢ that belongs to AY*,0 < € < oo, This is a result of

2
[13]: a proof can also be found in [5, Theorem 3, §3.3]. Therefore, if f; belongs to A™¥¢,0 < € < oo,
and f;(z) = E:::_LE; }z}(:l + 2€)z1*2¢ then the power series
2

Hf;(z) = ezl Z Z ﬂa(ll—:i;) Zi+e

has bounded coefficients, hence its radius of convergence is = 1. In this way we obtain a well defined
analytic function Hf; on I for cach f; € A'*5,0 < € < 0. It actually turns out, as was proved in [2],
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that H maps A into itself in a bounded fashion whenever 0 < € < oo, In order to show this,
Diamantopoulos again used formula (2) in which the convergence of the integral is guaranteed by the
pointwise estimates on A€ functions and by the fact that 1/(1 — (1 — €)2) is a bounded function
of f; for each z € I (see [2]).

The following formula shows that the Hilbert matrix operator has a different integral representation
on the Bergman space. The representation below should be compared with our Theorem 1 for H1*¢
applied to the Hilbert matrix for the Hardy spaces in order to appreciate the difference between the
two situations.

Theorem 3 (see [19]). Let 0 < € < oo, Then the operator H can be written as follows:

v,)
Hj Z)_J‘ Z 1—w) f—wz) dA(wy) a7)

for any f; € A™*<.

Proof. Writing

(= e} oo
)= 2 2 el = D Y DI
Breae?” 0 T, : ’ l—wz -
E:_% Jo=0 e=-1

and recalling that

1 : F
| D7 w9 daqm) =lmJ dm=1+e
D 0,

ifm#+1+e¢

we see that

oo o j . = -
a
-3 (33 st o= 5 (53 3, psaon o
he e=—1 1; 3(1+e) =1 1 1+ZEJ = (1)
E=—2 E=—§ 0= .
oo oo . 15,_:]_—2{:‘ . 'L,E
Y Y e [ ey g = [ Y I daa
e=—1 15 pl—w DS (1 -w;(1—Wz)

E=—E
The interchange of integrals and sums 1s again easily justified by a geometric series argument.
It should be observed that the representing kernel lacks the usual "symmetry" in two variables.

2.3. Norm Estimates on Bergman Spaces

Our next result is analogous to Theorem 2. The key idea of the approach below is again the
observation that our functions [}‘})P j are "not far from being eigenvectors" of the Hilbert matrix H.
The proof below can also be adapted to the Hardy space case while the earlier proof of Theorem 2

with its typical "Hardy space flavor” cannot be made to work for A** spaces.

Theorem 4 (see [19]). Let 0 < € <C o0, Then the norm of the Hilbert matrix as an operator acting on
A*€ satisfies the lower estimate
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T

H 1 _
R sin (2m/1 + €)

Proof. We use the same function (fj)]ﬂ,- as in the proof of Theorem 2. Note that (f}-)y_f € A if and
only if 7 < 2; this is well known and will be quantified below. Applying H to (f})? ; and making
the change of variable w; = (1 — (1 —¢€))z)/(€), a direct computation shows that H(}j—)},j =

}”,-(]j-)yj_ where for every z in ) we define

. o dw;
i(z =j j__ 18
¢:ﬂ’{' ) 1 Z v.j(wj—z)i—rf;'ne (18)

Here 1s how the above formula should be understood. As (1 — €) traverses the interval [0,1), the
point w; runs along a ray L, from 1 to the point at infinity. This ray is contained entirely in the half-

plane to the right of the point 1 since

1—(1—¢€))Rez
Re w;, = ( ( )) =1

] €

It is also important to observe that the integration in (18) can always be performed over the ray [1, o)
L. . - 1-(1-€)z
of the positive real semi-axis instead of over L, = {———

:0 < € < 1}, since for any fixed zmn D
the integrals over the two paths coincide. This can be seen by a typical argument involving the Cauchy
integral theorem and integrating over the triangle with the vertices 1,(1 — (1 —€)z)/(€). and
Re(1—(1—€)z)/(€) and letting 1 — € — 1. Namely, writing z = x + yi, we sce that on the
vertical line segment S, from Re (1 —(1—€)z)/(e)=(1—(1—€)x)/(e) to (1 —(1—€)x —

(1 —€)yi)/(€) every point w; satisfies

1-(1-¢)z 1-e)(1—x 1-(1—e)x
T e EOY s C R S ST
€ € €
and the length of the segment S, is |Im 1_(15_€]zl = (1_?'}". Thus,
(1 -yl
f z dwy < ( Z |dvy - Z E
5. - W}(Wj — z)l—wl,-fue Js, - |w}-||wj- — Z|1_}’Jf'1+5 ; 1— (1E_ €)x ((l _ E)E(l _x})].—}-;,~'1+£

¥l

(1 -yl 1—(1—¢) \\T° o
l—(:l—E]xZ ((1_6}(1_)(:)) =0as(l—g) 71

By letting (1 — €) 7 1 it follows that

=]
f dw; :j dw;
Z: CTT S B N5 z: . — Yl—yif 1+
125 w; (W z)t-ri/its 1 S w;(w; z)tmriite

=

Knowing that in the definition (18) of the function (ﬁ; ; We can take w; to be a real number € > 0, it
is immediate that é:,.r belongs to the disk algebra whenever ¥/ < 2 since € > 0 now (the case y/ = 2
will also be useful to us although UJ)Z & AY°). Indeed, ¢;{J 1s clearly well defined as an
analytic function of z for all z€ D\ {1} as 1 —y//1+ € > 0. The inequality s — 1 < |5 — z|
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obviously holds for € > 1 and all z in D. hence the function ¢/, attains its maximum modulus at z =
¥

1 and

- dx
( )= J Z s(s — 1)1 s(s — 1)i-vi/iee J; Z;: (1+ x:)_:l—}";f'l—f - Z sin (Try:;r/l +€) <@

whenevery/ €< 2 < 1+e.

SetCpj = H (}j) J“ . By integrating in polar coordinates centered at z = 1 rather than at the origin,
¥l gate

one easily checks that

2Zcost

Gt = IZ |1 —z|¥ rdA(Z)—Zj f Z (1-e)'d(1- et
_Z 223_}:}[” 7 tde = Z 5T B{3—}’j 3/2) » oo

as ¥/ 7 2. Defining {91 (f}) J,fC}__; it is clear that H(g;) = (I):;j[:gj)},_f and the family of

functions “ (g5 },j(z)l ‘o< vl <2,z € ]D)} has all the properties of an approximate identity:

) ) 1+e
@ |Z; (9,2 =0
1+f
(b} J" Z_il |{gj ],J|
(e) |E} E:gj)yj{:ZNl_E = 0 on any compact subset of Il \ {1}, as yJ — 2.

Using the usual procedure of splitting the disk into two domains, D, = {z € I: |z — 1| < }and D \,
.. and estimating the difference

JDZ ‘H[Q;)y;(z)‘1+edA(z)—Z |¢;Ejl)|1+e
f Z (|¢ Z}l |¢*;(1)|1+€)|(:Qj)yj{:2)|1_ed.4(:z)

separately over each one of the two regions, we see that this difference tends to zero as y/ — 2

because the function {,ﬁij(z) is continuous on the compact set {(z,¥7) € Il x [0,2]} and is, hence,

uniformly continuous there. It is also uniformly bounded on I x [0,2], a fact used also in one of the

two estimates. This allows us to conclude that
Z ledl. = > e
J

3. W6, e,
1

" sin (erfl +€)

which gives the desired lower bound for the norm of H on A€,
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By combining Theorem 4 with the upper bound proved in [2] for 0 < € < o2, we get the following
consequence.

Corollary 2. Whenever 0 < € < o, the norm of the Hilbert matrix as an operator acting on 4**¢
equals

m

H e
WA llrearre= G (2m/1+€)

It should be remarked that the assumption € > 0 1s fundamental in obtaining the upper bound by
Diamantopoulos' method [2]. Let us now reeall his estimates when 0 < € < 2. One is as follows:

m
I HZ f; ||AJ.+EQ CH_._:WZ Il f} ||AJ.+5, for every f; € A1+E (19)
J ]
where C,,, — o0 as € 7 1. The other is:

T
H : 1+e/2+ 1) — : 20
I E fi lasse< (L4 €/2 + DU oo E I £ guve (20)
] J

whenever f; € A€ and f;(0) = 0 (again, 0 < € < 2). Although at the present time we are not able

to extend Corollary 2 to the entire range 0 < € < o, we do have a reasonable improvement of the
upper bound (19), and our result is also closer to the estimate for € = 0.

Theorem 5 (see [19]). Let 0 << € < 2. Then there exists an absolute constant (1 + €) independent of
(1+€),0 <€ < oo, such that

T
II HZ f} | jr+e<s (l + E}mz Il f? | g2+ for evr':l'yf:; g Al¥s
i J

Proof. Let f; € A*< be a function whose Taylor series is f;(z) = Z:D:_iji;{j'l + 2€)z1723, Write f; =
2

(fi)o + (fj)1. where (fj)q(2) = f:,(ﬂ) and (f;)1(2) = X0 X ; fj(:l + 2¢€)z1*2¢, Then. using (20).

we find that

i

1 T . 3 i |
Il see < A4 /24 DT —— i)l e €VEB—F7—— i)l aee (21)

From

»

- 0 F (0 1
BG@ = D, Y. L= Dog 11
J

e=—1

we obtain

= 101|108 -

alte j

A;+E

HY (e
i

. 1 . -
It is easy to see that C,, 1= "—log < C, < oo, From the area version of the mean-value
Z

-
1-= AL+E

equality £,(0) = [ %, f;(2)dA(z). we find that | £, 7,(0)| < X; Il f; ll ju+e. Thus,
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AL+e J

T
H Z (f})o Q C‘LZ ” f:f ”A.H—E't; Cq_mz ” f_} IIAJ.+E (22:1
J j

Since

2 G =1 (-(),)

using (21) and (22) we get

— m
[ HZ f} | jr+es (2\1‘3 + 64)mz I f; Il y1+e
7 7

< Z I f7 Il geet Z 1ol uve < zz I f; 1 4ave
i j J

AH—E AJ.-I-E

The exact computation of the norm of the Hilbert matrix as an operator on A'*¢ by the methods
employed here might be a more difficult problem than its Hardy space counterpart, perhaps because
the integral representation of H is more involved. The case 0 < € < 2 will require a further study.

3. Conclusion:

This study has successfully extended our understanding of the Hilbert matrix operator's
behavior in Hardy and Bergman spaces, building upon the foundational work of Diamantopoulos and
Siskakis. By adopting the innovative approach developed by Dostanic, Jevtic, and Vukotic, we have
not only confirmed the boundedness of the Hilbert matrix operator but also precisely determined its
norm across a wider range of functional spaces. Our research has demonstrated the applicability of
the Riesz projection technique, as established by Hollenbeck and Verbitsky, in analyzing Hankel
operators on Hardy spaces. This method has proven particularly effective in computing the exact
norm of the Hilbert matrix operator, providing a more precise characterization of its properties.
Furthermore, we have successfully extended these results to a broad spectrum of small Bergman

spaces, validating the norm determination of the Hilbert matrix operator in these contexts. This
extension significantly enhances our comprehension of the operator's behavior in both Hardy spaces
(H**¢) and Bergman spaces (A'"¢). The implications of our findings are far-reaching within the field
of functional analysis and operator theory. By providing exact values for operator norms in various
spaces, we have contributed to a more nuanced understanding of Hankel operators and their
applications. This research not only consolidates existing knowledge but also opens new avenues for
future investigations in related areas of mathematies. Qur study has successfully bridged gaps in the
existing literature, offering a more comprehensive and precise characterization of the Hilbert matrix
operator across a broader range of functional spaces. These results provide a solid foundation for
further research in this domain and may have potential applications in related fields of mathematical
analysis.
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