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Abstract
We show and investigated the little Zygmund spaces, following perfectly the way of [53] the
graduation steps of the boundedness and compactness of the weighted differentiation composition
operator Dg}.}ui assigned between the mixed-norm to Zygmund spaces are determined. Where given H(ID)

the space of all sequences of analytic functions on the unit disk D). ¢; € D and u; € H(D) be the

sequences of analytic self-maps.
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. INTRODUCTION

For D € C the finite complex plane, D the boundary ,N, and N the sets of nonnegative and
positive integers respectively.
0 = ¢; < 1, sequence of positive continuous functions are called normal if there exist positive numbers

(1+€),(1+26),e =0and L € [0,1). so that

@ilt)
(1_t2:]J.+E

P;(E)

(1—-tZ)n =0

decreases for 4 = ¢ < 1 and lim,_;- ¥';

and

Pjlt)
(1-¢2)=

¢jlt) _
(1-t2)%

increases for 4 < t < 1 and lim,_4- Zj

(see [28]).

For 0 < e <o and ¢;, let H(1+€),(1+ 2¢€),(¢;) denote the space of all sequences of analytic

functions fj on I so that

S 1 PR
Zj I f; ||1+e-4-¢_1-= Zj (jo MllJ:rZE(.f}a r) 1;_ . ?’d]“)

Where My..(f;, 1) are the integral means defined by
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1 2 1/1+e

) 1+e )

My, (fj1) = Z (g[ |5 ()| de) 0sT<L
I 0

For 0 =€ < o0, H(1 +€), (1 + 2¢), (¢;) with the norm I-llise1+2eq; 1s a Banach space. When 0 < € <

LI L, is a quasinorm on H(1 + €), (1 + 2€), (¢;), H(1 + €), (1 + 2€), (¢;) 1s a Fréchet space but not

a Banach space. If 0 = € < o, then H(1 + €), (1 + €), (¢;) 1s the Bergman-type space

o - iz
H(1+6€),(1+6),(8,) = {fj € H(_D_):f Z |jj(_z_)|’i_7'||z||)dl4(z) < oo}
D~

where dA(z) denotes the normalized Lebesgue area measure on the unit disk D such that A(D) = 1. So if
p;(r)=(1- T}‘“l:'f“'llf. then H(1+ €),(1 + €), (¢;) is the weighted Bergman space A}J'E(D) defined

for 0 < € < e and @ > —1, as the space of all functions f; € H(ID) so that

I Vit LZ @1 = [2]*)*dA(z) < o
J

(see. [5]). For £ denote the space of all functions f; € H(D) N C(D) so that

ml
hj

(oi(B+1)) 4 £ (gi(6=K)Y _ o f (g6
||,G-||;r=sup2_|ﬂ(e )+f;(8 )—2f;(e )|<
7

. —*
where the supremum is taken over all e” € OD and h; > 0. By the Zygmund theorem (see [3. Theorem

5.3] ) and the Closed Graph Theorem we see that f; € X if and only if
sup > (1= 12P)|f(2)] < o
xeD i

So that the following asymptotic relation holds:

Il f; I~ sup Z (1 zP|f;"(2). (1)
u;+D j

Therefore, A is called the Zygmund class. Since the quantities in (1) are semi norms (they do not

distinguish between funetions differing by a linear polynomial), it is natural to add to them the quantity

[f;(0)] + |£;(0)] to obtain two equivalent norms on the Zygmund class of functions. The Zygmund class

with such defined norm will be called the Zygmund space. Which again denoted by ||-]|,,.

For some information and operation on Zygmund-type spaces on the unit disc see [1,9,13,17,21,92], for

the case of the upper half-plane see [41]. and information of the unit ball see [20,21,45,50 — 52].

The little Zygmund space <A, was introduced by L. and Stevié in [13] in the following natural way:
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fyete= éﬁfiazj (1= 12D )] = 0

It 15 easy to see that J; is a closed subspace of # and the set of all polynomials is dense in #,.

For D = D* be the differentiation operator, that is, D f;i = fj Ifn € N, then the operator D™ is defined by

D°(; f;) =%, f;:D"Z; ) =Z; f™.f; € HD).

We denote the weighted differentiation composition operator by Dé.u}-- and defined as (see [44,48]) :

Y prf@ =Y 4@ @) f € HD)
1

i

where u; € H(D) and ¢; are a nonconstant holomorphic self-maps of . If n = 0, then D, becomes the

weighted composition operator U;C, 9 and defined by

2, HEF@) = ), @S (0,@). €D

which for u;(z) = 1. is reduced to the composition operator C or For weighted composition operators on
some H™ -type spaces, see [4, 9-11, 26, 29-31.43]. If n = 1,u;(z) = qb; (z), then Dcl.;}f = DCy,. which
was obtained in [6,8,12,22,24,27,424647]. If n= l,uj (z) =1, then D;’fu‘r_ =C.D, see [6,27]. If
n=1¢;(z) =2z then D7, = M,D, give the product of differentiation operator and multiplication
operator M,, defined by X, Mu)_fj = X; ;f;- Zhu in [48] completely characterized the boundedness and
compactness of linear operators which are obtained by taking products of differentiation, composition and
multiplication operators and which act from Bergman type spaces to Bers spaces. Stevié in [44] studied
the boundedness and compactness of the weighted differentiation composition operator D;‘.uj from mixed-
norm spaces to weighted-type spaces or the little weighted-type space. Zhu in [49] studied the
boundedness and compactness of the generalized weighted composition operator on weighted Bergman
spaces. Yang in [47] studied the boundedness and compactness of the operator Cp,D and DC,, from
Qu(1+€).,(1+2¢) to B, and B, spaces. Lin and Yu m [24] studied the boundedness and
compactness of the operator DC, between H™ to Zygmund spaces. Stevic in [32] studied the boundedness
and compactness of the generalized composition operator from mixed-norm space to the Bloch-type
space, the little Bloch-type space, the Zygmund space, and the little Zygmund space. For other products
of operators on spaces of holomorphic functions see [2,7,12,14 — 16,18,19,42,49,48]. For the products
of composition operator and integral-type operators, see [15,16,19,28,42]. By [24,92,44,48,49], we
consider the boundedness and compactness of the operators De,y,; from H(1 + €), (1 + 2¢),(¢;) to the

Zygmund space, and the little Zygmund space.
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C denotes a positive constant which may vary but it is independent of any variables. Two quantities 1 + €

and 1 + 2€ are said to be comparable, denoted by e = 0. if C™H(1 4+ €) = 1+ 2e < €(1 + €).

We study the boundedness and compactness of D{l+2.s.u}- = H(1+¢€),(1+2¢),(¢;) = L For the prove

we need the following lemmas.

Lemma 1([32]). Assume that 0 < € < o0, ¢; 1s normal and f; € H(1 + €), (1 + 2¢), (¢;). Then for each

n € Ny, there is a positive canstant C independent of f; such that

|ZJ_ ;7e)

By (see, [1] or Lemma 3 in [29]) we have.

(12D — |z[?)/tr2exn

- CZ I Nase) 2009, LeD
7 ¥;

Lemma 2. Assume that ¢; is an analylic self-map of D. Then Df”mj s H(1+e1+26¢;) = §is
compact if and only if D{i+25,uj : H(1+¢€,1+2¢,¢;) = f is bounded and for any bounded sequence
{f;}in H( compact subsets of ID as k — 0, we have X ||D;fsf}||x = 0ask - o,

The following lemma was proved in [19] similar to the corresponding lemma in [25].

Lemma 3. A closed set K in X, is compact if and only if K is boundnd and satisfies
limp-isupsex Y (1= [212)|f'(@)] = 0
j

Lemma 4([5]). For any real §, let

o de
J1+e(2) =L m’ zeD
Then we have
1 ifg <o,
Jr(z) » logﬁ’ iff =0, as|z] = 1~

1
—, if;f = 0,.
a-ps P

Lemma 5([28]).For f > —1landy > 1+ f av haur

1 (1 _ T.)s

—dr = C(1—-p)*F7,0<p<1.
0 (l—T'p)

Now we characterize the boundedness of DS :H(1 + ¢€), (1 + 2¢), ((,‘b jjl - x.
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Theorem 1 (see [53]). Assume that @; is an analytic self-map of D. Then D7, H(1+e€) (1+

2€), (¢;) — x 1s bounded if and anly if the following conditions are satisfied,

E:l — |z 2} u{! 7 -
supz_ | |22 ; ( )| T < (2)
SED Sl f ¢;(|¢J{Z:}|)(1 - |¢J{Z)|2)

1— 2 2 r i +us s
Y (12| >.|_uj(z)qoj t_z) ui(fﬂi+f;z}‘ . .
i ileiN(1 = 1¢;(2)7)”

zeD

and

(a-1P) @/ @] 0

sup 1
xeD f = o 4+3e
T 4ses@D(1 - gy (2))FE
Proof. Assume that conditions (2), (3) and (4) hold. Then, for every z€ D and f; e H(1+¢€),(1+

2€),(¢;). by Lemma 1 , we have

Y |- 0tees) @)

5 rr

= =P, |(4@57 (02))
= (- zP) ZJ_ (@5 (0,2) + 1@ @1 (0,2) ) |
a-120, [5@57 (e@)]|+ Q= 1221, (25@e'G)
@0, @) £ (0,2) + 4@ (07 @) £ (0@)
CZ- ( (1= [2]*)]y' (2)] 1 (5)
"\ (le,@D(1 - loy @)=
+ a- |Z|2)|2uj- (Z)@}'r(:z:} T U (Z)QDJ'H{:Z”) Il f} "1+€.1+25¢'i

#i(les@D - ley@ )=

. . ) 2
(=129 | (@) (¢, @) |
L, 1 fj hsenszeq,
" (0, @)1~ o, @)1P)F

On the other hand, we have

1A\

1A

Y @55 0= [ 505" (0,0)
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< |(0)] P
= 1 I f:p ”1—E,1+2€.¢J‘J ( )

7o, (lo,(0])(1 = 19;(0)]2) 52"

and
Zj |(Dz£,)'(0)] = Z} |05 (4;(0)) + 1 (0)0, ()£ (0,(0))|

< CZ ( ()]

(0@, (0
N |1;(0) ;' (0] ;HH) I £; lacg
¢,(|e;[)(1 - @ (0)]2)TF2="

Applying conditions (2), (3), and (4), we deduce that the operator D:“ H(1+€),(1+26),(¢;) 2 £1s

bounded.

On the other hand, suppose that D;.1+Ze,uj: H(1+€),(1+2€),(¢;) = Iis bounded. that is there exists a

constant € such that

HZ DIafi| = CZ_ I f; lisea-g;
] x 1

forall f; € H(1 +¢€),(1 + 2€),(¢;). For a fixedw € D, set

. (l _ 712 I+1
{fj)w(z) = Zj Llj

@;(Iwl)
(a+n+Dla+n+2) 2@+n+2)A1—|w]?) (1-|w|?)? g
( ala+ 1)(1 —wz)* B (e +1)(1—izz)t*e+rt  (1— ‘I%ZZ)""'*'z) ®)

where the constant 1 + 2¢ is from the definition of the normality of the function ¢; and @ = 1/1 + 2¢ +

2+ 2e.

A straightforward calculation shows that

[jf})xt] (z) = Z (1 —|w]?)** 2= (w)

j ®; (1w
Aitzea+2em _ 241426 142en (1 — [W[?) ©)
(a+n)(1—wz)**" (a+n+1)(1—wz)*n+t

(l - |'W|2)2_25(‘$v}ﬂ ‘41+ZE,1+26,H(1 _ |“_,|2j)2
¢;(lw) (@ +n+ 2)(1 — wz)a+n+z’
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(FII P (2) = Z {i'l—lw’lz)z”f(m”‘l( Apizerizen  2A1i2c102em |w|2))
j - (

j (’bj{lw-l) 1— ]I’Z)a"'”"'l (1 — W-Z)af+n+2 (10)
LY O Arssenl— o)’
¢;(lwl) (1 —wz)mm*s
) . (l _ |“}|2)2+25(ﬁ)n—2
(Fw(2) =
¢;(lwl)
(@+n+ DA oc142em _ 2@+ n+ 24100142001 = [W[?) 11
(j_ — ﬁyz)rr+n+2 (1 — Wz)a+n+3 ( )
N (1= w?)?*2e(W)™2 (@ + n + 3)A1126142en(1 — [W[?)?
j @;(Iwl) (1 —wz)wm+s
By Lemma 4 , we have
(1 w]2y2*
wl 2e (f; }w Z 4 24+2e"
@;(Iwh(1 —rlw])
As ¢; 1s normal and by applying Lemma 5 , we obtain (see [32,44])
SUPywen ”(f}:)w"1+€.l+25.¢j = (12)

where Ag 1426 = (@ +2) - (@ + 1+ 2). From (9), (10) and (11), we have

- 81—2€.l+2511(]’¥’)n + AP
(I w) = . P Pw)y =Y ([HEPw) =o, (13)
J Zj @;(Iwh(1 — |w|2)Teze™" ZJ ’ Z;‘ !

Ai+zca+zen  2Ai+ze1+z6n Ai+ae1426n

where By oc112em = . Henee,

a+n a+n+l a+n+2

=X = [ 00,000

;I.u‘r—(:f})cp}(wl i

n n 14
'y [BrezeseaealCt ~ WO llp0e) )
i o)L — |p(w)[?)H/r+zern
From (14) we have
sup |Bis2es2en|(1 |W|2)|u "w)|
. 1/1+2e+n
lejom)|=2 =7 (1@ (wWID(1 — |@;(w)[2)”
) n |Bl—2€.1+25.11|(1 - |M'T|2)|u;(w)||(Pj(w}|n
= Sllp 12 Z X “r. 2 1/1+2e+n
lg;(w)l>7 7 (e wD(1 = |o;(w)?)
=C<owm (15)

Since f;(z) = E H(1+ €),(1+ 2¢, ¢;) it follows that
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2 {1_|z|2)|“”{2}|_HZ Dhfi] =X IPEul 15 hseaszaa =€ (16)
7 J

From this and the fact ¢; is normal we obtain

(1= 1z (2) _ N
SU]J . . | j |1J."1+2E+}1 = C Sllp Z R {1 - |z|2)|u}'(_z_)| 1?
e ¢;(lo;(2)D(1—o;(2)]?) lojlsy (17)
=C<w

From (15) and (17) it follows that (2) holds. For a fixed w € I, set

I G 1
(gi)w(z) = Zj W

18
(@+n)(a+n+2) (2a+2n+3)A—|w?) (1-|w]?)? (18)
ala+ 1)(1 —wz)*> (a+1)(1—wz)e+t (1—wz)e+2
It is easy to see that
(n) (1= WP (W)™ (@ +n+2)Crizens2em
w i &;(lwl) (I—wz)*™
{29' +2n 4 3)Cre2e142en (1 — |W[?)
(1 —M,Z)““Hl
Z (1 - |“‘| )2+ZE )n (LT+T1+ 1)£1+2€1+2€n(1 lez)z (19)
(l'f'j IWI) (.l _ wz)rr+u+2 !
(0" ) = Z (1 — [w)**22 )™ (@ + )@ + n + 2)Ciizenszen
95\ - ¢, _|u.|) (1 — wz)a+rn+l
3 Z (1w )" (@ + n+ 1)(2a + 2n + 3)Crize142en(1 — [W[P)
j ¢;(Iw)) (1 —wz)ans+2
Z (1= |w|?)>2e(w)™* (@ +n+ D@ + 1+ 2)Crigc142ea(1 = [W]?)? (20)
¢;(lwl) (1 —wz)a+n+3 ’
(9952 (2)
_ Z (1—|w|H)F2Ew) " 2 (a+n)a+n+1)(a+n+2)C rc142en
@;(lwl) (1 —wz)*¥+u?
{1 |W 2)2+2€(w)n+2
Z ¢'_; (w)
(a +n+D(a+n+2)2a+2n+3)Crize102em(1— |W|?) (21)

(1 _Mf )t‘+n+3
{1 _ |M’|2)2+ZE(H’)H+2
)
(@+n+D(a+n+2)(a+n+3)Cous2en(l— [w]?)?

(1 — H—;z)r—n+4

X
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By Lemmas 4 and 5, we get (see [32,44])

reeyey =€ (22)

sup > [1(g;).ll
J

ujxeD

where Cpj142en = (@ + 2) -+ (@ + n). From (19) — (21), we have

D —antl .
(0P = Z e @)W w) = ()" (w) = 0. (23)
T (IwD(1 — [w[?)2+2en

where Diyscin=(a+n+2)2a+2n+1)—(a+n+1)2a+2n+3))Ciio:142en

Hence

¢ =Y P =zl 2. @00, 00 + 000,00 D)5 (2,00)|

_ Z |14 26142en | (1 = W) |20 (W)@ (W) + 1 (W), (W)l (w) " (249)
5

T tn+l

;(lo;w))(1 = g (w)|2) 722

From (24) we have that

SUP|£x) >4Z - |“’|2)|2uj(w)<oj’(w) + uj(llrjv’z)fzizﬁwﬂ
| ¢;(lo; W) (1 ~ lo;(w)[2)”

(1 — [w|P|2uj(w)e;" (W) +u;(w)e;" (w) | gaj-(w)|ﬂ+l -

1 _ =C < oo, (25)
8;(Jo; W) (1 = g (wy )72 ™!

< n+1
< sup ﬂw“% Zj 2

n+i
Since fj(z) = ﬁ € H(1+ ¢€), (1 + 2¢), (¢;) it follows from (16) that

D A= wPl2g ey ) + ww)ey )] < A= W) D (w)e;w)]
] ]

+ 2, 15l = ¢ (26)

Using (26) and the fact ¢; is normal we

(1= wIH)|2u;(w)e; (W) + 1w (w)e;” (w)]
sup (p}-(z]\hzz, (en 1 _ ) 2 1/2+2e+n
7 ¢l w)D(1 = lg;w)[?)

< D (1= W20, ) + 1y, )| < C <en (27)

Combining (25) with (27) we get (3), as desired.

Next, we prove that (4). To see this, for a fixed w € I, put

. B {1 _ Iw|2)2+2£
(@ = D, =5

(a+n)(a+n+1) 2a+n+D(1—|w? (1-|w]*?
(fr(r;r +1(1—-wa)*  (a+D(1—wz)*1 | (1—w, )2

)- (28)

It is easy to see that

(1 _ |W|2)2_25(ﬁ')n

(n) —
U (=2, ¢; (1w
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( Eltre142en _ 2E i2e142em(1— |W|2) Eii2e1+2em(l— |W|2Z)2)

(1 —wg)a+n (1 —wz)atn+l (1— wz)atn+2
(h){n_l](z) _ z {l —_ |M?|2)2+2E(1I,)n+1 (29)
o j b, (1w
(@ +n)Eii2e142em _ 2a+n+ 1)Eo0142.n(1— |W|2)
(1 —wz)a+n+l (1 — wz)a+n+2

(1= |w|?)>2 (W)™ (@ + n + 2)Ersze102en(1 — [W]*)?
j ¢;(|W|) (1 — Wz)x+n+3 .
IaslOEDY (1= W2)2250)™2 (@ + 1) (@ + 1+ 1)Bysne rsaen
o i ¢'qu|) (1 — wz)a+n+2

(30)

_Z (1- |‘f“”|2:}2+2e{:ﬂ’)n+2 2@+n+1)(@a+n+2)Ej o 1i0:0(1— |W|2)
i ¢;(lw) (1 —wz)a+n+3

Z (1= w|H)P2E)" 2 (a+n+2)(@+n+3)Ere142en(1— |w]|?)? .
j &;(lwl) (1 —wz)ern+4 (31)
and (see [32,44])

SR D Nl o, = € (32)

where Eyy5c120en = (@ +2) - (@ + 1+ 1). From (29)-(31), we get

)n+2

()P (w) = ()" P (w) =0, (33)

uj

(h_')(n—Z)(w) _ Z F1+2€,1—26.}1(]’E
7/ i -

. - , —1 !
J ¢, (IwD(1 = |w|?)Teze""*2

whetre Fiiocq10en = —2(@ + 1+ 1)E} 50 1400n Hence,

.. . 2 L ne
C 2 [Y DBy e = =W 50 (o)) @5 (050)|
] I
|F [(1—w|?) u-['w')( I(w) 1 ow " (34)
Z 1+251+2emn| M LMY (Pj W ) ” @;(_“_}
vy _ [
! o5 (|@;w)[)(1 = |@;(w)|?) 22
From this we have that

g 2" ' 32
(1= wI?) [, (w) (@, (W)

sup. ) .
|4°J'(“.r')|3’§ 1 ¢j(|q)j{jwj|)(1 — |¢Jj [:w:}lz)l—ze

+n+2
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_ 2 n+2 35
(1= ) |y ) (0,0 ) 1 9y ) (5]
< sup 2n+2 T
L1 i —tn+2
leselz ™ ¢;(|o;0))(1 — lg; (W) )T
< (< oo
Since f,(z) = {::‘";! € H(1+€), (1 + 2€),($,), by (16) and (26) we have
. , 21 1 " . .
(1- '“"Z)Zj i) (0 )| = 52 - '“"”Zj [y (W) (o5 (w))?|
+ Z}_ (1= W) |y (w)g, ()
+ w-(we" (W) |l @;(w) |+ I DR F
Z}, W), (W) | 9 (w) Z}, AT -

1 , _
< EZJ (1 — [wi?)u) (w)| + Z} (1 - i) | 20w, (w)
+Z}_ w(w)g;" (W) | +Z}_ ||D$J_’uj}‘}||z =C.
Using (36) and the fact ¢; 1s normal we obtain

(1~ i) i w) (0 (w))’

Sup 1 i 1
les@l=x™7 ¢, (|0, W) (1 = I, (W)I?) >
2

=C sup (1— |w|?) lu;(w) (@, (w)
Z” p w1 |u; (qo,, ) |

4.1
wﬂx”<§

+n+2

(37)

=C<ow
From (35) and (37) it follows that (4) holds, finishing the proof of the theorem.

Theorem 2 (see [S3]). Assume that ¢; is an analytic self-map of D). Then D:;J-,uj: H(1+¢€),(1+

2€), (¢;) = * is compact if and only if D;;.u;-: H(1+¢€), (14 2¢),(¢;) = 7 1s bounded, and

L s
T Y o R L )
@1y (o, (2D (1 - |9 (2)12)

iy 3, 8/ e/ 0]
oGty g (o (2D (1 - |9 (2)]?)

0 (39)

and

(1~ 121 |u(2)(0)' ()"
hnl l} | |j- )(@j -32+LE+H =0 (40)
YIS ¢ (e (D)1~ 19,(2)]?)”
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Proof. Assume that Dg . :H(1+€),(1+ 2€),(¢;) — 7 1s bounded and that conditions (38), (39) and

(40) hold. For any bounded sequence {(f;)k} mn H(1+€),(1+ 2€),(¢;) with (fj); — 0 uniformly on

compact subsets of ID. To establish the assertion, it suffices, in view of Lemma 2 | to show that

||Zj ngll:f,r)kH =0 ask — oo,
I

We assume that "EJ (ﬂ')k”1—5,1+2e,¢j < 1. From (38) — (40) given € > 0, there exists a & € (0,1),

when & < |¢@;(2)] < 1, we have

n+1

(1-|z]» ( |u}’(z)| |2u (D)o, (2) + 1y (z)qo}”{z)|
1 le @D\ g (1= gy @ )T

5@ (o/@) ] Y

n+2

1 .
(1 - lg;(2)[2)r+2e
From the boundedness of D{}}j.uj: H(1+e€),(1+ 2¢),(¢;) = £ by Theorem 1 , we see that (2)-(4) hold.

. 1;
Since Y; (f;)x — 0 uniformly on compact subsets of D, Cauchy's estimate gives that (Jﬁ,)mzl (f; (n+1)

and {f})k 2 converges to 0 uniformly on compact subsets of I, there exists a Ky € N such that k > K

implies that
Z_\u{omﬁ (o, 00| + Z\u o}(m(“>(<pjtio))|+zj |y (0, (@) (7)™ (,(0))
+ SUDjg oy az (1- |z (2 () 3'(<pj(zn|+sup@tznszj (1= 1217 | (2w(2)0;'(2)
+Z (2)¢;"'( z)) m“*”@o}{zmz w@ (o) @) WP @@ 1< ce  (42)

From (41) and (42) we have

2., 125,50
Z (0, @]+ 3. [(23,400:) ©)

Fsupeep ) (1= 12| (05,0 (i) @)
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| (0) (™ (0,00 + Z} [ (@) (£ (¢, (00| + ZJ_ |1, (0)0, () ()T (@, (0)]

+sup.ep ) (1= 221/ @@, (2)] +supeep ). (1= 12
I J

| (2u(2)9;'(2)
+1(2)0;" () DT (0;(2) + w2 (0 () (I (0;(2)) |
<), WO+ 3, [5OE)@,0)

+ 2, [0 @0

+SUP iz ). (1= |21%)
i

| (2ul(2)p,'(2) + 1, (2)e;" () (i (0;(2)

u'(2)(F)5 (0,(2)| + 311P|<pj(z)|sazj (1—z*)

+1,(2) (0, () ()T (0, (2)

| +SUPscig i<t ZJ_ (1 = 12|y @) FIE (@3] + suPscppeaeiaiar (1 = 1217)
| (2u)(2)e,' (2) + 145 (2)9;" (D) (I (@;(2) + 1,2 (@) () (DT (@,(2) |

< Ce+ Csup5<|1+2e(z]|<1z (1-z®)
j

W' (2) (5 (@2 + CsuPsaig s Y. (1= 122)
]

(n+1)

| (2w (2)@; () + w(2)e;" (2)) (e (@5(2) + “j(z)(%'F(Z))z(ﬁ)gcmz)(@j(zj) |
(1-z%) ( |y’ (@)
; (e (2D (1- |(p}_(z)|2)1f1+ze+n
. |2u}f(z)(pj'(z) + u‘;gii’];@)l . |uj(Z) (‘Pj'(ia)jﬁn < 2ce,
(1-lo;(2)?) (1-le;)P)

< Ce+ CSUP5c|1+2e(szI<1

when k > K. It follows that the operator Dy u;: H(1 +€), (1 + 2€), (¢;) = I£ is compact. Conversely.
assume that Dg o, H(1 + €), (1 + 2€), (¢;) — Z is compact. Then it 1s clear that Dy, ;s H(1 +€), (1 +

2€), (¢;) — * is bounded. Let {z;} be a sequence in D such that }; |(pj(zk:1| — 1as k - oo, We can use

the test funetions

2 FR@ =), Deyen(@. (43)

From (12) and (13) we have

[Fi
[

sup
keN

2,

1+el+2e¢;
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and

3, 0 (o) - 3, s 88 o 5 o)

T (lo; ) (1= |0z

- Z FI? (9;z0) = 0

For |z| = 1 < 1, using the fact that ¢; is normal, we have

‘Z{mm)

: : - T c T : n
that 1s, (f;) converges to 0 uniformly on compact subsets of I, using the compactness of Dg;u;

?«}1;2+2er (1 - |¢7;‘(Zk)|) = 0(ask — )

CH(1+
€),(1+ 2¢),(¢;) — I we obtain

Byssenszen|(1— 23| (z)||o; (20|
Z. | 1+2£l+26‘?’1| k | j 2k 1|J1+}25+kn| < Z "D{p_;u_;(f,r)knf ~0 ask — o,
T ¢5(l0s@)) (1= lo; @)

From this, and }; |{p j(zk:}l — 1, it follows that

(1 — |zx|®) | (z) |
i [(1 = [z *)]w;' (zx) —o

= g (o) (1= Loyl

and consequently (38) holds.

In order to prove (39), choose
@@ =D (9 gy @ (44)
j
It follows from (22) and (23) that

up 2, N0z, = €

and

)n+1

Z (gj g{" 1) ((Pj(zk)] _ Z | D1+Ze,1—2€.n((§)}(.zk) -
/ wwﬂmn (1= loytw]

Z}- (:gf k (PJ‘(ZR) Z (91 @J(Zk)] =0

)1,"2+25+11
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and (g;)x converges to 0 uniformly on compact subsets of I. The compactness of Dyt H(1 + €), (1 +

2€), (¢;) — 7 mplies that

fim D 198 (0il, = 0

n+1

Disaeavaen (20 (2)0) (21) + 15 (z)0s" (22) ) (9, (1))

It follows that
+1/24+2e+n

1 —lzl®
Zj ¢;(I¢;(ﬁzk)|)(1 - |(Pj(zk:)|2) (45)

= Z Clng_pu_j(gj)k”J —-0ask—
J

Z; |fP_;(Zk)| — 1 implies that

(1 = |ze®)|2uj(z) @' (zi) + w2 @, " (21| 0
i ) 1/2+2e+n -
T ¢i(les(z0]) (1 - |ij(21<)|2)

lim

k—co

(39) holds. (40) can be proved in a similar manner by choosing the test function

(h)a(2) =X; (M) gz (2)
The following result is proved similar to Theorem in [32], hence we omit it.

Theorem 3. Assume that ¢; is an analytic self-map of D). Then D&.—.u; H(1+€).(1+2€),(¢;) = Tpis

bounded if and only if D;}.Juj: H(1+ €),(1+ 2¢),(¢;) — X is bounded,

lim Z (1-|z1)u ()] =0, (46)
lim (1-— |z|2:)|2u}{'zj(pj’(z) +u(2)p;" ()| =0 (47)
lz|—1 J ) T
and
. : 2
lm > (=12 [y (2) (o) ()| = 0 (48)
!
In the next theorem, we characterize the compactness of D;}j,u}: H(1+e€),(1+26),(¢;) = T

Theorem 4 (see [S3]). Assume that @; is an analytic self-map of D). Then DSJ-,uJ-:H(l +e)(1+

2€), (¢;) = Jg is compact if and only if
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1—|z|%)|u
llm Z . ( |Z| }|u‘i (Z)|1.-'1+26+n =0 (49)
=15 6 (19;(2)D (1 = l@(2)2)”
lim Z (1- |_z|2)|2.u;(jzj)<pj'{jz)_ + ujgi)i}jlz)| o o)
=1 ¢ (o, (2D (1 - les(2)]?)”
and
: (1-z1?) |uj(z)(qoj’(z))2|
|£'|13»112 =0 (51)

)1;‘3+ 2e+n

7 ¢:(19;(2D(1 — s (22

Proof. Assume that conditions (49) — (51) hold. Then it is clear that (2)-(4) hold. Hence ng,uj: H(1+
€), (1 + 2€),(¢;) — I is bounded by theorem 1 . From inequality (5) we see that Dg . f; € Jo for cach
fi € H(1 +€),(1 + 2€),(¢;). it follows that Dy, H(1 +€),(1 + 2€),(¢;) = Jo 1s bounded. Taking
the supremum in inequality (5) over all f; € H(1 + €), (1 + 2¢),(¢;) such that | X; f; l1+e142e9,< 1

and letting |z| — 1, yields

lim sup :12; (1—1z1%» |(D$;,nfﬁ)” {:2)| o

lzl—+1 ||,f'1;+s,1+zs.¢n‘r-‘

Hence, by Lemma 3 we see that the operator D;Puj: H(1+€),(1+ 2¢),(¢;) = Ty is compact.
Now assume that Dgoujt H(1+€),(1+ 2¢),(¢;) = Jg is compact. Then DG, H(1+€e), (14 2e),

(¢;) = Jo 1s bounded, and by taking the function f;(z) = z" it follows that
llznillzj (1 - |2 (2)] = 0 (52)
By taking the function fj(z) = z"**, we have
i Y (1= [z (9, + 2@y @ + (e, @] =0 (53)
from (52), (53). and the fact that | X; ¢@; o= 1, we get
lm ) (1= 2P () + (29" ()] = 0 (54)
By taking the function f;(z) = z"*2, from (52), (54) and the fact that || 2; @ o= 1, we have

lim, ), (=12 [y @) (e @) | =0 (55)

|z]—=1
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By (14), (24), (34), and observe that D;;,lt:f})qoj-[w]r D;Pu_j(gj)q,j[wj, D;_I.Juj(hj)%{w) € J, we know that

'1 _ 2 s
.lim Z , [. 2 )luJ (-Z-}| 1/l+2e+n 0 (56)
lej(z)l-1 4 ¢j[.|(f-’j(z)|)(l _ |<Pj(z)|2)
lim (1= 2132y ()¢, (2) + v (2)9," ()] (57)

i@ g (1p,@N (1 - @)

and

1— 2 o i 2
. (1129 |y (2 (0, ()| L, )

les@I=1 ) g (19 (2))(1 = g (2)[2)

We prove that (52) and (56) imply (49). The proof of (50) and (51) 1s similar, hence 1t will be omitted.

From (56), it follows that for every € > 0, there exists § € (0,1) such that

Z Sl :)|uj (Z:)| Tiezeen - € (59)
7 ¢;(l9;D(L — 1o (2)12)

when § < X; |@;(2z)| < 1. Using (52) we see that there exists T € (0,1) such that

1
2., A-lEP @l <t ) 6,00 - (60)

when 7 < |z] < 1.

Therefore, when 7 < |z| < land § < }; [¢@;(2)| < 1, by (59) we have

Z [1 - |Z| }|uj (Z)| 1/1+2e+n <€ (61)
7 ¢5(1e;(@D(1 = le;(2)1?)

On the other hand, when 7 < [z| < 1 and |@;(2)| = &, by (60) we obtain

5 (1~ 12y @) D 21|y (2)]
=

i 4,10, @D~ l0,@P) L e g,y - oy

t=[0,1+2¢€]

<€ (62)

From (61) and (62), we obtain (49), as desired. The proof is completed.
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