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I. Introduction and Preliminaries : 
The metric fixed theory is most demanded and interesting in solving many problems in area of research 

in mathematics.It has wide applications in many field of science. In 1922, Banach [3] introduced 

BanachContraction Principle that is “A self-mapping in a complete metric space satisfying the contraction 

conditions has a unique fixed point.”In state of complete metric space, fixed point theory is an important part to 

prove many results. Many authors defined several metric spaces and several contractions. Among all these 

metric spaces and contraction, generalized contraction has many applications in fixed point theory. The concept 

of simulation function and 𝑍 −contraction was given by Khojasteh[5]. The notion of 𝑅 −function and its best 

proximity points was given by Aslanta M. et al.,In this paper we obtain fixed point results for generalized-

contraction using 𝑃 −property and generalized 𝑃 −property. 

In 1906, Maurice Frechet introduced concept of metric space. 

Definition 1.1:Let 𝑋 be a non-empty set. A metric on 𝑋 is a distance function 𝑑 ∶ 𝑋 × 𝑋 →ℝsatisfying the 

following: 

1. 𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑦) = 0 iff  𝑥 = 𝑦; 

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥); 
3. 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧), for all𝑥, 𝑦, 𝑧 ∈ 𝑋 . 
The pair (𝑋, 𝑑) is called a metric space. 

Definition1.2:A sequence {𝑥𝑛} in metric space (𝑋, 𝑑) is 

(i) A Cauchy sequence if for every 𝜀 > 0 ,  there is 𝑁 ∈ ℕ such that for all𝑛,𝑚 ≥ 𝑁, 𝑑(𝑥𝑛 , 𝑥𝑚)  < 𝜀 . 

(ii) Convergent to 𝑥 𝜖 𝑋  such that for every 𝜀 > 0, there is 𝑁 ∈ ℕ such that for all 𝑚 ≥ 𝑁, 𝑑 (𝑥𝑚 , 𝑥 )  <
 𝜀. 
Definition1.3:A metric space (𝑋, 𝑑) is said to be complete if every Cauchy sequence is convergent in  𝑋. 

Khojasteh [5] gave concept of simulation function and Z-contractions.so we give definition of Z-contraction and 

a theorem based on it. 

Definition 1.4:Let 𝑓 ∶  [0,∞] × [0,∞] → 𝑅 be a function. If 𝑓 satisfies the following condition, then it is called 

simulation function: 

(1) 𝑓(0,0) = 0, 

(2) 𝑓(𝑝, 𝑞) < (𝑞 − 𝑝)for all 𝑞, 𝑝 > 0. 

(3) If {𝑝𝑛}, {𝑞𝑛} ⊆ (0,∞) are sequences satisfying  

lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑞𝑛 > 0, then 

lim
𝑛→∞

sup 𝑓( 𝑝𝑛 , 𝑞𝑛) < 0. 
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Result 1: Let 𝑇: 𝑋 → 𝑋 be a mapping on a complete metric space(𝑋, 𝑑) and 𝑓 ∶  [0,∞] × [0,∞] → 𝑅 be a 

simulation function. If the mapping 𝑇is a Z-contraction w.r.t.𝑓satisfying𝑓(𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦)) ≥ 0 for each 

𝑥, 𝑦 ∈ 𝑋, then 𝑇 has a unique fixed point u in 𝑋.Also the picard sequence {𝑇𝑛𝑥} for any initial point 𝑥 ∈ 𝑋 

converges to u. 

Since every 𝑍-contraction in sense of Roldan-Lopez-de-Hierro et al. is a Meir-Keeler contraction then Roldan-

Lopez-de-Hierro et al.,[9] introduced R-functions and R-contractions. 

Definition 1.5:Let 𝜙 ≠ 𝐴 ⊆ 𝑅. If a function 𝑓: 𝐴 × 𝐴 → 𝑅 satisfies the following conditions then it is called 𝑅-

function on 𝐴: 

(1) If {𝑝𝑛} ⊆ (0,∞) ∩ 𝐴 is a sequence satisfying 𝑓(𝑝𝑛, 𝑝𝑛+1) > 0 for all 𝑛 ∈ 𝑁 ∪ {0}, then we have 𝑝𝑛 →
0. 

(2) If {𝑝𝑛}, {𝑞𝑛} ⊆ (0,∞) ∩ 𝐴 are sequences satisfying lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑞𝑛 = 𝐿 ≥ 0,𝐿 < 𝑝𝑛 and satisfying 

and 𝑓(𝑝𝑛 , 𝑞𝑛) > 0 for each 𝑛 ∈ 𝑁,then we have 𝐿 = 0. 

(3) If {𝑝𝑛}, {𝑞𝑛} ⊆ (0,∞) ∩ 𝐴 are sequences satisfying 𝑓(𝑝𝑛 , 𝑞𝑛) > 0 for each 𝑛 ∈ 𝑁 and 𝑞𝑛 → 0 as 𝑛 →
∞, then we get 𝑝𝑛 → 0. 

Definition 1.6: Let𝑇:𝑋 → 𝑋 be a mapping on a metric space (𝑋, 𝑑).If there is an 𝑅-function 𝑓 on 𝐴 satisfying 

ran(d, X) = {𝑑(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑋}⊆A and 𝑓(𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦)) > 0 for each 𝑥, 𝑦 ∈ 𝐴with 𝑥 ≠ 𝑦, then 𝑇 is called 

an 𝑅-contraction with respect to 𝑓. 

Definition 1.7: Let𝑇:𝑋 → 𝑋 be a mapping on a metric space (𝑋, 𝑑).If there is a function 𝑓 on 𝐴 satisfying 

ran(d, X) = {𝑑(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑋}⊆A and 𝑓(𝑑(𝑇𝑥, 𝑇𝑦),𝑚(𝑥, 𝑦)) > 0 where 𝑚(𝑥, 𝑦) =

max {𝑑(𝑥, 𝑦),
𝑑(𝑥,𝑇𝑥)

1+𝑑(𝑥,𝑇𝑥)
,
𝑑(𝑦,𝑇𝑦)

1+𝑑(𝑦,𝑇𝑦)
,
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
}, for each 𝑥, 𝑦 ∈ 𝑋with 𝑥 ≠ 𝑦, then 𝑇 is called ageneralized 

contraction with respect to 𝑓. 

Definition 1.8[1]: Let 𝜙 ≠ 𝑃, 𝑄 be subsets of metric space (𝑋, 𝑑).Then the pair (𝑃, 𝑄) is said to have a𝑃-

property if it satisfies: 

𝑑(𝑥1, 𝑦1) = 𝑑(𝑃, 𝑄) 
𝑑(𝑥2, 𝑦2) = 𝑑(𝑃, 𝑄) 

gives𝑑(𝑥1, 𝑥2) = 𝑑(𝑦1, 𝑦2) for all 𝑥1, 𝑥2 ∈ 𝑃 and 𝑦1, 𝑦2 ∈ 𝑄. 

Definition 1.9: Let 𝜙 ≠ 𝑃, 𝑄 be subsets of metric space (𝑋, 𝑑).Then the pair (𝑃, 𝑄) is said to have a generalized 

𝑃-property if it satisfies: 𝑑(𝑥1, 𝑦1) = 𝑑(𝑃, 𝑄) 𝑑(𝑥2, 𝑦2) = 𝑑(𝑃, 𝑄)gives 𝑑(𝑥1, 𝑥2) = 𝑑(𝑦1, 𝑦2) for all 𝑥1 ≠ 𝑥2 ∈
𝑃and 𝑦1, 𝑦2 ∈ 𝑄.  

Definition 1.10: Let 𝜙 ≠ 𝑃, 𝑄 be subsets of metric space (𝑋, 𝑑) and 𝑇: 𝑃 → 𝑄 be a mapping. A  

point𝑥 ∈ 𝑃 is said to be a best proximity point of 𝑇 if 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝑃, 𝑄). It is fixed point of 𝑇if 𝑃 = 𝑄 = 𝑋. 

 

II. Main Results: 

In this section, we prove some common fixed point theorems using generalized contractions in complete metric 

space using some properties. We find the existence of a best proximity point with help of our results and 

definitions. 

Theorem 2.1: Let 𝑇: 𝑃 → 𝑄 be a mapping on a complete metric space (𝑋, 𝑑) and 𝑃 and 𝑄 are closed subsets of 

𝑋. Assume that 𝑃0 ≠ 𝜙,𝑇(𝑃0) ⊂ 𝑄0 where 𝑃0 = {𝑥 ∈ 𝑃: 𝑑(𝑥, 𝑦) = 𝑑(𝑃, 𝑄) for some 𝑦 ∈ 𝑄} and 𝑄0 = {𝑦 ∈
𝑄: 𝑑(𝑥, 𝑦) = 𝑑(𝑃, 𝑄) for some 𝑥 ∈ 𝑃}. Also pair (𝑃, 𝑄) has the generalized 𝑃-property. Suppose that 𝑇 is a 

generalized contractions with respect to 𝑓. If one of the following condition is satisfied: 

(1). 𝑇 is continuous, 

(2). The function 𝑓 satisfy the following property 

If {𝑝𝑛}, {𝑞𝑛} ⊆ (0,∞) ∩ 𝐴 are sequences satisfying  𝑓(𝑝𝑛, 𝑞𝑛) > 0 for each 𝑛 ∈ 𝑁 and 𝑞𝑛 → 0 as 𝑛 → ∞, then 

we get 𝑝𝑛 → 0. Then 𝑇 has a unique best proximity point in 𝑃. 

Proof: Let 𝑥0 ∈ 𝑃0 be any arbitrary point. Since 𝑇𝑥0 ∈ 𝑇𝑃0 ⊆ 𝑄0, there exists 𝑥1 ∈ 𝑃0 satisfying𝑑(𝑥1, 𝑇𝑥0) =
𝑑(𝑃, 𝑄). 
Also, since 𝑇𝑥1 ∈ 𝑇(𝑃0) ⊆ 𝑄0, there exists𝑥2 ∈ 𝑃0 satisfying 𝑑(𝑥2, 𝑇𝑥1) = 𝑑(𝑃, 𝑄). 
In this way, we can have a sequence {𝑥𝑛} in 𝑃0 such that 

𝑑(𝑥𝑛+1, 𝑇𝑥𝑛) = 𝑑(𝑃, 𝑄)                                                                                                         (1.1) 

For all 𝑛 ∈ 𝑁 ∪ {0}. 

If 𝑥𝑛0 = 𝑥𝑛0+1  for some 𝑛0 ∈ 𝑁 ∪ {0} , then from (1.1), we have 𝑑(𝑥𝑛0 , 𝑇𝑥𝑛0) = 𝑑(𝑃, 𝑄), 

Then no need of proof as it is completed. Hence, we assume that 𝑥𝑛 ≠ 𝑥𝑛+1 for all 𝑛 ∈ 𝑁 ∪ {0}. Then , since the 

pair (𝑃, 𝑄) has generalized 𝑃-property, from (1.1), we get 

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)                                                                                                  (1.2) 

For all 𝑛 ∈ 𝑁. Also, since 𝑇 is generalized contraction with respect to 𝑓we get 
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𝑓(𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛),𝑚(𝑥𝑛−1, 𝑥𝑛)) > 0for all 𝑛 ∈ 𝑁 and where 𝑚(𝑥𝑛−1, 𝑥𝑛) =

max {𝑑(𝑥𝑛−1, 𝑥𝑛),
𝑑(𝑥𝑛−1,𝑇𝑥𝑛−1)

1+𝑑(𝑥𝑛−1,𝑇𝑥𝑛−1)
,
𝑑(𝑥𝑛,𝑇𝑥𝑛)

1+𝑑(𝑥𝑛,𝑇𝑥𝑛)
,
𝑑(𝑥𝑛−1,𝑇𝑥𝑛)+𝑑(𝑥𝑛 ,𝑇𝑥𝑛−1)

2
} , for each 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 

and from (1.2) we have 𝑓(𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛−1, 𝑥𝑛)) > 0 for all 𝑛 ∈ 𝑁                                  (1.3) 

therefore if we denote a sequence {𝑝𝑛} by 𝑝𝑛 = 𝑑(𝑥𝑛−1, 𝑥𝑛) for all 𝑛 ∈ 𝑁,then from (1.3), we have 𝑝𝑛 > 0 and 

𝑓(𝑝𝑛+1, 𝑝𝑛) > 0 for all 𝑛 ∈ 𝑁. 

Since {𝑝𝑛} ⊆ (0,∞) ∩ 𝐴, so there exists a subsequence {𝑝𝑛𝑘} of {𝑝𝑛} such that  

lim
𝑛→∞

𝑝𝑛𝑘 = lim
𝑛→∞

𝑑(𝑥𝑛𝑘−1 , 𝑥𝑛𝑘) = 0                                                                                 (1.4) 

Now we will show that {𝑝𝑛𝑘} is a Cauchy sequence. Let us assume that {𝑥𝑛𝑘} is not a Cauchy sequence. Then 

there exists 𝜀 > 0 and two subsequences of natural numbers {𝑙𝑟}, {𝑘𝑟} with 𝑙𝑟 > 𝑘𝑟 ≥ 𝑟 such that 

𝑑 (𝑥𝑛𝑘𝑟 , 𝑥𝑛𝑙𝑟) ≥ 𝜀(1.5) 

For all 𝑟 ∈ 𝑁 where 𝑙𝑟  is the least integer satisfying (1.5). 

So 𝑑 (𝑥𝑛𝑘𝑟 , 𝑥𝑛𝑙𝑟−1) < 𝜀 for all 𝑟 ∈ 𝑁. 

Therefore 𝜀 ≤ 𝑑 (𝑥𝑛𝑘𝑟 , 𝑥𝑛𝑙𝑟) ≤ 𝑑 (𝑥𝑛𝑘𝑟 , 𝑥𝑛𝑙𝑟−1) + 𝑑 (𝑥𝑛𝑙𝑟−1 , 𝑥𝑛𝑙𝑟) < 𝜀 + 𝑑 (𝑥𝑛𝑙𝑟−1 , 𝑥𝑛𝑙𝑟) for all 𝑟 ∈ 𝑁. Taking 

the limit as 𝑟 → ∞, we get 

lim
𝑟→∞

𝑑 (𝑥𝑛𝑘𝑟 , 𝑥𝑛𝑙𝑟) = 𝜀                                                                                                          (1.6) 

Using (1.6), we have lim
𝑟→∞

𝑑 (𝑥𝑛𝑘𝑟−1 , 𝑥𝑛𝑙𝑟−1) = 𝜀                                                                 (1.7) 

Since 𝑇 is a generalized contraction with respect to 𝑓, we get 

𝑓 (𝑑 (𝑇𝑥𝑛𝑘𝑟−1 , 𝑇𝑥𝑛𝑙𝑟−1) ,𝑚 (𝑥𝑛𝑘𝑟−1 , 𝑥𝑛𝑙𝑟−1)) > 0                                                                     (1.8)                            

for all 𝑟 ∈ 𝑁.Now since   lim
𝑟→∞

𝑑 (𝑥𝑛𝑘𝑟−1 , 𝑥𝑛𝑙𝑟−1) = lim
𝑟→∞

𝑑 (𝑥𝑛𝑘𝑟 , 𝑥𝑛𝑙𝑟) = 𝜀, 

Using (1.5) and (1.8), we have 𝜀 = 0,  

A contradiction. 

Hence {𝑥𝑛𝑘} is a Cauchy sequence in 𝑃. 

Also {𝑇𝑥𝑛𝑘−1}is a Cauchy sequence in 𝑄. 

Since subsets 𝑃,𝑄 are closed subsets of complete metric space(𝑋, 𝑑), there exists𝑥 ∈ 𝑃 and 𝑦 ∈ 𝑄 such that 

lim
𝑘→∞

𝑥𝑛𝑘 = 𝑥and lim
𝑘→∞

𝑇 𝑥𝑛𝑘−1 = 𝑦                                                                               (1.9) 

Using (1.1), taking the limit as 𝑘 → ∞, we have 

𝑑(𝑥, 𝑦) = 𝑑(𝑃, 𝑄)                                                                                                                    (1.10) 

Also, we get 

𝑑(𝑥𝑛𝑘−1, 𝑥) ≤ 𝑑(𝑥𝑛𝑘−1, 𝑥𝑛𝑘) + 𝑑(𝑥𝑛𝑘 , 𝑥)for each 𝑘 ∈ 𝑁. 

Hence using (1.4) and (1.9), we get 

lim
𝑘→∞

𝑥𝑛𝑘−1 = 𝑥                                                                                                              (1.11) 

Now from equation (1.9), we have 𝑦 = 𝑇𝑥. 

Now suppose that𝑥𝑛𝑘−1 ≠ 𝑥 for all 𝑘 ∈ 𝑁 and for some 𝑟 ∈ 𝑁with 𝑘 ≥ 𝑟. Now we take following case when 𝑇 

is a continuous mapping. Then we get, 

lim
𝑘→∞

𝑇 𝑥𝑛𝑘−1 = 𝑇𝑥, 

So, using (1.10)𝑦 = 𝑇𝑥. 

Hence 𝑥 ∈ 𝑃 is a best proximity point of𝑇. 

Now suppose that (2) property is satisfied. Since 𝑇 is a generalized contraction mapping, we get 

𝑓 (𝑑(𝑇𝑥𝑛𝑘−1, 𝑇𝑥),𝑚(𝑥𝑛𝑘−1, 𝑥)) > 0. 

Hence using property (2) and equation (1.11), we have , 

lim
𝑘→∞

𝑇 𝑥𝑛𝑘−1 = 𝑇𝑥, 

So, 𝑦 = 𝑇𝑥. 

Now we prove uniqueness of best proximity point. 

Let 𝑥, 𝑦 ∈ 𝑃 with 𝑥 ≠ 𝑦 be two proximity point such that 

𝑑(𝑥, 𝑇𝑥) = 𝑑(𝑃, 𝑄)and  𝑑(𝑦, 𝑇𝑦) = 𝑑(𝑃, 𝑄). 
Hence using generalized𝑃-property we have, 

𝑑(𝑥, 𝑦) = 𝑑(𝑇𝑥, 𝑇𝑦). 
Since 𝑇 is generalized contraction with respect to 𝑓, we get 

𝑓(𝑑(𝑇𝑥, 𝑇𝑦),𝑚(𝑥, 𝑦)) > 0, 

A contradiction. 
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Therefore 𝑇 has a unique best proximity point in 𝑃. 

Corollary 2.2: Let 𝑇: 𝑃 → 𝑄 be a mapping on a complete metric space (𝑋, 𝑑) where 𝑃 and 𝑄 are closed subsets 

of 𝑋. Assume that𝑃0 ≠ 𝜙, 𝑇(𝑃0) ⊆ 𝑄0 and the pair (𝑃, 𝑄) has generalized 𝑃-property. Suppose that 𝑚(𝑥, 𝑦) =
𝑑(𝑥, 𝑦) in above theorem for generalized contraction, we will get the same result and unique best proximity 

point in 𝑃. 

Corollary 2.3: Let 𝑇: 𝑃 → 𝑄 be a mapping on a complete metric space (𝑋, 𝑑) where 𝑃 and 𝑄 are closed subsets 

of 𝑋. Assume that 𝑃0 ≠ 𝜙,𝑇(𝑃0) ⊆ 𝑄0and the pair (𝑃, 𝑄) has generalized 𝑃-property. Suppose there is a 

generalized 𝑅-function 𝑓: 𝐴 × 𝐴 → 𝑅 on 𝐴 satisfying 𝑟𝑎𝑛(𝑑, 𝑃 ∪ 𝑄) = {𝑑(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑃 ∪ 𝑄} ⊆ 𝐴and 

𝑓(𝑑(𝑇𝑥, 𝑇𝑦),𝑚(𝑥, 𝑦)) > 0, where  

𝑚(𝑥, 𝑦) = max {𝑑(𝑥, 𝑦),
𝑑(𝑥,𝑇𝑥)

1+𝑑(𝑥,𝑇𝑥)
,
𝑑(𝑦,𝑇𝑦)

1+𝑑(𝑦,𝑇𝑦)
,
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
},for each 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. If it satisfies one of 

the following conditions: 

(1). 𝑇 is continuous, 

(2). The𝑅- function 𝑓 satisfy the following property, 

If {𝑝𝑛}, {𝑞𝑛} ⊆ (0,∞) ∩ 𝐴 are sequences satisfying  𝑓(𝑝𝑛, 𝑞𝑛) > 0 for each 𝑛 ∈ 𝑁 and 𝑞𝑛 → 0 as 𝑛 → ∞, then 

we get 𝑝𝑛 → 0. 

 Then 𝑇 has a unique best proximity point in 𝑃. 

Theorem 2.4: Let (𝑋, 𝑑) be a complete metric space, 𝑃 be non-empty closed subset of 𝑋 and assume that ℎ: 𝑃 ×
[0,1] → 𝑋 is a continuous closed mapping such that 

(1). 𝑑(𝑥, ℎ(𝑥, 𝜆)) > 0 for each 𝑥 ∈ 𝑃and 𝜆 ∈ [0,1], 

(2).There exists a modified 𝑅 function 𝑓: 𝐴 × 𝐴 →R on 𝐴 such that 
with𝑥 ≠ 𝑦 and 𝜆, 𝜇 ∈ [0,1], 
(3).For all 𝑥 ∈ 𝐴, 𝛽, 𝑟 ∈ [0,1] and 𝑥0 ∈ 𝐵(𝑥, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅ there exists 𝑥1 ∈ 𝐵(𝑥, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅ such that 𝑥1 = ℎ(𝑥0, 𝛽), 
If ℎ(. ,0) has a fixed point in 𝑃, then ℎ(. ,1) has a fixed point in 𝑃. 

Proof:Assume that ℎ(. ,0) has a fixed point in 𝑃. 

Consider the subset 𝐾 = {(𝛽, 𝑥): 𝑑(𝑥, ℎ(𝑥, 𝛽)) = 𝑑(𝑃, 𝑋)}. 

So there is a point 𝑥 ∈ 𝑃 such that 𝑑(𝑥, ℎ(𝑥, 0)) = 𝑑(𝑃, 𝑋). 

So we have (0, 𝑥) ∈ 𝐾. 

So 𝐾 ≠ 𝜙. 

Define a partial order on 𝐾 by 

(𝛽, 𝑥) ≤ (𝜇, 𝑦)if only if 𝛽 ≤ 𝜇 and 𝑑(𝑥, 𝑦) ≤ (𝜇 − 𝛽). 

Consider 𝐿 be an arbitrary totally ordered subset of 𝑘and 𝛽∗ = sup {𝛽: (𝛽, 𝑥) ∈ 𝐿}. 
Consider increasing sequence {(𝛽𝑛 , 𝑥𝑛)} in 𝐿 for all 𝑛 ∈ 𝑁 ∪ {0} and 𝛽𝑛 → 𝛽∗ as 𝑛 → ∞. 

So we get 𝑑(𝑥𝑛 , 𝑥𝑚) ≤ (𝛽𝑚 − 𝛽𝑛), 

For each 𝑛,𝑚 ∈ 𝑁 ∪ {0}with 𝑚 > 𝑛. 

So{𝑥𝑛} ⊆ 𝑃 is a Cauchy sequence and there is 𝑥∗ ∈ 𝑃such that 𝑑(𝑥𝑛 , 𝑥
∗) →0 as 𝑛 → ∞. 

Since 𝑃 ⊆ 𝑋 is closed and (𝑋, 𝑑) is a complete lattice, 

So 𝑑(𝑥∗, ℎ(𝑥∗, 𝛽∗)) = 𝑑(𝑃, 𝑋). 

So (𝛽∗, 𝑥∗) ∈ 𝐾. 

Since 𝐿 is a totally ordered, it satisfies (𝛽, 𝑥) ≤ (𝛽∗, 𝑥∗) for all (𝛽, 𝑥) ∈ 𝐿. 

Hence, (𝛽∗, 𝑥∗) is an upper bound of 𝐿. 

Hence 𝐾 has maximal element (𝛽0, 𝑥0). 
Now we want to prove that 𝛽0 = 1. 

Assume that 𝛽0 < 1. 

Then there is a real number 𝛽satisfying 𝛽0 < 𝛽 < 1. 

Let𝑟1 = 𝛽 − 𝛽0. 

Using property (2), mapping ℎ(. , 𝛽): 𝐵(𝑥0, 𝑟1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ → 𝑋 is a generalized contraction. Now considering property (3) 

and above theorem there exists 𝑥𝛽 ∈ 𝐵(𝑥0, 𝑟1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 Such that 𝑑(𝑥𝛽 , ℎ(𝑥𝛽 , 𝛽) = 𝑑(𝑃, 𝑋). 

Hence (𝑥𝛽 , 𝛽) ∈ 𝐾, 

A contradiction. 

So 𝛽0 = 1. 

Hence ℎ(. ,1) has a best proximity point 𝑥0in 𝑃. 

Example 2.5:Let 𝑋 = 𝑅2 be complete metric space with usual metric 𝑑.Consider the closed subset of 𝑋, 

𝑃 = {0,
1

2𝑛
: 𝑛 ∈ 𝑁} × {0} 

And 𝑄 = {0,
1

3𝑛
: 𝑛 ∈ 𝑁} × {1}. 
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Now 𝑑(𝑃, 𝑄) = 1, take 𝑃0 = 𝑃 and 𝑄0 = 𝑄. 

Also the pair (𝑃, 𝑄) has the generalized 𝑃-property. 

Now we define 𝑇: 𝑃 → 𝑄and function 𝑓: [0,∞] × [0,∞] → 𝑅 by 𝑇(𝑥, 0) = (0,1) 

And 𝑓(𝑝, 𝑞) =

{
 
 
 
 

 
 
 
 1,      𝑝 =

1

2𝑛
 𝑎𝑛𝑑 𝑞 = 1 +

1

𝑛
, 𝑛 ≥ 1,

𝑜𝑟

𝑝 = 1 +
1

2𝑛
 𝑎𝑛𝑑 𝑞 =

1

𝑛
, 𝑛 ≥ 1 

0,    𝑝 ∉ {0
1

2𝑛
} 𝑎𝑛𝑑 𝑞 = 1 +

1

3𝑛
, 𝑛 ≥ 1

𝑜𝑟

𝑝 ∉ {0
1

2𝑛
} 𝑎𝑛𝑑 𝑞 = 1 +

1

3𝑛
, 𝑛 ≥ 1

(
𝑞

3
− 𝑝) ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                   }

 
 
 
 

 
 
 
 

. 

Now it can be seen that 𝑇(𝑃0) ⊆ 𝑄0 and 𝑇 is continuous mapping. 

Let 𝐴 = 𝑟𝑎𝑛(𝑑, 𝑃 ∪ 𝑄) 

𝐴 = {0,
1

2𝑛
: 𝑛 ∈ 𝑁} ∪ {1 + |

1

𝑛
−

1

𝑚
| : 𝑛,𝑚 ∈ 𝑁} ∪ {1 +

1

3𝑛
: 𝑛 ∈ 𝑁}. 

Now 𝑇 is modified 𝑅-function on A. 
Now for sequence {𝑝𝑛}⊆(0,∞) ∩ 𝐴 satisfying 𝑓(𝑝𝑛+1, 𝑝𝑛) > 0 for all 𝑛 ∈ 𝑁 ∪ {0}, then there exists 
subsequences {𝑝𝑛𝑘} → 0 as 𝑘 → ∞. 

So there is 𝑛0 ∈ 𝑁 such that 𝑝𝑛𝑘 =
1

2𝑛0
 then we have 𝑝𝑛0+2𝑛 → 0 for all 𝑛 ∈ 𝑁. 

Since 𝑓(𝑝𝑛+1, 𝑝𝑛) > 0 for each 𝑛 ∈ 𝑁, we have (
𝑝𝑛

2
− 𝑝𝑛+1) > 0 for all 𝑛 ∈ 𝑁 and so {𝑝𝑛} is decreasing. 

Hence there exists 𝑧 ≥ 0 such that 𝑝𝑛 → 𝑧as 𝑛 → ∞. 

Similarly {𝑝𝑛}, {𝑞𝑛} ⊆ (0,∞) ∩ 𝐴 are sequences satisfying lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑞𝑛 =𝑧 ≥ 0, 𝑧 ≤ 𝑝𝑛 and 𝑓(𝑝𝑛 , 𝑞𝑛) >

0 for all 𝑛 ∈ 𝑁then 𝑧 = 0. 

Now we prove that 𝑇 is generalized contraction with respect to𝑓. 

Let 𝑥 = (
1

2𝑛
, 0) , 𝑦 = (

1

𝑚2 , 0) , 𝑛,𝑚 ≥ 1. 

Then 𝑇𝑥 = (0,1)and𝑇𝑦 = (0,1). 
So we get 𝑑(𝑇𝑥, 𝑇𝑦) = 0. 

𝑚(𝑥, 𝑦) = max {𝑑(𝑥, 𝑦),
𝑑(𝑥,𝑇𝑥)

1+𝑑(𝑥,𝑇𝑥)
,
𝑑(𝑦,𝑇𝑦)

1+𝑑(𝑦,𝑇𝑦)
,
𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑇𝑥)

2
},for each 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. 

So 𝑚(𝑥, 𝑦) = |
1

2𝑛
−

1

𝑚2| = (
1

2𝑛
−

1

𝑚2). 

Hence we get, 

𝑓(𝑑(𝑇𝑥, 𝑇𝑦),𝑚(𝑥, 𝑦)) = 𝑓 (0, (
1

2𝑛
−

1

𝑚2)) = (
1

2𝑛
−

1

𝑚2) > 0. 

Thus 𝑇 is generalized contraction with respect to 𝑓. 

Thus 𝑇 has unique best proximity point in 𝑃. 
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