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Abstract.
The Banach space E has the weakly compact approximation property (W.A.P.) if there is
C < oo so that the identify map IE can be uniformly approximated on any weakly compact subset
D c E by weakly compact operators V¥ on E satisfying ||[V¥|| = ¢ = 1. Then V* is a contraction
operator. Following the steps of E. Saksman and H.-O. Tylli [21] we show that the spaces
N(£1%2¢,¢1%%) of nuclear operators £*2¢ — £1*€ have the W.A.P. for 0 < € < oo, but that the
Hardy space H* does not have the W.A P.
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I.  Introduction
The Banach space E has the weakly compact approximation property if there is € < oo so that for
any weakly compact set D © E and £ > 0 one finds a weakly compact operator V¥ € W(E)
satisfying

sup Jlxx — VEx]l < £ and V] = C, a € N. (0.1)

xgED
Here V™ € W(E) if the image V* By of the closed unit ball Bg of E is relatively weakly compact.
This concept of weakly compact approximation is natural, but the resulting property differs
completely from the classical bounded approximation properties defined in terms of finite rank or
compact operators (for more about these properties see e.g. [4]). The W.A.P. was introduced in [2].
and some applications can be found in [2] and [19]. It was later more systematically studied in [10]

from the perspective of Banach space theory. The W.A.P. remains fairly rare and elusive for non-
reflexive spaces (obviously any reflexive space has it). We have the following known results.

If E is a £' - or £%-space, then E has the W.A P. if and only if E has the Schur property, see ([2].
Cor. 3). Thus £* has the W.AP., while ¢,, €(0, 1) and L*(0, 1) fail to have it. (0.2)

The direct sums £*(£1*¢) and #**¢(#*) have the W.AP. for 0 < € < oo, ([10], Prop. 5.3). (0.3)

The quasi-reflexive James’ space [, as well as its dual J*, have the W.A.P.. ([10], Thm. 2.2 and 3.3).
On the other hand, there 1s ([1]. Prop. 14.11) a quasi-reflexive hereditarily indecomposable space X
that fails to have the W.A.P. Moreover, the related James® tree space JTp fails to have the W.AP.,
([10], Thm. 6.5). (0.4)

E. Saksman and H.-O. Tylli [21] show that the spaces N(#172¢,#1*¢) consisting of nuclear
operators have the W.AP. for 0 < € < oo (note that N(£1%25, #17¢) is reflexive if € > 0). This
result, which was motivated by timely questions of Zacharias and Defant. includes the Schatten

1
trace class space C; fore = -5 =1 Secondly, we show that the Hardy space H! does not have

the W.A.P., which solves a question from ([2]. p. 370) in the negative.
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In order to determine whether a given space E has the W.A.P. or not one is often forced to rely on
very specific properties of E, and there still remains fairly concrete Banach spaces for which this
property is not decided (see e.g. the Problems in Section 2 as well as [10]).

1. The spaces N(£12¢, £17¢) of nuclear operators have the W.A.P.

For E and F be Banach spaces. Recall that T : E — F 1s a nuclear operator, denoted Tz €
N(E,F), if there are sequences [(}ﬁ);) C E*and (:yf) C F so that X2, "(rﬁ); Hj,'f
and Tp = X1, (xﬁ); ® _‘ff. Here (x"g); ® yf denotes the rank-1 operator x — (xﬁ];(r)jﬁf
Then (N(E,F). || - ll5) 1s a Banach space, where the nuclear norm of Ty € N(E,F) is

< o0

oo

, = inf Z H(rﬁ):

j=1

I76] T = > () @ ¥f ¢
j=1

Recall that ||AS’5‘B||N = |lAll ||B]] ||S’g||ﬂ.l whenever §F € N(E,F) and A, B are compatible

bounded operators. One may isometrically identify N(£2) = C,, where C; is the Schatten trace
class space, see e.g. ([13], Sect. 0.b) or ([12], Sect. 2.11).

Fl+€, {)1+2£)

Observe that in its statement the spaces N( are actually reflexive for 0 < e < o, so

that only the cases 0 < € < o contain non-trivial information. In fact, N(£1%€ £1+2€) =
K (#1%2¢, £1+) in the trace-duality

{U,V) — tI"(V U}, U e N({?l+26}.£1—£)} V e K{:,€1+EJ 1?1+ZE:),

-

where the space K (#1272, £1%%) of compact operators £172¢ — £17¢ is reflexive once 0 < € < oo,
see e.g. ([16], Cor. 2.6) or ([7], Sect. 2. Cor. 2). Theorem 1 is the main results can also be rephrased
in the terms of the projective tensor products £172¢ g £1*%, see the Remarks following Lemma 2.

Theorem 1 (see [21]). N(£**%,£#**2¢) has the W.A.P. whenever 0 < € < o, The proof of
Theorem 1 is based on Lemma 2 below, which contains a basic characterization of the relatively
weakly compact subsets of the non-reflexive spaces N(£2%2€,#1%¢) for 0 < € < co. Let () be

the unit vector basis of £1+< for 0 < € < oo,

We denote the natural basis projection of £*72 onto [e;, ..., €mec] bY Ppoer and set Q.. = [ —
Ppie for (m+€) € N.For e > 0 we also put Piyymee] = Pmte — Pn = PmteQm = @mPrve
which is the natural projection of £272° onto [€,,.1,..., Emsc). We denote the corresponding basis
projections on €% by Py e, Qmye and Py e o, respectively. We will frequently use the facts that

||S“ - P.,,H_E.S"‘HDME"r\r —= 0 and ||@,,ﬂJrES“IL?.,,ME"r\r = 0 as (m+e€) = oo for any S% €
‘,'\;1(1;31+25J _[t_ﬂl—f:]_ : :

Lemma 2 (see [21]). Suppose that 0 < € < o and let D © N(£1*2€,£1%°) be a bounded subset.
Then D is relatively weakly compact in N (£1%2¢, £1%%) if and only if

lim sup ||l'jm+€5an+€HN = 0. {11)

M+E—02 olcp

We first complete the proof of Theorem 1 with the help of (1.1) before establishing the more
technical Lemma 2.
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Proof of Theorem 1. We may assume that 0 < € < oo since N(£2725, #1%9) is reflexive for 0 <
€ < o, see the comment preceding Theorem 1. Suppose that D = N(£2*%€,£17¢) is a weakly
compact subset and let £ > 0 be given. Write

5« = (ﬁm+fsapm+e + Pm+fsa'?m+£ + @m+ES“Pm+€) + t?-hm+fsarc!‘m+f

= ¢m+£(sq:} + 6?‘?‘[+ESQQ?’H+E (1'2)

for S € N(£¥%5,f'*%) and (m +€) € N. Here ¢,,,.. : N(£¥¥25,01*%) = N(£2+25,£1%°) for
(m+¢€) € N are the bounded linear maps defined by ,,,.(5%) = P,..S"P,.. +
PicS%Qumie + Gy cSP .. for ST € N(£172€,#1%€) Clearly |||l = 3 for any (m + €).
It follows from (1.1) and (1.2) that

SUP [IS% — Y (S¥ly = SUP [| G5 Qicl|, = 0 a5 (mte) - oo,
5@eD S@eD

so that sup ||S% — Y4 (SY)||y < £ once (m + €) is large enough.
SaeD

Consequently it will be enough to verify that
Ymie € W(N(7*25,£24)),  (m+¢€) € N. (1.3)

This fact can be deduced from a suitable combination of general results, see the proofs of ([9], Prop.
2.2 and 2.3) or the survey ([17], p. 262), but we sketch a direct argument for completeness. Note
first that the maps

Py (ST = e @ Yi)ST = (SVVi ® Vi P (SY) = S (x5 @ x3) = x; ® S,

7
are weakly compact on N(£1%25,£17%) for any yi € €%9 yp € 445, x, € 172 and x} €
’
£03*26)  where (1+2¢) and (1+4¢€) are the respective dual exponents. In fact,
Pyt (Buiersernse)) © Iill I (B arer ® v, since 5% i ® villw < Iyill Iyl
for §% € B y(grt2e grte). Clearly the set B zer @Yy 1s relatively weakly compact in

N(£1+2¢ f1+€) since z* — z* @ y, embeds £(2+29" jsomorphically into N(£}*2¢,£1+¢) for

Vi #= 0. The case of f‘bxer*k is analogous.

Finally, (1.3) follows since the individual operators defining ¥, ., such as §¢ — P, . _S%Q,., .,
are sums of weakly compact ones composed with bounded ones. The proof of Theorem 1 will be
complete once Lemma 2 has been established.

Proof of Lemma 2. Suppose first that (1.1) holds. According to (1.2) we get that

D c I[J',m_'_E(D) + (Sm_'_EBN(_gHzeaéﬁs), (m+¢€) € N, (1.4)

where §,,.. = sup ||@m+ES“Qm+E||V—> 0 as (m+¢€) — o, Here .. (D) is a relatively
§%ep ‘

weakly compact subset of N(£1*2€,£1%<) for all n by (1.3). It is a standard fact that (1.4) then
implies that D is a relatively weakly compact subset of N(£1+2¢, f1+¢),

Assume towards the converse implication that (1.1) fails to hold for the bounded subset D
N(f1*2€,£1%¢), Put A= D — D. The strategy is to exhibit a sequence (S§) < A, which is
equivalent to the unit vector basis in £*. In this event (SF) does not have any weakly convergent
subsequences, so that A (as well as D) is not a relatively weakly compact set.

Observe first that by our assumption
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1+e = inf sup [@mseS“Qmaell,, > O. (1.5)

(m+e)EN gagc

since sup ||Q?,HeS“’erJrE"r\r is clearly non-inereasing in (m + €). We proceed to construct by
s%ep °

induction a sequence (5§ )y>; C A and intertwining sequences 1 = ny < my; < ny, < m, <..
of natural numbers so that the following conditions are satisfied forallr € N = {1,2,...}%

= « 1+e )
”P[nr'-mr]s‘?" Pt”r'-mr]HN > 2 ’ {16)

" « 1+e¢ _ . B . g
1B 1P (o Hv <gpms forlsj ks=r and j=k (17)

. . - 1 .

First pick n; = 1 and §F € D so that ||inSan_ || v ;, and by truncation m; > n, so that
(1.6) holds for r = 1. Assume next that we have already chosen §7,...,55 € Aand 1 = n; <

-

my <...< N, < M, so that (1.6) and (1.7) holds until . We pick by truncation N, > m,
such that

~ 1+e¢ , .
”Qﬂr+LSjHQﬂr+1 ||A.|Y < m fOI’] = 1’ STTE {-1'8)

Note that (1.8) guarantees (1.7) for j = r + 1 and 1 < k = 71 regardless of our subsequent
choice of My > Nypq.

We next choose inductively an auxiliary sequence (T%)..; © D and increasing indices n,,; =
[y < I <...insuch a way that

2(1+¢€)

”Q-UISTSJQESHN > 3 ! s €N, {19)

1+¢

||©ES+LT;{QES+L||N = 6 s €N, (1.10)

This is possible by (1.5) and the fact that Q,TFQ, — 0 in N(#1%25,£1%) as t — co. Use finite-

dimensionality and the boundedness of D to find a subsequence of (TF) such that
B TSP ) converges in the nuelear norm for all j = 1,...,7 as § — oo along this
( l[nj,mf] s l[nj,m_.,'] e=1 2 ] ’ ’ g
subsequence. Hence there are 5; < 8, for which the choice §%, ; = T% — TF satisfies

2 1

p a ﬁ fori =
||P(“J*’”f]sr‘1pfnj-mj]”N <gzes forj = L.

This yields (1.7) fork = r + land1 = j = 1.

It remains to find m,..; > n,,, and to verify (1.6) for r + 1. For this observe that by (1.9). (1.10)
and the fact [;, > N,y one has

1@nye iS5 Qnyal, 2 HGE;ESf+1QESZ

= (g, T2 -0, T8
N HQESZTSEQISZ ‘N HQISZTSLQI% ‘N

_2e ~ a _1+e
- ? - ”QES-_-i-J. TS;QEsl+;||N - 2

By trunecation we may then pick m,,; > n,., so that (1.6) holds for r + 1. This completes the
induction step.

Let (cx) € €1, (cx) = 0, be an arbitrary sequence. Define Ej = [eng+1--08mg] © £1+2¢ and
Fie = [fagsrr--- fmp] C f1*¢ for k € N. By finite-dimensional trace-duality and the fact that
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E, Fp are l-complemented subspaces there is Uy € L(Fy, Ex) = N(Eg, Fi)® so that [|[Ug]| =
and

~ |C'k|
(Ut Prgompd SEP (migmil) = ||P(n,( Sk Pamgll K € N.

We may choose U, = Oincasec, = 0. Then U = Yj~, U, defines a bounded operator £17° —
£172€ satisfying ||U|| = sup ||Ug|] = 1 since € = 0 by assumption,
K

Clearly |27, ciSflly = M Yi2, |cgl, where M = sup |[S%]|y. Towards the converse estimate
sEep
we first observe that
(Uk’ﬁ(”r»mr']sﬁrp(”r»mr]) = tI‘(ﬁ[“r'amr]S’{IP[“r'-mr] Uk) =0

for k = r in the trace-duality L(£1%<,£1%2€) = N(£1*2¢, #2*¢)" Hence it follows from (1.6) that

[=.]

Z Ckﬁ[n;{,mk]sfp(nk.mk] =2 {U:Z Ckp(n;(,mk]sgp(nk.m;‘-])
k=1 N k=1
= . a _1+e =
= > ekl [P oSt Ponmally =—— D Nl (111)
k=1 k=1
We also need the general fact that
Z PSS Ponpma|| = 15%11y. §% € N(f£1+2 g1+, (1.12)
r=1 N
The block diagonalization estimate (1.12) is proved for the nuclear norm || - ||, exactly as in the

case of the operator norm in ([8], pp. 20-21). By combining (1.12), (1.11) and (1.7) we get that

Z C‘;(S;‘. Z (npmy] (Z Cksg) Pi“i"'mr]

k= =1 k=1 N

_1+e - —

= 7 Z |Ck| - Z Z |Ck| ||P{n..l m,‘]sk Ptn,(mk] N + Z |€k| ||Ptnr'mr]sk P(nr'mr]HN

k=1 r=1 k<r k=r

((1+6) —(1+e) - Z o—(r+k+ 4))2 lc.] _B(HE)Z lckl.

rk=1

N

Hence the sequence (S7) < A is equivalent to the unit vector basis in £1. This completes the proof
of Lemma 2 as noted above.

Actually, there is a somewhat simpler proof for Lemma 2. The alternative argument constructs a

sequence (§§) © D and a related block-diagonal operator U € L(£17¢,#1%2%) 5o that |(SF, U)| >
(14€)

for k € N, whence one may deduce that (S§) has no weakly convergent subsequences in

N(£1+2€,¢17€), However, the argument in Lemma 2 establishes a stronger fact, which is an
analogue of a result of Kadec and Pelczynski for non-weakly compact subsets of L! (0, 1), see

([20]. TILC.12).
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Corollary 3 [21]. If 0 <€ < o and D = N(£1%2°,#1%%) is a bounded subset which is not
relatively weakly compact, then the difference set D — D contains a sequence (S ) equivalent to
the unit vector basis in £2.

Remarks. (1) Clearly Lemma 2 does not hold for 0 < € < 0, since in this case N(£1+¢, £1%2¢) {5

reflexive, but D = {ep,. & finee : (M+€) € N} does not satisfy (1.1). Here (e,,,.) € pie)
1s the biorthogonal basis.

(2) Theorem 1 can be restated as follows by using the known (partial) correspondence between
spaces of nuclear operators and projective tensor products: £*€ @, £**?° has the W.A.P.
whenever 0 < e < oo. This follows from the isometric identification £17° ®, #172¢ =

WF . . .
N(£1*e) £1+2€) but one may also translate the argument of Theorem 1 into the setting of tensor
products. See [5] for the requisite background.

The scope of Theorem 1 within the class of spaces N(E,F) of nuclear operators (or the related
projective tensor products) remains unclear. It follows from Theorem 1 that N(£** @ £1%2¢) has
the W.AP. for 0 <€ < oo, since N(f1*¢ @ #172¢) is linearly isomorphic to N(£1%) B
N(£1729) @ N(£115, £1729) @ N(£172<, 1), The following questions appear natural (see [21]).

Problems. (1) If N(E, F) has the W.A.P., then E* and F must also have this property, since E* C
N(E,F)and F c N(E, F) as complemented subspaces. Are there E and F so that E* and F have
the W.A P, but N(E, F) fails to have the W.A.P.?

(2) Let E and F be reflexive Banach spaces having unconditional Schauder bases. Does N(E, F)
always have the W.A.P.? As an important special case, does N(L**€ (0,1)) have the W.AP. for
0< e < wande #1?

(3) Recall that ¥ has the Schur property if ||V,,.cll = 0 as (m+¢€) — <o for any weak-null
sequence (V,,..) < Y .By applying the construction in [3] to £ one obtains a separable £7-space
X so that 1 < X isometrically and X /#* has the Schur property. It is then easy to check that X has
the Schur property. so that X has the W.AP. by (0.2). Does X &, X have the W.AP.?

The Banach space E has the inner weakly compact approximation property (inner W.A P.) if there
is € < ©o so that for any weakly compact operator U € W (E, Z), where Z is an arbitrary Banach
space, and £ > 0 thereis V¥ € W(E) satisfying

U —uve|< e and |V < C=1.

This property, first considered in [18] and [19], is less intuitive than the W.AP. It is a (pre)dual
property to W.A.P. in the following sense: If X has the inner W.A.P., then X* has the W.AP., see

([18]. Prop. 3.4). The converse does not hold: the Johnson—Lindenstrauss space JL fails to have the
inner W.A.P., but JL* has the W.A P., see ([19], Thm. 1.4).

The argument of Theorem 1 yields that the spaces K(£1%5,£1*2¢) of compact operators

(alternatively, the e-tensor products £17¢ &), £1+2¢ = K(f’(l_fzf, £1%2€)) have the inner W.A.P. for
0 < €< oo,

Corollary 4 (see [21]). The spaces K (£17¢, £172¢) have the inner W.A.P. whenever 0 < € < oa,

Proof. It is again enough to consider the case 0 < e < o. To check (1.13) suppose that U :

K(£'7%,¢'*%¢) — Z is a weakly compact operator, where Z is a Banach space. Consider the
operators @, . defined on K (£1%5, £1%2¢) by

¢H’E+E(Sa) = ﬁm+esapm+e + ﬁn1+esa0m+e + Qm+esapm+¢:ﬂ Sa E E\'(Fl+€’.fl+2e)’
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for (m+€) € N. It is not difficult to verify that ¢} .. = Y. € LN, £1%9)) in trace
dualiry. where lpm+etjsa} = Pm—fsapm+e + Pm+<_=5a6m+€ + Qm—ESQP}H+E for 5t €
N(£1+2€,01%79), Here .. € W(N(£Y25,£1%9)) for (m+€) € N by (1.3). Moreover, the
argument of Theorem 1 applied to the relatively weakly compact subset U*(B5, ) © N(£172¢,£17¢)
yields that

HU - U¢'m+e” = "U* - wmﬂsU*" — Das {jm+6) — 0.

Hence K (£1*¢, £172) has the inner W.A.P.

2. H! does not have the W.A.P.

For D be the unit disk in the complex plane. The Hardy space H' consists of the analytic maps fi:
D — C for which

Zm
5l = sup j Z |f;(re®)| dm(t) < oo,
O=r<1 Jp 7

where m is normalized Lebesgue measure on [0, 27r] (identified with Tg, = 0D). It is a classical

fact that H? is isometrically isomorphic via a.e. radial limits to the closed subspace

im
B (1) =15 € (1) fimee = [ ) MO (e )ame) = 0, (nte) < 0
Jo =
j
ole(Tﬁj:). Recall that L* [:Tﬁj) does not have the W.A.P. by (0.2). This observation uses the fact that
It (:Tﬁj:) has the Dunford—Pettis property (DPP), that is, any weakly compact U € W(:Ll(Tﬁ.j))
maps weak-null sequences to norm-null ones. By contrast H! = H I(Tﬁj) does not have the DPP,

and W(H?') is a larger class (e.g. as it contains the Paley projections onto the Hilbertian subspaces
spanned by lacunary sequences). Thus the known results about the W.A.P. do not resolve the
natural question ([2], p. 370) whether H! has the W.A P. In this section we settle this problem in the
negative.

Theorem 5 (see [21]). H' does not have the W.AP.
Proof.Let g,,,.(z) = 2™ forz € Cand (m+¢€) = 0,1,2,.... Consider
H = {gmse: (m+¢€) € N} ¢ HL

Then H is relatively weakly compact in H*, since (g,,..) is a weak-null sequence. It will be enough
to establish the following claim.

Claim. There is no weakly compact operator U% : H — H? so that
sup ||h — U%h| < 1/2. (2.1)
heH

Proof of the Claim. Suppose to the contrary that there is an operator U% € W(H?) satisfying
(2.1). We next modify U by applying the averaging technique of Rudin [14]. Let 1, be the

isometric translation operator on Hlthﬁjj} defined by Tsf}{je"“f) = }‘}(ei(‘*f_s)) for s,u; € [0,2m].

Then the H'-valued average
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2w
vty = fo Z (t_U%t,)f; dm(s),  f; € H,
1

yields a bounded linear operator H! = H!. Moreover, U¥ € W(H?') according to the Dunford—
Pettis characterization of the relatively weakly subsets of Lt (jTﬁj) as the uniformly integrable ones.

Note that

Zm
[ {:I—srsgm—f - I—sUaIsgm+e)d”1(:S)
0

||\gm—f - E}agm+e|| =

Zm
< [ Momee = U@l dm(s) < 172 22)
0

forall (m + €) € N by (2.1) and the identity Togmee = €™ g, .

The construction in [14] (alternatively, see [15], 5.19) guarantees that there is a bounded complex
sequence (A7 c)(m+e)=o S0 that

0 gmee = MpseGmees  (m+€) € N U {0}, (2:3)
In other words. U® is a weakly compact Fourier multiplier operator on H* which is determined by
(‘afn+ej{m+e]}[]'
Consequently ||g,4e — ﬁagmﬁn = |1-2%,.] < 1/2 for (m+€) € N by (2.2) and (2.3).

Howewver, this estimate contradicts the fact. 1solated below 1in Lemma 6, that

. 1 - . . .
[ inf o [XrEs A%] = 0 holds for any such weakly compact Fourier multiplier on H*. This
m+e)zl (m+e

yields the Claim, and the proof of Theorem 5 will be complete once Lemma 6 has been established
below.

Let A = (A¥);o be a bounded sequence of complex numbers, and define the corresponding
formal Fourter multiplier T by T (g;,) = ARgy fork = 0.

Lemma 6 (see [21]). Let A = (Af)}op € €% be a complex sequence for which the corresponding
Fourier multiplier operator Tf € W(H). Then
m+e

D, %

k=1

e e -0 @

Proof. Let A be the closure of T (B 1) in HY, and put

G := abco{gf;: f; € A, llgll= < 1},

where the absolutely convex closure is taken in L' = Ll{:TBJ.). The uniform integrability eriterion

implies that  is a weakly compact subset of L*.

Assume contrary to (2.4) that there 15 € = 0 so that |a,,,..|] = (1 +¢) forall (m+¢€) = 1, where

Aps e :=ﬁ2}j‘§f ¢ for (m+€) = 1. Note that |apm..| < Al for (m+e€) = 1.
Consider for each fixed j = 1 the shifted sequence A; := (&g*‘f')k:»o € £ as well as the averages
m+te
A ! Z A; € £
= S
MEETT (M + €) A 4 ] !
=
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for (m +€) = 1. Observe that the sequence A, converges coordinatewise to (1,1,...0as (m+

(m+e) m+f o
€) — oo, In fact, by our counterassumption the k:th coordinate by 7{m+6)ﬂm+€ Z ke
of A, .. satisfies

l m+e m+e zk
b 1| = > M= D A = Al 0,
| k ‘ (M + €)|Apsel J*k J (1+e)(m+e) 1Al
=1 j=1
(m+e) — oo
On the other hand, the inclusion
fm+E(BHJ.) c (1+e)1a, (m+¢) = 0, (2.5)
follows from the identity Tfm = (mﬁ}a ——— e TX, where it is not difficult to check that
m+e

T&. (fj) € G; - Ty(Byr) © G for fj € Bys. The coordinatewise convergence of Apmse combined
with (2.5) imply by approximation that By: © (1 + €)71G, which is impossible.

Remarks (see [21]). (1) By removing the uniform bound € < oo in (0.1) one obtains a strictly
weaker approximation property, see ([10], Example 6.8). The argument in Theorem 5 shows that
H?* even fails to have this weaker property.

(2) Note that the related quotient space L*/H}, where H} = {fi € H: f;(0) = 0}, also fails to
have the W.A.P. This observation can be deduced from the facts that L /H3 has the DPP (see e.g.
[11]. Cor. 8.1.(b)), but not the Schur property.

Let VMOA be the closed subspace of BMOA consisting of the analytic functions f;: D — C
having vanishing mean oscillation on the boundary Tg;- Fefferman’s duality theorem implies that

VMOA® ~ H* (up to linear isomorphism). See to the survey ([6], Sect. 7) for an exposition and for
more information about the space BMOA. Theorem 5 and the duality result ([18], Prop. 3.4) has the
following consequence.

Corollary 7 [21]. VMOA does not have the inner W.A.P.
Conclusion

The study significantly contributes to the understanding of the weakly compact approximation
property (W.A.P.) in Banach spaces. It provides concrete examples of spaces that possess the
W.AP.. such as the nuclear operator spacesN(£1%2¢,#1%%), and demonstrates the rarity of this
property in non-reflexive spaces. The proof that the Hardy space H* fails to have the W.AP.
resolves a long-standing open question and highlights the challenges associated with determining
whether a Banach space possesses this property. The study underscores the importance of specific
properties of a given Banach space when examining its W.A.P. and provides valuable insights into
the relationships between the W.A.P., the inner W.A.P., and other related properties. Further, the
work explores connections between the W.A.P. and projective tensor products, suggesting potential
avenues for future investigation in the context of nuclear operators and related spaces.

Funding : This research received no external funding.
Conflict of Interest: The authors declare no conflicts of interest.

References

[1] Argyros, S., and A. Tolias: Methods in the theory of hereditarily indecomposable Banach
spaces. - Mem. Amer. Math. Soc. 170:806, 2004.

DOI: 10.35629/0743-11030615 www.questjournals.org 14 | Page



On Valuable Examples of Weakly Compact Approximation Property in Banach Spaces

[3] Bourgain, J., and G. Pisier: A construction of L w-spaces and related Banach spaces. - Bol. Soc.
Brasil. Mat. 14, 1983, 109-123.

[4] Casazza, P. G.: Approximation properties. - In: Handbook of Banach spaces, vol. I, North-
Holland, 2001, 271-316.

[5] Defant, A. and K. Floret: Tensor norms and operator ideals. - North-Holland, 1993.

[6] Girela, D.: Analytic functions of bounded mean oscillation. - In: Complex function spaces
(Mekrijirvi, 1999), Univ. Joensuu Dept. Math. Rep. Ser. 4, 2001, 61-170.

[7] Kalton, N. I.: Spaces of compact operators. - Math. Ann. 208, 1973, 267-278.

[8] Lindenstrauss, I., and L. Tzafriri: Classical Banach spaces 1. Sequence spaces. - Ergebnisse der
Mathematik 92, Springer-Verlag, 1977.

[9] Lindstrém, M., and G. Schliichtermann: Composition of operator ideals. - Math. Scand. 84,
1999, 284-296.

[10] Odell, E., and H.-O. Tylli: Weakly compact approximation in Banach spaces. - Trans. Amer.
Math. Soc. 357, 2005, 1125-1159.

[11] Pelezynski, A.: Banach spaces of analytic functions and absolutely summing operators. -
CBMS Regional Conference Series 30, Amer. Math. Soc., 1977,

[12] Pietsch, A.: Figenvalues and s-numbers. - Cambridge University Press, 1987,

[13] Pisier, G.: Factorization of linear operators and geometry of Banach spaces. - CBMS Regional
Conference Series 60, Amer. Math. Soc., 1986,

[14] Rudin, W.: Projections onto invariant subspaces. - Proc. Amer. Math. Soc. 13, 1962, 4290-432.
[15] Rudin, W.: Funectional analysis. - Tata MeGraw-Hill, 1973,
[
I

16] Ruess, W.: Geometry of operator spaces. - In: Functional analysis: Surveys and recent results
1T, North-Holland, 1984, 5978,

[17] Saksman, E., and H.-O. Tylli: Multiplications and elementary operators in the Banach space
setting. - In: Methods in Banach space theory (J. M. F. Castillo and W. B. Johnson, eds.) London
Mathematical Society Lecture Notes Series 337, Cambridge University Press, 2006, 253-292.

[18] Tylli, H.-O.: The essential norm of an operator is not self-dual. - Israel J. Math. 91, 1995, 93—
110.

[19] Tylli, H.-O.: Duality of the weak essential norm. - Proc. Amer. Math. Soc. 129, 2001, 1437—
1442,

[20] Wojtaszezyk, P.: Banach spaces for analysts. - Cambridge University Press, 1991, Received 3
July 2007.

[21] Eero Saksman and Hans-Olav Tylli, New Examples of Weakly Compact Approximation in
Banach Spaces, Annales. Academiz. Scientiarum Fennica Mathematica. Veolumen 33, 2008, 429-
438.

DOI: 10.35629/0743-11030615 www.questjournals.org 15 | Page



