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I. INTRODUCTION: 

Differential and Integral equations are most useful mathematical tools in both Applied and Pure 

Mathematics. Moreover the theories of differential and integral equations are rapidly developing using the tools 

of Topology, Functional Analysis and Fixed point theory. This is particularly true for problems in the related 

fields of Engineering, Mechanical Vibrations and Mathematical Physics. There are numerous applications of 

differential and integral equations of integer and fractional orders in Electrochemistry, Viscoelasticity, Control 

theory, Electromagnetism and Porous media etc. [10-15, 20-23]. 

 

Here we will study the Extremal Solutionof first order nonlinear quadratic functional differential equation. 

We consider the following first order nonlinear quadratic functional differential equations:  

𝒟 [
𝓍(𝑡)

𝑓 (𝑡, 𝓍(𝛼(𝑡)))
] = 𝑔[𝑡, 𝓍(𝜇(𝑡))],   𝑡 ∈ ℛ+

𝓍(0) = 0 }
 

 

                                                                                                      (2.1.1)  

   Where,𝑓(𝑡, 𝑥):ℛ+ × ℛ → ℛ − {0}, 𝑔(𝑡, 𝑥):ℛ+ × ℛ → ℛ and 𝛼, 𝜇: ℛ+ → ℛ 

Here the solution of nonlinear differential equations (2.1.1) we mean a function 𝓍 ∈ 𝐵𝒞(ℛ+, ℛ)  such that: 

(i) The function 𝑡 → [
𝓍(𝑡)

𝑓(𝑡,𝓍(𝛼(𝑡)))
] is bounded and continuous for each 𝓍 ∈ ℛ. 

(ii) 𝓍 satisfies (2.1.1) 

 

2.2 PRELIMINARIES: 

Let 𝑋 = 𝐵𝒞(ℛ+, ℛ)  be the space of bounded real valued continuous function on ℛ+  and 𝑆 be a subset of 𝑋. 

Let a mapping 𝒜:𝑋 → 𝑋 be an operator and consider the following operator equation in   𝑋, namely, 

𝓍(𝑡) = (𝒜𝓍)(𝑡), for all 𝑡 ∈ ℛ+(2.2.1)      

Definition 2.2.1[21]: Let 𝑓 ∈ ℒ1[0, 𝒯]and 𝛼 > 0. The Riemann-Liouville fractional derivative of order 𝜁 of real 

function 𝑓 is defined as  
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𝒟𝜁𝑓(𝑡) =
1

𝛤(1 − 𝜁)

𝑑

𝑑𝑡
∫

𝑓(𝑠)

(𝑡 − 𝑠)𝜁
𝑑𝑠     ,       0 < 𝜁 < 1

𝑡

0

 

Such that   𝒟−𝜁𝑓(𝑡) = 𝐼𝜁𝑓(𝑡) =
1

𝛤(𝜁)
∫

𝑓(𝑠)

(𝑡−𝑠)1−𝜁
 𝑑𝑠

𝑡

0
respectively. 

Definition 2.2.2 [21]: The Riemann-Liouville fractional integral of order 𝜁 ∈ (0,1) of the function 𝑓 ∈ ℒ1[0, 𝒯] 

is defined by the formula:  

𝐼𝜁𝑓(𝑡) =
1

𝛤(𝜁)
∫

𝑓(𝑠)

(𝑡 − 𝑠)1−𝜁
𝑑𝑠 ,    𝑡 ∈ [0, T]

𝑡

0

 

Where Γ(𝜁) denote the Euler gamma function. The Riemann-Liouville fractional derivative operator of order 𝜁  

defined by  

𝒟𝜁 =
𝑑𝜁

𝑑𝑡𝜁
=
𝑑

𝑑𝑡
°𝐼1−𝜁  

It may be shown that the fractional integral operator 𝐼𝜁  transforms the space ℒ1(ℛ+, ℛ) into itself and has some 

other properties.  

Definition 2.2.3 [12]: A mapping 𝑔:ℛ+ × ℛ → ℛ is Caratheodory if: 

i) 𝑡 → 𝑔(𝑡, 𝑥) is measurable for each 𝑥 ∈ ℛ and 

ii) 𝑥 → 𝑔(𝑡, 𝑥)is continuous almost everywhere for  𝑡 ∈ ℛ+. 

Furthermore a Caratheodory function 𝑔 is ℒ1 −Caratheodory if: 

iii) For each real number 𝑟 > 0 there exists a function ℎ𝑟 ∈ ℒ
1(ℛ+, ℛ) such that|𝑔(𝑡, 𝑥)| ≤

ℎ𝑟(𝑡) 𝑎. 𝑒.   𝑡 ∈ ℛ+ for all 𝑥 ∈ ℛ with |𝑥| ≤ 𝑟 

Finally a caratheodory function 𝑔 is ℒ𝑋
1 −caratheodory if: 

iv) There exists a function ℎ ∈ ∀ℒ1(ℛ+, ℛ) such that |𝑔(𝑡, 𝑥)| ≤ ℎ(𝑡),    𝑎. 𝑒.   𝑡 ∈ ℛ+  for all 𝑥 ∈ ℛ 

For convenience, the function ℎ is referred to as a bound function for 𝑔. 

2.3 EXISTENCE THEORY: 

Now for the solution of (2.2.1) in the space 𝐵𝒞(ℛ+, ℛ)of bounded and continuous realvalued functions defined 

on ℛ+ . Define a standard norm ‖∙‖ and a multiplication “ ∙ ” in 𝐵𝒞(ℛ+, ℛ)by, 

‖𝑥‖ = 𝑠𝑢𝑝{|𝑥(𝑡)|: 𝑡 ∈ ℛ+},   (𝑥𝑦)(𝑡) = 𝑥(𝑡)𝑦(𝑡),   𝑡 ∈ ℛ+ 

Clearly, 𝐵𝒞(ℛ+, ℛ) becomes a Banach space with respect to the above norm and the multiplication in it. By 

ℒ1(ℛ+, ℛ) we denote the space of Lebesgue-integrable function inℛ+with the norm ‖∙‖ℒ1  defined by 

‖𝑥‖ℒ = ∫|𝑥(𝑡)|𝑑𝑡

∞

0

 

Now the FNFDE (2.1.1) is equivalent to the FNFIE 

𝑥(𝑡) = [𝑓 (𝑡, 𝑥(𝛼(𝑡)))] [∫ 𝑔 (𝑠, 𝑥(𝜇(𝑠))) 𝑑𝑠
𝑡

0
](2.3.1)         

Let us define the two mapping𝒜:𝑋 → 𝑋 and ℬ: 𝐵𝑟[0] → 𝑋  by 

𝒜𝑥(𝑡) = 𝑓 (𝑡, 𝑥(𝛼(𝑡))) , 𝑡 ∈ ℛ+(2.3.2) 
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ℬ𝑥(𝑡) = ∫ 𝑔 (𝑠, 𝑥(𝜇(𝑠))) 𝑑𝑠
𝑡

0
 , 𝑡 ∈ ℛ+(2.3.3) 

Thus from the FNDE (2.1.1), we obtain the operator equation as follows: 

𝓍(𝑡) = 𝒜𝑥(𝑡)ℬ𝑥(𝑡), 𝑡 ∈ ℛ+(2.3.4) 

By using all above preliminaries and some hypothesiswe have already proved the operator 𝒜 and ℬ satisfy all 

the conditionsof fixed point theorem,so the operator equation (2.3.4) has a solution on 𝐵𝑟[0]. 

2.4 EXISTENCE OF EXTREMAL SOLUTIONS 

Definition 2.4.0 [10, 26]: A closed and non-empty set  𝒦 in a Banach Algebra  𝑋  is called a cone if  

i. 𝒦 +𝒦 ⊆ 𝒦 

ii. 𝜆𝒦 ⊆ 𝒦  for  𝜆 ∈ 𝒦, 𝜆 ≥ 0  

iii. {−𝒦} ∩𝒦 = 0, Where 0 is the zero element of𝑋. 

and is called positive cone if  

iv. 𝒦 ∘ 𝒦 ⊆ 𝒦 

and the notation  ∘  is a multiplication composition in  𝑋. 

We introduce an order relation  ≤  in 𝑋  as follows. 

Let 𝑥, 𝑦 ∈ 𝑋  then 𝑥 ≤ 𝑦  if and only if 𝑦 − 𝑥 ∈ 𝒦. A cone 𝒦  is called normal if the norm   ‖∙‖  is monotone 

increasing on𝒦.  It is known that if the cone   𝒦  is normal in  𝑋  then every order-bounded set in  𝑋  is norm-

bounded set in 𝑋. The details of cone and their properties appear in Guo and Lakshikantham [10]. 

We equip the space  𝒞(ℛ+, ℛ)  of continuous real valued function on  ℛ+  with the order relation   ≤  with the 

help of cone defined by,  

𝒦 = {𝑥 ∈ 𝒞(ℛ+, ℛ): 𝑥(𝑡) ≥ 0, ∀𝑡 ∈ ℛ+} 

It is well known that the cone  𝒦  is normal and positive in 𝒞(ℛ+, ℛ). As a result of positivity of the cone  𝒦  

we have:  

Lemma 2.4.1 [13]: Let 𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ 𝒦  be such that   𝑝1 ≤ 𝑞1and 𝑝2 ≤ 𝑞2then𝑝1𝑝2 ≤ 𝑞1𝑞2. 

For any 𝑝1, 𝑝2 ∈ 𝑋 = 𝒞(ℛ+, ℛ), 𝑝1 ≤ 𝑝2   the order interval [𝑝1, 𝑝2] is a set in 𝑋 given by,   

[𝑝1, 𝑝2] = {𝓍 ∈ 𝑋: 𝑝1 ≤ 𝑥 ≤ 𝑝2}. 

Definition 2.4.1 [12]: A mapping 𝑅: [𝑝1, 𝑝2] → 𝑋 is said to be nondecreasing or monotone increasing if  𝓍 ≤ 𝑦 

implies  𝑅𝑥 ≤ 𝑅𝑦 for all  𝑥, 𝑦 ∈ [𝑝1, 𝑝2]. 

For proving the existence of Extremal solutions of the equations (2.1.1) under certain monotonicity conditions 

by using following fixed point theorem of Dhage [13, 14]. 

Theorem 2.4.1 [14]: Let  𝒦  be a cone in Banach Algebra  𝑋  and let[𝑝1, 𝑝2] ∈ 𝑋.  Suppose that 𝒜,ℬ: [𝑝1, 𝑝2] →

𝒦  be two operators such that 

a. 𝒜 is  Lipschitz with Lipschitz constant 𝛼 

b. ℬ  is completely continuous, 

c. 𝒜𝓍ℬ𝓍 ∈ [𝑝, 𝑞]  for each 𝓍 ∈ [𝑝, 𝑞]  and 
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d. 𝒜 andℬ  are nondecreasing. 

Further if the cone  𝒦  is normal and positive then the operator equation  𝑥 = 𝒜𝑥ℬ𝑦  has the least and greatest 

positive solution in  [𝑝1, 𝑝2]  whenever  𝛼𝑀 < 1,  where  𝑀 = ‖ℬ([𝑝1, 𝑝2])‖ = 𝑠𝑢𝑝{‖ℬ𝓍‖: 𝑥 ∈ [𝑝1, 𝑝2]} 

2.4.1 EXISTENCE THE EXTREMAL SOLUTION OF FNQFDE (2.1.1) 

For existence the Extremal solution of first order nonlinear quadratic functional differential equation (FNQFDE) 

(2.1.1) we require following definitions. 

Definition 2.4.1.1: A function  𝑝1 ∈ 𝐵𝒞(ℛ+, ℛ)  is called a lower solution of the FNQFDE (2.1.1) on  ℛ+  if 

the function  𝑡 →
𝑝1(𝑡)

𝑓(𝑡,   𝑝1(𝛼(𝑡)))
  is continuous and  

𝒟 [
𝑝1(𝑡)

𝑓 (𝑡, 𝑝1(𝛼(𝑡)))
] ≤ 𝑔[𝑡, 𝑝1(𝜇(𝑡))], 𝑎. 𝑒. , 𝑡 ∈ ℛ+

𝓍(0) = 0 }
 

 

 

Again a function 𝑝2 ∈ 𝐵𝒞(ℛ+, ℛ)  is called an upper solution of the FNQFDE (2.1.1) on  ℛ+  if the function  

𝑡 →
𝑝2(𝑡)

𝑓(𝑡,   𝑝2(𝛼(𝑡)))
  is continuous and 

𝒟 [
𝑝2(𝑡)

𝑓 (𝑡, 𝑝2(𝛼(𝑡)))
] ≥ 𝑔[𝑡, 𝑝2(𝜇(𝑡))], 𝑎. 𝑒. , 𝑡 ∈ ℛ+

𝓍(0) = 0 }
 

 

 

Definition 2.4.1.2: A solution  𝑥𝑀  of the FNQFDE (2.1.1) is said to be maximal if for any other solution 𝑥  to 

FNQFDE (2.1.1) one has  𝑥(𝑡) ≤ 𝑥𝑀(𝑡)  for all ∈ ℛ+ . Again a solution 𝑥𝑀  of the FNQFDE (2.1.1) is said to 

be minimal if  𝑥𝑀(𝑡) ≤ 𝑥(𝑡)  for all 𝑡 ∈ ℛ+ where 𝑥  is any solution of the FNQFDE (2.1.1) on  ℛ+. 

We consider the following hypothesis for existence of Extremal solution: 

𝔅1) 𝑔 is Caratheodory. 

𝔅2) The functions 𝑓 (𝑡, 𝑥(𝛼(𝑡))) and 𝑔[𝑡, 𝑥(𝜇(𝑡))]  are non-decreasing in  𝓍  almost everywhere for 

𝑡 ∈ ℛ+ 

𝔅3) The FNQFDE (2.1.1) has a lower solution 𝑝1  and an upper solution  𝑝2 on ℛ+  with  𝑝1 ≤ 𝑝2 

𝔅4) The function  𝑘:ℛ+ → ℛ  defined by  

𝑘(𝑡) = |𝑔[𝑡, 𝑝1(𝜇(𝑡))]| + |𝑔[𝑡, 𝑝2(𝜇(𝑡))]|is Lebesgue measurable 

 

Remark 2.4.1.1: Assume that (𝔅2 − 𝔅4)   hold. Then 

|𝑔[𝑡, 𝑥(𝜇(𝑡))]| ≤ 𝑘(𝑡), 𝑎. 𝑒.  𝑡 ∈ ℛ+for all  𝑥 ∈ [𝑝1, 𝑝2]. 
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II. MAIN RESULT: 

Theorem 2.4.1.1: Suppose that the assumptions required for existence of solution and(𝔅1 − 𝔅4) holds and 𝑘 is 

given in remark (2.4.1.1) further if 𝐿‖𝑘‖ℒ1 ≤ 1 then FNQFDE (2.1.1) has a minimal and maximal positive 

solution on ℛ+. 

Proof: The FNQFDE (2.1.1) is equivalent to IE (2.3.4) on ℛ+ . Let  𝑋 = 𝒞(ℛ+, ℛ) and we define an order 

relation “≤” by the cone 𝒦  given by (2.4.1). Clearly 𝒦  is a normal cone in 𝑋. Define two operators  𝒜 and  ℬ 

on 𝑋  by (2.3.2) and (2.3.3) respectively. Then IE (2.3.4) is transformed into an operator equation 𝒜𝑥ℬ𝑥 = 𝑥 in 

Banach algebra 𝑋. Notice that (𝔅1) implies 𝒜,ℬ: [𝑝1, 𝑝2] → 𝒦  Since the cone  𝒦 in  𝑋 is normal, [𝑝1 , 𝑝2]is a 

norm bounded set in 𝑋. As (2.1.1) has solution, so that𝒜 is a Lipschitz with a Lipschitz constant 𝐿  and ℬ is 

completely continuous operator on[𝑝1, 𝑝2]. Again the hypothesis (𝔅2)  implies that  𝒜 and ℬ are non-

decreasing on [𝑝1 , 𝑝2]. To see this, let  𝑥, 𝑦 ∈ [𝑝1 , 𝑝2]  be such that  𝑥 ≤ 𝑦.  Then by  (𝔅2) 

𝒜𝑥(𝑡) = 𝑓 (𝑡, 𝑥(𝛼(𝑡))) ≤ 𝑓 (𝑡, 𝑦(𝛼(𝑡))) ≤ 𝒜𝑦(𝑡), ∀𝑡 ∈ ℛ+ 

Similarly, 

ℬ𝑥(𝑡) = ∫ 𝑔 (𝑠, 𝑥(𝜇(𝑠))) 𝑑𝑠
𝑡

0

≤ ∫ 𝑔 (𝑠, 𝑦(𝜇(𝑠))) 𝑑𝑠
𝑡

0

 

≤ ℬ𝑦(𝑡), ∀𝑡 ∈ ℛ+ 

Implies that 𝒜 and ℬ are nondecreasing operators on[𝑝1, 𝑝2]. Again definition (2.4.1.1) and hypothesis  (𝔅3)  

implies that  

𝑝1(𝑡) ≤ 𝑓 (𝑡, 𝑝1(𝛼(𝑡)))∫ 𝑔[𝑠, 𝑝1(𝜇(𝑠))]𝑑𝑠
𝑡

0

 

≤ 𝑓 (𝑡, 𝑥(𝛼(𝑡)))∫ 𝑔 (𝑠, 𝑥(𝜇(𝑠))) 𝑑𝑠
𝑡

0

 

≤ 𝑓 (𝑡, 𝑝2(𝛼(𝑡)))∫ 𝑔 (𝑠, 𝑝2(𝜇(𝑠))) 𝑑𝑠
𝑡

0

 

≤ 𝑝2(𝑡), ∀𝑡 ∈ ℛ+ and𝑥 ∈ [𝑝1, 𝑝2] 

As a result 𝑝1(𝑡) ≤ 𝒜𝑥(𝑡)ℬ𝑥(𝑡) ≤ 𝑝2(𝑡), ∀𝑡 ∈ ℛ+  and  𝑥 ∈ [𝑝1, 𝑝2] 

Hence𝒜𝑥ℬ𝑥 ∈ [𝑝1 , 𝑝2], ∀𝑥 ∈ [𝑝1, 𝑝2] 

Again 𝑀 = ‖ℬ([𝑝1, 𝑝2])‖ = 𝑠𝑢𝑝{‖ℬ𝑥‖: 𝑥 ∈ [𝑝1, 𝑝2]} 

≤ 𝑠𝑢𝑝 {𝑠𝑢𝑝𝑡∈ℛ+∫ |𝑔 (𝑠, 𝑥(𝜇(𝑠))) 𝑑𝑠|
𝑡

0

: 𝑥 ∈ [𝑝1 , 𝑝2]} 
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≤ ∫ 𝑘(𝑠)
𝑡

0

𝑑𝑠 ≤ ‖𝑘‖ℒ1  

Since  𝐿𝑀 ≤ 𝐿‖𝑘‖ℒ1 ≤ 1 

We apply theorem (2.4.1) to the operator equation 𝒜𝑥ℬ𝑥 = 𝑥 to yield that the FNQFDE (2.1.1) has minimum 

and maximum positive solution on ℛ+. 

III. Conclusion: 

In this Research Paper we have studied the Extremal solutions to the first order nonlinear quadratic functional 

differential equations in Banach Space by Hybrid Fixed Point Theory. 
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