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ABSTRACT: This paper focuses on the study of general elliptic eigenvalue problems and derives a priori
error estimates for eigenvalues and eigenfunctions. First, based on the existence and uniqueness of solutions to
the corresponding steady-state problem, a completely continuous operator T is defined, and an abstract error
estimation expression is derived through deduction. On this basis, further derivations yield error estimates for
eigenvalues and L?-norm error estimates for eigenfunctions. Finally, the validity of the theoretical results is
verified through numerical experiments on two-dimensional problems.
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l. INTRODUCTION

Second-order elliptic eigenvalue problems play a significant role in scientific computing and
engineering applications, with extensive use in structural vibration analysis, quantum mechanics, and
electromagnetic field computations, among other fields. For instance, reference [1] explores extrapolation
methods for eigenvalue problems, reference [2] investigates reconstruction algorithms for function values, and
reference [3] proposes multilevel correction methods for eigenvalue problems. Over the years, the mixed finite
element method, as an important branch of the finite element method, has gained increasing attention in
practical applications. The Raviart-Thomas mixed finite element method, in particular, has garnered
considerable attention due to its advantages in solving eigenvalue problems. The R-T mixed finite element
method can also be applied to solve various eigenvalue problems, such as the Laplace eigenvalue problem [4],
the Stokes eigenvalue problem [5] [6], and others.

This paper investigates the application of the Raviart-Thomas mixed finite element method to second-
order elliptic eigenvalue problems. We systematically establish a priori error estimation theory and design
corresponding numerical algorithms. The effectiveness and reliability of the proposed method are validated
through numerical experiments.

1.1 Notations and Basic Preparation:
The following is a description of the notation that will be used in this article. For s > 0, we denote as
Illso the norms of the Sobolev space H*(Q) and [H*(Q)]?, with the convention H°(Q) = L?(Q) and
[H°(Q)]? = [L2(Q)]2. In addition, we define the Hilbert space as follows
H(div, Q) = {r e (12()": divt € 12 (Q)}
and the corresponding norm is given by:
1Tl iy = llTllg o + lldivelld o (1.1)
The Poincaré inequality: If Q is a connected and bounded convex domain in one direction,
then for any v € H1(Q), we
Ivlloq s IVVlloq (12)

Finally, the relation a < b represents a < Ch, where C denotes a constant independent of h, the mesh size, and
similarly, a = b represents a = Cb.
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1.  STANDARD MIXED FINITE ELEMENT APPROXIMATION
Consider the second-order elliptic eigenvalue problem: Find 1 € R, u € H3 (), such that
{—V (c()Vu) =2Au, in Q
u=0, on 0Q
where c(x) = ¢, > 0, Q c R? is a bounded domain with a Lipschitz boundary Q, and V , V- denote the
gradient operator and the divergence operator, respectively.
Let ¢ = c(x) - Vu, then the problem (2.1) is equivalent to
{c(x)‘lo' —Vu=0, in Q

.1)

—dive = u, in Q (2.2)
u=0, on 0N
let H = H(div,Q),V = G = [2(Q), from the equivalent form (2.2), the mixed variational form of the problem
(2.1) is obtained as follows: Find (4, 6,u) € R x H x V, such that

{a(a, )+ b(t,u)=0, VTeEH 2.3)
b(o,v) = —Ar(u,v), Vv eV
where the bilinear forms a(-,-), b(:,-), and r(:,-) are defined as follows:
a(o,t) = [, clotdx, b(r,v) = [ divt-vdx, r(u,v)= [ uvdx

and the bilinear forms a(:,-), b(-,-), and r(:,-) have the following properties

la(o,7)| < lloliglizlly, Yo,T€H (2.4)

a(o,0) 2 ||all3, Vo € H (2.5)

|b(z,v)| s lIzllgllvlly, YTeEHvEV (2.6)

lr(w,v)| < llullyllvlly, VuvevV (2.7)
For the eigenvalue A, there exists the Rayleigh quotient expression

a(o,0
A= r((u‘ui (2.8)
From [7] [10], the eigenvalue problem (2.3) has an eigenvalue sequence {/1]-}
0S4 S < S A <oy }gi_mo/lkzoo

and the associated eigenfunctions

(0'1;u1); (GZJuZ)I tty (ak! uk):"'
Let 7;, = {x} be a shape-regular mesh of Q, where h,. denotes the diameter of each element x, and h =
me%xh"' For any x € 7;,, we denote by P, (x) the space of polynomials defined on element x, where k > 0.
KETR

With these ingredients at hand, we define the Raviart-Thomas space as follows (see [8])

H, ={r € H{div,Q): |, € [P.(1)]* ® x - P, (k) VK € T} (2.9)
V, ={verl?Q):v|, € P(k) Vi€ T} (2.10)
Then, according to the definitions of spaces H, and V,,, we have
divH, =V, (2.11)
The mixed finite element approximation of problem (2.3) is: Find (1, oy, u,) € R X H, XV}, such
that
{a(ah,r) + b(t,uy) =0, vt € Hy, 2.12)
b(oy,v) = —Apr(uy, v), Yv eV, '
for the eigenvalue A, there exists the Rayleigh quotient expression
Ay, = Lonon) (2.13)

T(up,up)
From [7] [10], the eigenvalue problem (3.4) has eigenvalues as follow

0= Ap<App = S hp <= Ayp, limAy = oo
and the associated eigenfunctions
(‘71,hr u1.h)» (az,h» uz,h)r y (O'k,hr uk,h)""' (GN,h’ uN,h)
For f € L?(Q), consider the source problem corresponding to the eigenvalue problem (2.3) and its discrete
mixed finite element form.
Find (p,q) € H x V, such that
{a(p, )+ b(t,q) =0, VTEH

b(p,v) = —(f,v), Yo eV (2.14)
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Find (py, q») € Hy, XV}, such that
a(py,T) + b(t,q,) =0, VTEH,
{b(l’h, v) =—=(f,v), Vv € Vy
For the polygonal domain, it is known from [9] that the problem (2.14) has a unique solution, and the following
regularity result holds: For f € V, V(p,q) € H"(Q)? x [H**"(Q) n H}*"(Q)], such that
lallisr + ol S Nflle, 1/2<r<1 (2.16)
Assume that the mixed finite element spaces H, < H and V,, c V satisfy the inf-sup condition, i.e.,
there exists a constant 8 > 0 such that

(2.15)

b
sup
T€EHR I

D > Bllvllo, Vv € Va (217)

Then (2.15) also exists a unique solution (py, q,) € Hy, X V;, and the following error estimate is valid (see [8]
[11])
lp — prlla +lg — anllo s inf llp—zllg + inf llg—7vllo (2.18)

ThEHR VhEVH
By setting ¢ = L2(Q) and W = L?(2) x L2(2), a linear bounded operator can be defined as follows:
S:6G-H T:G-G
Sy:G->H T;:GC-G
Thus, the eigenvalue problems (2.3) and (2.12) have equivalent operator forms, respectively.

ATu =1u
{S(/lu) —o (2.19)
AnThup, = up
2.20
{Sn(lhuh) = 0oy (2.20)

In this way, finding the eigenpairs (1, a,u) of (2.3) can be reduced to finding the eigenpairs (A7, u) of T
and o = S(Au); finding the eigenpairs (A, 0y, u) of (2.12) can be reduced to finding the eigenpairs
(A1 up) of Ty, and 0y, = S, (Auy).

Lemma2.1. T and T, are self-adjoint operators.

Proof. For f € L?(Q),(2.14) can be written as

{a(Sf,t)+b(‘r,Tf) =0, VTEH 2.21)
b(Sf,v) = —(f,v), Vv eV '
Similarly, for g € L?(Q), (2.14) also holds
a(Sg,t) +b(r,Tg) =0, VT€EH
{b(Sg, v) = —(g,v), Vv EV (2.22)
By taking T = Sg,v = Tg in (2.18), we obtain
{a(Sf,Sg) +b(Sg,Tf) =0 (2.23)
b(Sf,Tg) = —(f,Tg) '
by taking T = Sf,v = Tf in (2.19), we obtain
{a(Sg,Sf) +b(Sf,Tg) =0 (2.24)
b($g,Tf) = —(g,Tf) '

From (2.23) and (2.24), we have
(f,Tg) = —b(Sf,Tg) = a(Sg,Sf) = —b(Sg,Tf) = (g,Tf) (2.25)
Therefore, T is self-adjoint. Similarly, it can be shown that T}, is also self-adjoint.
Theorem 2.1. For the operators T and T;, defined above, ash - 0, || T — T}, ll,— O.
Proof. It has been proven in [12]

lu=wlos {2 (2.26)
From the regularity estimate ||u]|, < ||f]lo., it follows that:
(IT7 ~Tufllo < Wl =0 2.27)
ITf —Tufllo s R?lIflle h=1 '

Therefore, ash = 0, ||T — Ty, = O.
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I1l. APRIORI ERRORESTIMATE
Let (A,0,u) be an eigenpair of (2.3), and (A, 05,u,) be an eigenpair of (2.12).
Suppose (A, gy, uy,) approximates (4, a,u), and let V; denote the eigenspace of (2.3) corresponding to A. Then,
the following estimates hold.
Lemma 3.1. Letthe multiplicity of A be m, forl = 1,2, ..., m, we have the following estimate

4= 2nl S 1165 = Sl + 1168 = Sl | = Ty, Il + 1T =Tl I (€AY

Proof.  Since the multiplicity of eigenvalues of a self-adjoint operator is equal to the dimension of its
eigenspace, let ¢4, @5, ..., @, be an orthogonal basis for V;. From Theorem 3 in [7] and the fact that the
steepness of a self-adjoint operator « = 1, we obtain the following

— _ 2
A7 =2z S 20 | (= Ten o)) + 1T = Tl I (32)
For f, g € L?(Q), we estimate |((T — T,)g, f)|. Express (2.14) and (2.15) in operator form.

a(Sf,©) +b(r,Tf) =0 VteEH
{b(Sf, v) = —(f,v) YveV (33)
{a(Shf,T)+b(‘t,Thf) =0 vVt € Hy, (3.4)
b(S,f,v) = —(f,v) Yv €V, '
From the two equations in (3.3), we obtain the following
(f,v) = —a(Sf,t) — b(r,Tf) — b(Sf,v) V(t,v) EHXV (3.5)
For g € L?(Q), lett € (§ — §,)g.v € (T — T,)g- Then, the following holds
(f, (T = Tp)g) = —a(Sf, (S — Sp)g) — b((S = Sw)g, Tf) — b(Sf, (T = Tp)g) (36)
Replacing f with g € L2(Q), we derive from (3.3) and (3.4) that
{a((s —5,)9,7) + b(z, (T —Ty)g) = 0
(3.7)
b((S—Sy)g,v)=0

Adding the two equations in (3.7), we have
a((S -89, ‘r) +b(z, (T —Tyg) + b((S -S4, v) =0 (3.8)
Due to the symmetry of a(-,-), adding (2.23) and (2.24) gives
(f, (T =T g) = a((S — S g, T — Sf) + b((S — S g, v — Tf) + b(z = Sf, (T — Tp)g) 3.9
From equations (2.4), (2.6), and (2.7), it follows that for all vz € H,, v € V}, we have
I(f, (T = TP s 1S = S)gllollt — Sfllo
+IS = Sugllollv = Tfllo (3.10)
+lT = SFlII(T — T gllo
In (3.10), taking T = S,,f,v = T,,f, we have
I(f, (T =T s IS = Sp)glloll(S = Sp)fllo
+IS =S glloll(T = Tf llo (3.11)
+IS =S Nloll(T = Trdgllo
In (3.11), replacing g with ¢; and f with ¢;, we obtain

(7 = Ten )| 5 1165 = Swlv, |12 + 2116 = Sl Il I = Tl I, (3.12)
Substituting (3.12) into (3.2) yields (3.1).
Lemma 3.2. The following estimate holds
lu —unlle = ||(T_Th)|v,1||0 (3.13)
2= 2l S [ (T = Ty, I, (3.14)
Proof. Equation (3.13) can be immediately derived from Theorem 7.4 in [7] and the preceding Lemma 2.1.
Equation (3.14) can be derived from Theorem 7.3 in [7] and the preceding Theorem 2.1 and Lemma 2.1.
In (2.14) and (2.15), taking f = Au, it follows from the definitions of T, §, T}, and S, that T (1u),and

S(Au) are solutions to (2.14), while T, (1u), and S;, (Au) are solutions to (2.15).
Lemma 3.3. The following estimate holds for the eigenfunction a,.

llo —anllo s [[(T =T, I, + 1165, — $H @D lo (3.15)
Proof. Due to the triangle inequality
IS(Aw) — $n(Anun)llo < IISCAw) = Sp(A)llo + [ISh(Aw) — Sy (Apun)llo (3.16)

Thus, it suffices to prove
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IS, (Aw) = Sp(Apundllo = ”(T - Th)|vl”0 (3.17)
In (2.15), taking f = Au and expressing it in operator form
a(S,(uw),7) + b(r, Th(lu)) =0 VteH,
{b(Sh(Au),v) = —(Au,v) Vv eV,
Expressing (2.12) in operator form and taking the difference with (3.18) yields
a(Sp(Apup — ), T) + b(T, Ty (Auy, — Aw)) =0 VT € H),
{b(Sh(lhuh —Au),v) = —(Ayu, — A, v) Vv eV,
In (3.19), taking T = S, (4w, — Aw) and v = Tj, (A, u;, — Au), We obtain
{a(Sh(/lhuh — ), §p(Apup, — ) + b(S, (Apup — ), Ty (Aquy, — Aw)) = 0
b(Sn(Apun — ), Ty (Apup, — ) = —(Apup — Aw, Ty, (Apuy — Aw))
Adding the two equations in (3.20) gives
a(SnApun — M), S (Apuy — ) = (Aauy, — A, Ty (Apuy, — W) (3.21)
From (3.21) and (2.5), we obtain
1Sh (Arun — AWIG S Ay — AullolITy (A, — 2o

(3.18)

(3.19)

(3.20)

(3.22)
S [Apuy — Aullf
Consequently, we have
IS Anun — AW)llo S 1 Apup — Aullo (3.23)
From (3.13), (3.14), and (3.23), we obtain.
1S, Ay — Wlo S ||(T — T,)|VA||0 (3.24)

This is precisely equation (3.15).
Theorem 3.1. Let (1,0,u) and (A, oy, u;,) be the solutions to the eigenvalue problem (2.3) and (3.4),
respectively, for u € H™*1(Q)), 1 < m < k + 1, such that the following priori error estimates hold

llo—apllo + llu—uplly S h**t, k>0 (3.25)
A= 2| S h?**2 k>0 (3.26)
Proof. From Theorem 4 in [12], we obtain
IS — Sh)gILSZ R ITG Nl (3.27)
U Vo] | P k=1
T—T s { 3.28
IS —Sgllo = h*lITgllr+2 (3.29)
If g € V;, then Tg = A7 g, and thus we have
IS = S, Il = n<* (3.30)
1T =Ty, ||, s <+ (331)

From (3.1), (3.13), (3.15), (3.30) and (3.31), and noting that G = V = L?(Q), we obtain (3.25) and (3.26).

AV NUMERICAL EXAMPLE

In this section, some numerical experiments will be reported to demonstrate the effectiveness of the

method. For problem (2.1), we consider three cases with

cx)=1c(x)= m, ﬁ
The corresponding numerical results are shown in the tables and figures. Additionally, the numerical examples
in this paper were computed using MATLAB 2020b under the iFEM software package (see [13]).

In the experiment, we consider three test domains: the L-shaped domain Q; = (—1,1)2\(0,1) x —1,0),
the crack structure domainQg, = (—1,1)\{0 < x < 1,y = 0} and the square domain (s with vertices at
(0,-1),(1,0),(0,1), (—1,0). Since the exact eigenvalues are unknown, we select nine sufficiently accurate
approximate values as the reference for the numerical test. These reference eigenvalues are obtained as
accurately as possible through adaptive computations. From Tables 1 to 3, we can observe that the algorithm
achieves optimal convergence rates.

and c(x) =
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Table 1: When ¢(x) = 1,the numerical solution for the eigenvalues for regions q,,Q5, Qg,.

domain ref h dof A Error rate
1/8 992 9.4920831004 0.14764 1.3721
1/16 3904 9.5826845073 0.05704 1.3577
Q, 9.6397238440 1/32 15488 9.6174666168 0.02226 1.3486
1/64 61696 9.6309840196 0.00874 1.3429
1/128 246272 9.6362784156 0.00345
domain ref h dof A Error rate
1/8 336 9.9112971978 0.04169 1.9848
1/16 1312 9.8801376559 0.01053 1.9963
Qg 9.8696044011 1/32 5184 9.8722445283 0.00264 1.9991
1/64 20608 9.8702648574 0.00066 1.9998
1/128 82176 9.8697695417 0.00017
domain ref h dof A Error rate
1/8 1320 8.0463118980 0.32502 0.9766
1/16 5200 8.2061613471 0.16517 0.9886
Qg 8.3713297112 1/32 20640 8.2880920691 0.08324 0.9944
1/64 82240 8.3295494719 0.04178 0.9972
1/128 328320 8.3503995143 0.02093
Table 2: When c(x) = ﬁ the numerical solution for the eigenvalues for regions ,,Q;, Qg;.
domain ref h dof A Error rate
1/8 992 5.2845072785 0.06258 1.4048
1/16 3904 5.3234532993 0.02364 1.3834
Q, 5.3470894509 1/32 15488 5.3380295990 0.00906 1.3792
1/64 61696 5.3436066085 0.00348 1.3998
1/128 246272 5.3457695017 0.00132
domain ref h dof A Error rate
1/8 336 7.1330615920 0.02237 1.9352
1/16 1312 7.1165381849 0.00585 1.9377
Qg 7.1106875689 1/32 5184 7.1122148112 0.00153 1.8115
1/64 20608 7.1111226589 0.0004 1.4311
1/128 82176 7.1108489255 0.00016
domain ref h dof A Error rate
1/8 1320 4.6140761432 0.14719 0.9893
1/16 5200 46871233652 0.07415 0.9976
Qg 4.7612704287 1/32 20640 4.7241363336 0.03713 1.0046
1/64 82240 4.7427627754 0.01851 1.0138
1/128 328320 4.7521049773 0.00917

Table 3: When ¢(x) = H; the numerical solution for the eigenvalues for regions o,,Qs, Q.

Xzyz’
domain ref h dof Ay Error rate
1/8 992 8.9155212051 0.14139 1.4001
1/16 3904 9.0033419260 0.05357 1.3804
Q; 9.0569153630 1/32 15488 9.0363370039 0.02058 1.3723
1/64 61696 9.0489666936 0.00795 1.3809
1/128 246272 9.0538631875 0.00305
domain ref h dof A Error rate
1/8 336 9.7539955778 0.04171 1.9755
1/16 1312 9.7228932340 0.01061 1.9761
Qg 9.7122874395 1/32 5184 9.7149831817 0.00270 1.9251
1/64 20608 9.7129972694 0.00071 1.7378
1/128 82176 9.7125002670 0.00021
domain ref h dof Ay Error rate
1/8 1320 7.5639009183 0.30472 0.9926
Q51 7-8686199409 1/16 5200 7.7154741472 0.15315 0.9991
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1/32 20640 7.7919991445 0.07662 1.0041
1/64 82240 7.8304187125 0.03820 1.0109
1/128 328320 7.8496636620 0.01896
T T
4L ~ N
10 e S-shape eigenvalue error
- - L-shape eigenvalue error
- —¥— SL-shape eigenvalue error
PPt /. — ——— The line with slope 1.95
1072 107!
The mesh size h
Figure 1: When c(x) = 1, the error curve of the first eigenvalue in the regions q,,0, Q.
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the error curve of the first eigenvalue in the regions .05, Q.
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Error

104} e S-shape eigenvalue error
e —6— L-shape eigenvalue error
- . —— SL-shape eigenvalue error
- ~ ——— The line with slope 1.95
107 107!

The mesh size h
the error curve of the first eigenvalue in the regions .05, Qg;.

Figure 3: When c(x) = ﬁzyz
V. CONCLUSION
This paper presents the Raviart-Thomas mixed finite element method for solving second-order elliptic

eigenvalue problems. In order to derive the a priori error estimates, it is crucial to define the operator T, S, Ty,
Sy, and investigate its complete continuity. In this paper, we conducted numerical experiments on three test
domains ,,04 Q5. the results of these experiments demonstrate that our method is capable of achieving the
optimal convergence order for eigenvalues and obtaining the optimal order error estimates for eigenfunctions.
The numerical experiments confirm the effectiveness of the proposed algorithm.
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