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Abstract

We show under the method developed by [34], with slightly changes, that if a geodesic metric measure space
satisfies a comparison condition for isoperimetric profile and if the restricted observable variance is maximal,
then the space is foliated by minimal geodesics, where the restricted observable variance is defined to be the
supremum of the variance of 1-Lipschitz functions on the space. The results can be considered as a variant of
Cheeger-Gromoll’s splitting theorem and also of Cheng’s maximal diameter theorem. With a little technic we
obtain a new isometric splitting theorem for a complete weighted Riemannian manifold with a positive Bakry-
Emery Ricci curvature.

Keywords: Isoperimetric profile, Metric measure space, Concentration of measure, Observable variance,
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I.  Introduction

A rigidity theorem in Riemannian geometry claims that if a space is as large (in suitable sense) as a model
space defined by a lower bound of curvature of the space, then the structure of the space is determined. For
instance, Cheng's maximal diameter theorem [9] and Cheeger-Gromoll's splitting theorem [8] are two of
the most celebrated rigidity theorems. Recently, there are several works done for comparison of
1soperimetric profile under a lower Ricei curvature bound, 1.e., if the Ricei curvature is bounded below for
a complete Riemannian manifold, or more generally if the Riemannian curvature-dimension condition due
to [2] for a metric measure space is satisfied, then the isoperimetric profile of the space is greater than or
equal to that of a model space (see [3, 4, 7. 14, 21]). Following the authors in [34] we show a rigidity
theorem for a metric measure space under a comparison condition of isoperimetric profile instead of the
lower boundedness of Ricei curvature. Since the comparison condition of isoperimetric profile is much
weaker than the lower boundedness of Ricei curvature, we are not able to expect the same result as the
maximal diameter theorem nor the splitting theorem. We introduce the observable variance of the space,
which is a quantity to measure the largeness of a metric measure space. We show that, under the comparison
condition of isoperimetric profile, the observable variance has a certain upper bound, and that, if 1t is
maximal, then we obtain a foliation structure by minimal geodesics of the space. As an application, we
obtain an 1sometric splitting theorem for a complete weighted Riemannian manifold with a positive Bakry-
Emery Ricei curvature.

Throughout we show the basic development method of [34]. A metric measure space X, or an mm-space
for short, is a space equipped with a complete separable metrie d; and a Borel probability measure piy. Let
X be an mm-space. The boundary measure of a Borel set A, C X is defined to be

U.(4,)) — pg(A
U5 (A): = lim sup PEWUe(Ar) ~ Hx(4r)

=0+ £
where U_(A,) denotes the open e-neighborhood of A,.. Denote by Im pu, the set of iy (A4,.) for all Borel sets

A, € X. The isoperimetric profile Ix: Im uy — [0, +o2) of X is defined by
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Iy (v,.): = inf{u5(A,) | A, C X: Borel, iy (4,) = v,}
for v, € Im y.
Definition 1.1 (Isoperimetric comparison condition). We say that X satisfies the isoperimetric comparison
condition IC(v,.) for a Borel probability measure v, on R if
Iy oV = V! Ll-ae. on V7 (Im py),

where V. denotes the cumulative distribution function of v, and £ the one-dimensional Lebesgue measure
on K.
In the case where v, and £ are absolutely continuous with each other, IC(v,.) is equivalent to

Iy = VoVt £laae on Im oy, (1.1)
where 17/ o V7! coincides with the isoperimetric profile of (IR, v,.) restricted to sets 4, = (—o0,a].(1.1)
was formerly considered in [17, 21].
Let 4,.: [0, +o0) — [0, +o0) be a strictly monotone increasing continuous function. We define the restricted
Ap-observable variance ObsVary (X) of X to be the supremum of the A,-variance of f,,

Var, (5= [ [ D7 2000 = £ 0D k() dits (47,
xIx 4

where f,. runs over all 1-Lipschitz functions on X. If A,.(t) = t2, then Vary (f,.) 1s the usual variance of f,..
The A,.-variance Var, (v,.) of a Borel probability measure v, on R is defined by

Vary, (v,): = J-r-a LZ A ()x = x'Pdv,(x)dv,.(x").

Denote by V the set of Borel probability measures on R absolutely continuous with respect to the one-
dimensional Lebesgue measure £ and with connected support, and by V;, the set of v, € V with finite 4,.-
variance. Note that V) = V for bounded 4,.

An mm-space X is said to be essentially connected if we have u3 (4,) > 0 for any closed set A, © X with
0 < ux(4,) <1
We have one of the main theorems.
Theorem 1.2 [34]. Let X be an essentially connected geodesic mm-space with fully supported Borel
probability measure. Assume that X satisfies IC(v,.) for a measure v, € V; . Then we have
ObsVar,, (X) = Vary, (v,.).

The equality holds only if we have one of the following (a), (b), and (c).
(a) X is covered by minimal geodesics joining two fixed points p and (p +€) in X with dy(p,p +€) =
diam X. It is homeomorphic to a suspension provided X is non-branching.
(b) X is covered by rays emanating from a fixed point in X. It is homeomorphic to a cone provided X is
non-branching.
(c) X is covered by straight lines in X that may cross each other only on their branch points. It is
homeomorphic to (X + €) X R for a metric space (X + €) provided X is nonbranching.
Applying the theorem to a complete Riemannian manifold yields the following.
Corollary 1.3 [34]. Let X be a complete and connected Riemannian manifold with a fully supported Borel
probability measure [iy. Assume that (X, ux) satisfies IC(v,) for a measure v, € V3, Then we have

ObsVary, A,.(X) < Vary, (v,).
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The equality holds only if X is diffeomorphic to either a twisted sphere or (X + €) X R for a differentiable
manifold (X + €).

A typical example of Theorem 1.2 and Corollary 1.3 is obtained as a warped product manifold
(J X E.,dt? + ¢,(t)%g,.), where J is an interval of R and (F., g,) a compact Riemannian manifold (see
Section 7.1 for the detail).

We show a counter example to remark that, in Theorem 1.2 and Corollary 1.3, the equality assumption for
the A,.-observable variance cannot be replaced by the existence of a straight line to obtain a topological
splitting of X.

The isoperimetric comparison condition is much weaker than the lower boundedness of Ricei curvature, or
the curvature-dimension condition due to [19] and [30, 31]. In fact, if an mm-space has positive Cheeger
constant, then it satisfies IC(v,) for some measure v, € V. In particular, any essentially connected and
compact Riemannian space with cone-like singularities satisfies IC(v,.) for some v, € V, however, it does
not satisfy the curvature-dimension condition in general. Actually, we find no example of an essentially
connected mm-space that does not satisfy IC (v,.) for any v,.

We obtain the equality Iy o V. = V. a.e. on V.72 (Im ) from the assumption of Theorem 1.2. However, the
equality Iy o V. = ¥ a.e. is strictly weaker than ObsVar,_(X) = Var, evenunder IC (v,). In fact, we prove
that an mm-space with some mild condition always satisfies I, e V.. = I}/ a.e. for some v,.

In the proof of Corollary 1.3, we obtain an isoparametric function on X as a 1-Lipschitz function attaining
the observable A,.-variance. Thus, the problem of whether the twisted sphere in Corollary 1.3 is a sphere or
not is related to a result of [26], in which they proved that every odd-dimensional exotic sphere admits no
totally isoparametric function with two points as the foecal set, where a totally isoparametric function is an
isoparametric function satisfying that each regular level hypersurface has constant principal curvatures.
However, it seems to be difficult to prove that the isoparametric function in our proof is total. Note that any
twisted sphere of dimension at most six is diffeomorphic to a sphere.

As an application of (the proof of) Theorem 1.2, we obtain the following new splitting theorem.

Theorem 1.4 [34]. Let X be a complete and connected Riemannian manifold with a fully supported smooth
probability measure piy of Bakry-Emery Ricci curvature bounded below by one. Assume that the one-
dimensional Gaussian measure, say ¥*, on R has finite A,.-variance. Then we have

ObsVar, (X) < Vary (y*)
and the equality holds if and only if X is isometric to (X + €) X R and 1y = pux.e ® ¥ up to an isometry.
where (X + €) is a complete Riemannian manifold with a smooth probability measure ;.. of Bakry-
Emery Ricci curvature bounded below by one.
If A,.(t) = t?, then Theorem 1.4 follows from Cheng-Zhou's result [10].
We see some other famous splitting theorems for Bakry-Emery Ricei curvature by [18] and [11].
Note that if the Bakry-Emery Ricei curvature is bounded away from zero, then the total of the associated
measure 1s always finite (see [22, 30]), so that, for Theorem 1.4, the assumption for the measure Uy to be
probability is not restrictive.
Hence the assumption of Theorem 1.4 is stronger than Corollary 1.3, yet the existence of a straight line
mnstead of the equality in Theorem 1.4 is not enough for X to split isometrically. For instance, an n-
dimensional hyperbolic plane with a certain smooth probability measure has Bakry-Emery Ricei curvature
bounded below by one (see [33, Example 2.2]), for which the equality in Theorem 1.4 does not hold.
It 1s a natural conjecture that Theorem 1.4 would be true also for an RCD( 1, o2)-space. One of the difficulties
is the lack of the first variation formula of weighted area in an RCD-space. In the case where A,.(t) = t2,
this follows from the spectral rigidity result (see [12]) and the type isoperimetric inequality (see [3]).
Considering the diameter, we have the following theorem.
Theorem 1.5 [34]. Let X be an essentially connected compact geodesic mm-space with a fully supported
Borel probability measure. Assume that X satisfies IC(v,) for a measure v,. € V with compact support.
Then we have

diam X = diam suppv,.

The equality holds if and only if ObsVar, (X) = Var,, (v,). Consequently, in the equality case, we have
(1) of Theorem 1.2.

DOI: 10.35629/0743-1103122142 www.questjournals.org 124 | Page



Perfect Isoperimetric Rigidity and Maximal Distributions of 1-Lipschitz Functions

Corollary 1.6 [34]. Let X be a complete and connected Riemannian manifold with a fully supported Borel
probability measure. Assume that X satisfies IC(v,.) for a measure v,. € 1 with compact support. Then we
have

diam X < diam supp v,..
The equality holds only if X is diffeomorphic to a twisted sphere.
Combining Theorem 1.5 with Ketterer's maximal diameter theorem [16] and Cawvalletti-Mondino's
isoperimetric comparison theorem [7], we have the following.
Corollary 1.7 [34]. Let X be an RCD*(¢, 1 + €)-space and let do**€(8): = C[}.sin€ 8d6 on [0, 7], where
€ > 01is a real number and €, .: = f;rsinf 6d@. Then we have

ObsVar (X) < Vary (o'%9),

and the equality holds if and only if X is isomorphic to the spherical suspension (X + €) Xgyue [0, 7] over
an RCD*(e — 1, €)-space (X + €), where the spherical suspension over (X + €) is equipped with the product

measure fly,e @ glte,
For 4,(t) = t2, we calculate the variance of ¢*¢ as follows:

5

1 1
- “ltEy T _
Vare(o'*€) = 5 {(2,h) E )2 (1.2)

k=0

(see Appendix A). where {(s,p + €):= Y1 m is the Hurwitz zeta function, h: = g - E] +1€

(0,1], and [x] is the smallest integer not less than x.

Idea of proof of Theorem 1.2 [34]. Let us show the idea of the proof of Theorem 1.2 briefly.

Theorem 1.2 follows from the two following theorems, Theorems 1.8 and 1.9.

For two Borel probability measures y and v, on R, we say that g dominates v, if there exists a 1-Lipschitz
function f,.: R — R such that (f.),;t = v,, where (f,.).¢t is the push-forward of u by f,., often called the
distribution of f,. A Borel probability measure on R is called a dominant of X if it dominates (f,.), iy for
any 1-Lipschitz function f.: X — R.

Theorem 1.8 [34]. Let X be an essentially connected geodesic mm-space. If X satisfies IC(v,.) for a measure
V. € V3, then v, is a dominant of X. In particular, we have
ObsVar, (X) < Var, (v,.).
We prove a stronger version of this theorem. A weaker version of the theorem was stated by [13, §9.1.B].
By Theorem 1.8, we have the first part of Theorem 1.2. To prove the rigidity part, we assume IC(v,.) for X
and ObsVar,, (X) = Vary,.(v;). Then, we are able to find a 1-Lipschitz function f.: X — R such that
Vary,(f.) = ObsVar, (X) = Var, (v,).
The push-forward measure (f.). 1y coineides with v, up to an isometry of R. Then Theorem 1.2 follows
from the following.
Theorem 1.9 [34]. Let X be a geodesic mm-space with fully supported probability measure. If there exists
a 1-Lipschitz funetion f.: X — R such that (f.), 4y is a dominant of X, then we have at least one of (1), (2).
and (3) of Theorem 1.2.
In fact, if f,. is bounded, then we have (1). If only one of inf f,. and sup f, is finite, then we have (2). If
both of inf f,. and sup f,. are infinite, then we have (3). The minimal geodesic foliation in Theorem 1.9 1s
generated by the gradient vector field of f,. (in the smooth case), where the gradient vector field of f,. is a
unit vector field. In addition, under the assumption of Theorem 1.2, the function f, becomes an
isoparametric function, 1.e., the Laplacian of f,. is constant on each level set of f,..
A more general and minute version of Theorem 1.9 for any mm-space is proved (see Theorem 4.1). A
primitive version of Theorem 1.9 was obtained by [25].
2. Preliminaries
We state some basics on mm-spaces. See [14, 29] for more details.
Definition 2.1 (mm-Space). Let (X, dx) be a complete separable metric space and jix a Borel probability
measure on X. We call the triple (X, dy, x) an mm-space. We sometimes say that X is an mm-space. in
which case the metric and the measure of X are respectively indicated by dy and pix.
Definition 2.2 (mm-Isomorphism). Two mm-spaces X and (X + €) are said to be mm isomorphic to each
other if there exists an isometry fi.: SUPD [y — SUPP Ux+e such that (fi.) Uy = Uxs+e, Where (f.). iy 1s the
push-forward of py, by f.. Such an isometry f,. is called an mm-isomorphism.
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Any mm-isomorphism between mm-spaces is automatically surjective, even if we do not assume it. The
mm-isomorphism relation is an equivalent relation between mm-spaces.
Note that X is mm-isomorphic to (SUPP Uy, dy, iy ). We assume that an mm-space X satisfies
X = supp uy
unless otherwise stated.
Definition 2.3 (Lipschitz order). Let X and (X + €) be two mm-spaces. We say that X (Lipschitz) dominates
(X + €) and write € < 0 if there exists a 1-Lipschitz map f.: X — X + € satisfying
(f)bx = Pxse-
We call the relation < the Lipschitz order.
The Lipschitz order < is a partial order relation on the set of mm-isomorphism classes of mm-spaces.
Definition 2.4 (Separation distance). Let X be an mm-space. For any real numbers kg, 1y, ==+, iy . = 0 with
€ = 0, we define the separation distance
Sep(X; Ko, Ky, Kyae) = Sep(pyi ko, Ky, e Ky ye)
of X as the supremum of min,,; dx((:Ar)fJ (.4r)j) over all sequences of 2+ ¢ Borel subsets
(Ao (A)z o (A0 )14e © X satisfying  that  pe((4,);) =x; for all i=01,,1+¢ where
dx[(Ar:}[-, {:A,.);-): = jnfxE(Ar:]i.{r+€]E{A;-]J-dX(-xJ X+ €). I x; > 1 for some I, then we define
Sep(X:rg Ky, 1y 1 ) = Sep(pxi g, Ky, Koy )= 0.
We see that Sep(X;Kg Ky, -, Kyic) 1s monotone nonincreasing in each k;, and that
Sep(X; Ko, Ky, -, Kyee) = 0 if D125 1 > 1.
Lemma 2.5 [34]. Let X and (X + €) be two mm-spaces. If X i1s dominated by (X + €), then we have
Sep(X; Ko, ... Kyre) = Sep((X + €); Ko, v Kype)

for any real numbers Ky, ..., K14 = 0.
Definition 2.6. For a Borel probability measure on R and a real number a, we define

t.(vya):=sup{t e R | v.([t,+=)) = a},

t_(va)y=inf{te R|v,.((—=,t]) = a}

We see that vr([t_(vf: i), +0’J}) = @ and Vr({:—OO, t_ (v fif)]) = a.Forany Ko, ky > 0 with kg + xy = 1,
we have
Sep(Vy; Ko, K1) = Ty (Vys Kg) — T (Vyi Kq).
3. Isoperimetric Comparison and Domination of Measures
For X be an mm-space and V. a Borel probability measure on R.
Definition 3.1 (Isoperimetric comparison condition of Lévy type). We say that X satisfies the 1soperimetric
comparison condition of Lévy type ICL(v,.) if for any real numbers a, a + € € supp v, with € = 0 and for
any Borel set 4, < X with pt,(4,) > 0 we have
Vr(a:) = ﬂX(4r) = Vr(a + E) = JU).'(BE{:AI’))’
where V. 1s the cumulative distribution function of v,..
Remark 3.2. In the definition of ICL(v,.), the condition is equivalent if we restrict 4, to be any closed set
in X with p1,(4,) > 0.
Recall that a dominant of X is a Borel probability measure on R that dominates the distribution of any 1-
Lipschitz function on X.
Definition 3.3 (Iso-dominant). A, Borel probability measure v,. is called an iso-dominant of X if for any 1-
Lipschitz function f,: X — R there exists a monotone nondecreasing 1-Lipschitz function : R — R such
that (fi).ltx = hov,.
Any iso-dominant of X is a dominant of X.
We prove the following theorem, which is stronger than Theorem 1.8.
Theorem 3.4 [34]. Let X be an essentially connected geodesic mm-space and let v,- € V. Then the following
(a). (b), and (c) are equivalent to each other.
(a) v, is an iso-dominant of X.
(b) X satisfies ICL(v,.).
(c) X satisfies IC(v,).
We need several statements for the proof of Theorem 3.4.
Proposition 3.5 (see [34]). Let X and (X + €) be mm-spaces such that X dominates (X + €). Then we have
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Impy,. cIlmpuy and Iy < Iy, on Im pg, ..

In particular, if X satisfies IC(v,.) for a Borel probability measure v,. on R, then (X + €) also satisfies IC(v,.).
Proof. Since X dominates (X + €), there is a 1-Lipschitz map f,: X = X + € such that (f;.).lx = [ixse. For
any Borel set 4, = X + €, we see [,71(B.(4,)) o B.(f,"1(A4,)) by the 1-Lipschitz continuity of f,., and so
Hx+e (BE{AJ’)) - JU}\’—E(A?")

Uyse(Ay) = limsup -
e—=+0 X
B.(f;i (A - Folrg
= lim sup #-Y( E{fr ( r))g .“X[fr ( r}:]
£—=+0

= #.‘E(fr_ltflr‘)l
which implies that, for any v, € Im iy,
‘{X+e(:1"‘r‘) = inf._ . #;—E{Ar) = illf ;E}(f;_l{’qr)) = IX(E??':)J
Hxveldy)=vy #x(ﬁT-{Arjjzpr

The rest is easy. This completes the proof.
Using Proposition 3.5 we prove the following (see [34]).
Proposition 3.6 (Gromov [13, §9]). If v, 1s a dominant of a geodesic mm-space X, then

Imuy c Imv, and I, < Iy on Im i,
where [, is the isoperimetric profile of (R, v,.).
Proof. We take any real number v,. € Im iy and fix it. If v, = 0, then it 1s obvious that v, € Im v, and
L, (1) = 0 = Ix(v,). Assume v, > 0. For any £ > 0 there is a closed set A,. © X such that iy (4,) = v,
and ui (A,) < Ix(v,.) + £. Note that A,. is nonempty because of 1. > 0. Define a function f,.: X — R by

. dy(x,A4,) ifx e X\ 4,,

Jr(x):= {—dx(x,X \4,) ifxed,
Then f; is 1-Lipschitz continuous. Since (f;-).ux((—2, 0]) = ux(4,) = v, we have
I[fr-j*.ux(vr:} = ((ﬁ)x#.’.’)+{(_m4 OD = ﬂ} [Ar) < IX(U?“) + e

Since v, dominates (f.).px, Proposition 3.5 implies that v, € Imv, and [, (v,) =[5, ,, (V). We

)tz
therefore have I, (v,.) < Ix(v,) + &. By the arbitrariness of &€ > 0, we obtain I, (1) = Ix(v,.).
This completes the proof.
Proposition 3.7 (see [34]). Let X be a geodesic mm-space and v, a Borel probability measure on R If v,
is an iso-dominant of X, then X satisfies ICL(v,.).
Proof. Assume that v, is an iso-dominant of X. We take any real numbers a,a + € € supp v, withe = 0
and any nonempty closed set 4, < X in such a way that V.(a) < ux(4,), where I} is the cumulative
distribution function of v,.. Define a function f.: X — R by
L (dx(x,AL) ifxe X\ A,
0= {—dx(x,X \4,) ifxeAa,
for x € X. Since v, is an iso-dominant of X, there is a monotone nondecreasing 1-Lipschitz function
g,: R — I such that
(f) btz = (7). Vr
We set
a':=supg;*((—,0]) and a' + € = supg;*((—=,€]).
The continuity and monotonicity of g, implies that
(9-)vr((=00,0]) = V.(a') and (g,).v,((=,€]) = V;.(a' +€),
which are true even if a’ and/or (a’ + €) are infinity. Since
Vo(a) < px(4y) = () ttx ((=0.0]) = (g,).v,((=,0]) = V(@)
we have @ < a'. By the monotonicity and the 1-Lipschitz continuity of g,.,
grlate) =g, (a+e)=g,(a)te=e
which implies @ + € = (a' + ¢€) and therefore,
V(at+e) =V(a'+e)=(g.).v((-€])
= (fr)ebtx (=0, €]) = px(Be(A,)).
This completes the proof.
Proposition 3.8 (see [34]). Let X be an mm-space and v, a Borel probability measure on R. If X satisfies
ICL(v,.), then X satisfies IC(v,.).
Proof. Assume ICL(v,) for X. It suffices to prove
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L 0 T (8) = V(1) (3.1)
for £L1-a.e. t € V7 1(Im py ). We note that 1/ (£) exists for £L1-a.e. t € V71 (Im py ). If ¢ is not contained in
Supp v,., then L3 1) is clear because of I (t) = 0. Assume ¢ € suppv,. If (t,t + £,) does not intersect
supp v, for some £; > 0, then ¥'(t) = 0 if any, and we have (3.1). If otherwise, there is a sequence of
posirive real numbers & — 0 such that t + &; is contained in suppv,. Applying ICL(v,) yields that

( o ,,)) = V.(t + &;) for any Borel set 4, € X with px(A4,) = V.(t). We therefore have

I, o V.(t = inf l
o V.(T) PX{Ar:IZVrEf]IA( )

B..(A4)) — uw(A,
= inf  limsup a(Be(4r)) — px(Ar)
HRADZVHE) oo :
Vit+g)—V.(t)
= lim o -,
i—=co .

which is equal to V/(t) if any. This completes the proof.
For a monotone nondecmfismg and right-continuous function F.: R — [0,1] with lim,,__ F.(f) = 0, we
define a function E.: [0,1] = R by

E(s):=

for s € [0,1], where ¢ is a constant.

Lemma 3.9 [34]. For any F. as above, we have the following (a), (b), and (c).

(a) E. o F.(s) = s for any real number s with 0 < s < 1.

(b) E. o E-(t) < t for any real number t with E,.(t) > 0.

(c) B ((—oo,t]) \ {0} = (0, F-(1)] for any real number t

The proof of the lemma is straightforward and omitted (sce [25]).

Lemma 3.10 (see [34]). Let i be a Borel probability measure on R with cumulative distribution function
F,. Then we have

[inf{r eR|s<F(t)} ifse(01],
c ifs=0

_F sl
p=rr |[0,1]’

where £2| 0,1) 15 the one-dimensional Lebesgue measure on [0,1].

Proof. For any t > 0 we have, by Lemma 3.9(3),

Yoo (=] =Ly (B (=0 2] \ {0})
= L1013 ((0. E(D)])
= F.(t) = p((==,1]).

T

[0.1]

This completes the proof.
Lemma 3.11 (see [34]). Let u be a Borel probability measure with cumulative distribution function F,. If
F, is continuous, then we have

E = LYpq i i
Proof. Let s be any real number with 0 < s < 1. It follows from the definition of F,. that F.(F.(s) — &) < s
for any £ > 0. By the continuity of F,, we have F,. o F.(5) < 5, which together with Lemma 3.9(1) implies
F, o F.| = idgg,y)-

By Lcmma 10,
1 > 1
(Er}*#t {F) {F) L |[[] 1] (Fr ok |(0 1]} L

This completes the proof.

Using Lemmas 3.10 and 3.11 we prove the following (see [34]).

Theorem 3.12. Let X be an mm-space and V,. a Borel probability measure on R with cumulative distribution
function V.. If V. is continuous and if X satisfies ICL(v,.), then v, is an iso-dominant of X.

Proof. Let f: X — R be a 1-Lipschitz function. Denote by F, the cumulative distribution function of
(f.).lly. We set ty: = inf suppv,. If t, = —oa, then we define G,.:= E. o V. : suppv, = R. Ift, > —on,
then we define

= (idco,l])xf-l| = L0y

(0.1]

(0.1]

. E o V(1) ift = t,,
G (0):= 111111’ o V.(s) if1:=1'o
s—kg
for t € supp v,. We later prove the 1-Lipschitz continuity of £, o ¥, on supp v, \ {to}, which ensures the

existence of the above limit. By Lemmas 3.11 and 3.10,
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existence of the above limit. By Lemmas 3.11 and 3.10,
(G)vr = (B).V)vy = (B).LY o = ()i
The rest of the proof is to show the 1-Lipschitz continuity of G,. Since V. is monotone nondecreasing and
so is F. on (0,1], we see that G, is monotone nondecreasing on supp v, \ {to}. We take any two real
numbers @ and (a + €) with t; < @ < a + €. Tt suffices to prove that G,.(a + €) < G.(a) + €. By Lemma
3.9(1)
V(@) = (F < E).(a)

= F. o G,(a)

= ux (i (=0, G(a)]).
We remark that the py-measure of f,71((—ce, G,.(a)]) is nonzero because of V,.(a) > 0.
By ICL(v,),

Ga+e) = px(B(fH (=6, (0)])
< e (7 (B((—o0, G (a)]))
= (f)bix((=»,Gp(a) + €])
=R (@) +e),
which together with the monotonicity of F,. on (0,1] and with Lemma 3.9(2) proves
Gla+e) =(FoV)(a+e)
= F. e F.(G.(a) +¢€)
= G.(a) +e

This completes the proof.
Lemma 3.13 (see [34]). Let g,: R — R be a monotone nondecreasing function, f.: R — [0, +00) a Borel
measurable funetion, and 4,, — R a Borel set. Then we have

[ > Gegrgrars[ Y far
gr(4r) " 4=

Proof. Let us first prove that

j giLt < £1(A,) (3.2)
gr (4 -
for any Borel set 4, © R. Let [ be an open interval in . For a natural number n, we set

1 .
infgr*(D += ifinfgr (1) > —oo,

Qi =
-n ifinfgy (1) = —oo,
. 1. L

b — mf.ﬁ'r_l(f)—; if inf gy (1) < oo,
n ifinfgyt(I) = oo,

{a,} is monotone decreasing and {b,,} monotone increasing. For every sufficiently large n, we have a,, =<
b, and a,, b, € gri(I). We also see that lim,,_,,a,, = infg7*(I) and lim,,_ . b,, = supg;-*(I). Since

j Z grdLt < g,(b,) — g-(a,) < supl —infl = £LY(I),
:ﬂnabn]

Lebesgue's monotone convergence theorem proves
f > grart = f gldLt < £1(D).
artin = (infgr*supgrt) <

Since any open set in R is the union of countably many mutually disjoint open intervals, we have (3.2) for
any open set in R By the outer regularity of £1, any Borel set 4, © R can be approximated by an open set
containing 4, and therefore we have (3.2) for any Borel set in .
Approximating f,. by a simple function and applying (3.2), we obtain the lemma.
Theorem 3.14 (see [34]). Let X be an essentially connected mm-space and v, € V. If X satisfies IC(v,.),
then X satisfies ICL(v,.).
Proof. Setting E: = (suppv,)", we casily see the bijectivity of V,.|g: E — (0,1). We define a function
R — Rby

V!(t) foranyt € V. (I py) where V. is differentiable

pr(t):= and such that Iy o V.(t) = V/(t),
0 otherwise,
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for a real numbm t. We see that p, = V/L'-a.c. and that p, is a density function of v, with respect to £1.
Since Iy o . = p, everywhere on V, 1{1111#;(:1 we have Iy = p, o (V.|g)™! on Im py \ {0,1}. To prove
ICL(v,.), we take two real numbers a,a + € € supp v, with € = 0 and a nonempty Borel set A, c X with
V(@) < px(A,). We may assume pix(Bo(4,)) < 1.
Let 5§ be any real number with 0 < s < €. Remarking py(B.(4,)) € Im iy \ {0,1}, we see
ﬂ;{Bs[fir)) = IX(I“X(BS(A?‘))) = p‘r o (H"Ej_l(fl){(gs(‘qr:))]'
Setting g,.(8): = py(B.(4,)), we have
9+(5) = U (B:(4r) = pr o (Gl2) 7 (g:(5)) £1-ae. 5 2 0
and so
gr(s)

NUISEIPRS) )
where we remark that g,(s) > 0 because of the essential connectivity of X. Since g,(0) = ux(4,) =
1y (A,.), we have

< 4o Llaaes € [0, +o),

(Vi)™ e g,(0) = (Vlg) ™ (ug(4,))
z (V)™M (V(a) = a,
so that, by Lemmas 3.13 and 3.10,

e< | 2 9O Bre (Rl () s
[0

=

J 2. 955 oo OH) g () s
r(@r([0.e]))

<) @
g

r([0.]) < pra(I’;-|E.)_l

|

1
| Z R (AR
(Vrlg)~tegr([0e]) Pr
1
J Z —dv,
(V| g)2egp([0.]) Pr
s &
Vel ) tegp([0.c]) <

= LH[(Gg) ™ 0 g,.(0), (Ve l5) "t o g, (e)])
= (Vlg) e gr(e) = (Vlg) ™" o gr(0)
< (Vilg)teogr(e)—a

I

which implies

Vi(a+e€) =g,.(e) = IHX(BE(A?'))'
This completes the proof.
Proof of Theorem 3.4. The theorem follows from Propositions 3.7, 3.8, Theorems 3.14 and 3.12
Definition 3.15 (Iso-simpleness). A Borel probability measure v, on R is said to be isosimple if v, € V
and 1f

I, oV, =V!/rlae

Remark 3.16. For any Borel probability measure v, on R, we always observe I, o V. = I}/ Ll.ae. In fact,

(s}
vr

we have
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V() =v, (et = inf v, %(4,) =1, V()

V(A=) v

Llae. t.
In the case where v, is iso-simple. IC(V,.) is equivalent to [, = Iy. This together with Theorem 3.4 and
Proposition 3.6 implies the following corollary (see [34]).
Corollary 3.17 (Gromov [13, §9]). Let X be an essentially connected mm-space and v,. an iso-simple Borel
probability measure on R. Then, we have [, < Iy if and only if v is an iso-dominant of X.
Gromov [13, §9] stated this corollary without proof.
4. Maximum Distribution of 1-Lipschitz Function

We prove the following theorem, which is a generalization and also a refinement of Theorem 1.9,
A geodesic 1s said to be normal if its metric derivative is one everywhere.
Theorem 4.1 (see [34]). Let X be an mm-space with fully supported probability measure py such that X 1s
embedded in a geodesic metric space X isometrically. Assume that the distribution (f,.),jty of a 1-Lipschitz
function f,.: X — R is a dominant of X. Then we have the following (a), (b), and (c).
(a) If inf f,. > —oco and if supf,. < +oo, then
(1-a) there exist a unique minimizer of f., say p, and a unique maximizer of f,., say (p + €);
(1-b) X is covered by minimal geodesics joining p and (p + €) in X;
(1-c) for any point x € X we have

fr(x) = dg(p, X) + fo(p) = —dx(p + €x) + fo(p + €).
(b) If inf f,. = —oo and if supf, = +oo, then
(2-a) there exists a unique minimizer of f., say p;
(2-b) for any real number € = 0 and any point X € X, there exists a minimal normal geodesic in ¥ emanating
from p passing through x and with length not less than (1 + €);
(2-¢) for any point x € X we have
fr(x) = dx(p,x) + f.(p).

(¢) If inf f,. = —oo and if supf,. = +oo, then

(3-a) there exists a 1-Lipschitz extension f,: ¥ — R of f, such that for any € = 0 and any x € X there exists
a minimal normal geodesic y: [—(1 + €), (1 + €)] = X with y(0) = x such that f.(y(t)) = f-(x) + t for
anyt € [—(1+€)(1+6)];
(3-b) for any a € R and x € X we have

—d(x, 7)) +a iff,(x)<a,

() {d(x, Fl@)+a  iff(0)za
Sinee any metrie space can be embedded into a Banach space by the Kuratowski embedding, for any given
X the space X as in Theorem 4.1 always exists.
For the proof of Theorem 4.1, we need several lemmas. From now on, let X, X, and f: X — R be as in
Theorem 4.1. We first prove the following.
Lemma 4.2 (see [34]). Let g,: X — R be a 1-Lipschitz function satisfying the following conditions (i) —

(iv,).
(1) If inf f. > —oo, then inff,. = infyg,.
(ii) If inf f, = —oo, then there exists a real number & such that (f,.), ity = g, Hx on (—=, a].

(111) If supf, < +oo, then supf, = supg,.
(iv) If supf, = +oo, then there exists a real number £ such that (f;).iy = (gr).Lix on [B, +o).
Then, the two measures (f,.), Uy and (g,.), Uy coincide with each other up to an 1sometry of R.
Proof. Since (f,.).ty dominates (g, )y, there is a 1-Lipschitz map h: R — R such that b, (f.). [y =
(g,). My We put a: = inff,, (a + €): = supf,, a': = infg,, and (a’ + €): = infy,..
Ifa > —ooandif (a + €) < +oo, then we have (a,a +¢€) C (a’J (a" + E)) by (1) and (111). Since ft maps
(a,a +¢€)to (a’,(a’ + €)) and by the 1-Lipschitz continuity, we obtain (a,a + €) = (a’,(a’ + €)) and h
1s an 1sometry from [a, a + €] to itself. We have the lemma in this case.
Assume that @ > —o and (a + €) = +oo, Then. by (i) and (iv), we have a’ = a and (a’ + €) = +oo. Since
h maps supp (f,.). 1y to supp (g,) .y, we have
: [a',+o) ifa’ > —oo,

h(fa, +e0)) = {R ifa' = —oo.

Let
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ar — [a’ ifa' > —oo,

a—1 ifa" =—ono,
There is a number t, such that t; = a and h(t,) = a". It follows from the 1-Lipschitz continuity of /1 that
ht)=t+a" —tost+a—ty=t (4.1)

for any t = t,. For the § as in (iv), we set ;= max{f, t,}. Let 1. R — (0,1) be a strictly monotone
decreasing continuous function. Since h'l([ﬁg, +O'J:}) o [Bg, +o2), we see that

[ RECIDE j{ﬁmz hed(g.a) = | ﬁg,_@z Ry (f)x)
- jh‘*([ﬁww)) Z Ay o RA((,) obtx)
> j[ . Z A o hd((f). i)

> j[ PIREITANS

Boten)
which implies that h(t) = t for any t = . This together with (4.1) proves that tp =a = a’' = a'’ and
h(t) = t for any t = @a. The lemma follows in this case.

Ifa = —ooandif (a + €) < +o0, then we obtain the lemma in the same way as above.

We assume that @ = —o0 and (a + €) = +00. For 0 < € < 1, we set

(A.)-(1 —€):= (=, t_((gr).1x: (1 — €)/2)],
(Ar)+ (1 = €):= [t ((gr)epiz: (1 — €)/2), +00),
where t4(...) 1s as in Dcfinition. 2.6. We have
(et (704,021 =€) = M) (A7) (1 = ©) = (9,01 (4,05 (1 — €0) = (1= /2,

which together with the 1-Lipschitz continuity of It proves

. : . . : _ 1-
Sep((9,).hxi (1= /2. (1= )/2) = t,((g)uhtxi (1= ©)/2) = t_ ((9.).xi—
= dg((4,)_(1—€),(4,).(1—¢€))
< dg(h™((4)-(1 = €)), A ((4)+ (1 — €)))
< Sep((fy)-tux (1= €)/2, (1= €)/2) |
=t ((fr)ebtxi (1= €)/2) = t_((fr)shtx: (1 — €)/2).
By (i1) and (iv), if (1 — €) is small enough, then
(7)ot (1~ €0/2) = £2.((g, )bty (L — €)/2) = £5((1 — )/2),
which implies the equalities of (4.2). Therefore, the interval between (4,)_(1 —€) and (4,),.(1 —€) and
the interval between h™((4,)_(1—¢€)) and h™*((4,).(1—€)) both coincide with [t_((1—
€)/2),t.((1 —€)/2)]. The h maps [t_((1 —€)/2),t.((1 — €)/2)] to itself isometrically. Since we have
t.((1—-¢€)/2) = Lo as € = 0 +, the map h is an isometry of R. This completes the proof of Lemma 4.2.
Definition 4.3 (Generalized signed distance function). Let S be a metric space. A function g,:5 — R 1is
called a generalized signed distance function if there exist three mutually disjoint subsets (0, Qp, and Q_of
§ and a real number a such that
(i) N and O_are open sets and (g is a closed set;
(i) S§=0,UN,U0_and 30, UIN_ < O
(111) for any x € §,

E) (4.2)

ds(x,Q0) +a  ifxeq,,
gr(x)=<a ifx € 0,

—ds(x,05)+a ifxen_.
Any generalized signed distance function g,. on a geodesic space S 1s 1-Lipschitz continuous and has the
property that

dx(gr'(a). g7 (a +€)) = |€]

for any a,a + € € g,.(5).
Lemma 4.4 (see [34]). Let 4,,B,, and Q be three subsets of ¥ such that 4, and B, are both closed.
dz(A,,B,) >0, and A, UB, c 1. We take two real numbers a and (a+¢€) in such a way that
dz(A,, B,) = €. Assume that there exists a point x; € X N 0\ (4, U B,.) such that
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dg(xo,A,) + dg(xo, B) > dz(4,. B,.).
Then, there exist a real number ¢ € (a,a + €) and a family {h,: 0 = ]R}te(—ru.ruj] of 1-Lipschitz functions,
7y > 0, such that, forany t € (—715.7p), wehave hy = aond, h, =(a+€)onB,,c+te[aa+e] and
¢ + tis an atom of (hy). jix.
Proof. Setting

d:= %(dﬁ(IO,Ar) + dy(xg, B,) —dg(4,.B.)),
we have § > 0 by the assumption.
(1) In the case where dg(xp, 4,), dg(x,, B,) > &, we define
Tai=dg(xg, 4,) — 8, 15,0 = dz(xo,B.) — 6, 11 =min{8, 14,75, }.
We then see that

s, + 15, = dg(A4,,B,), (4.3)
1y < minfry 73}, (4.4)
Ta, = dz(Xe, 4;) — T (4.5)
rg, < dz(x,,B,) — 1q. (4.6)

(ii) In the case where dz(xg, 4,) =& or dz(xg, By) <&, we have only one of dz(xp, 4,) < & and
dyz(xg, B,) = & because of the definition of §. Without loss of generality, we may assume that dg(xy, 4,) <
§. Define

1
Tap = E?’Hfﬂ{df(xn, Arja d}f(‘qw Br)}l

Tg,: = dg(A,. B.) — Ty To:=min{ry, .75 }.
Then we immediately obtain (4.3), (4.4), (4.5). By dgz(x0,4,) = &8, we have dg(Xo, B) = dz(xe, 4,) +
dz(A,, B,.), which proves (4.6).
In cither of the cases (i) or (ii), we define ¢: =1y, + @ and

di(x,A,) +a ifdg(x,A,) =1y, +1,
he(x):=4—dg(x.B.) + (a+€) ifdg(x,B.) =15 —t
c+t otherwise ,

or —Tg, Tp) and x . Then h, is 1-Lipschitz continuous on (.

fort € (—ry, 1) and x € Q. Then h; is 1-Lipschit t Q

It follows from (4.5) that, for any t € (=70, 7p), the distance between any point in U, _4 (%) and 4, is
greater than 1 + |t]. In the same way. from (4.6). the distance between any point in U, _;(x,) and B, is
greater than 15+ [t]|. We therefore have U, _;(xo) © h7l(c +t) and so

(he)upt({e + 1)) = i (Vs (x0) ) > 0,
because of ¥y € X = supp ux. The family of the functions h;, t € (—1y,7p), satisfies all the claims of the
lemma. This completes the proof of Lemma 4.4.
Lemma 4.5 (see [34]). Let g,: ¥ — R be a generalized signed distance function that is an extension of f,.
For any point x € X and two real numbers a and (a + €) with infg, = a < f.(x) < (a + €) = supg,, we
have

dg(x, grt(a)) + dg(x, g7 (a+ €)) = €.
Proof. Since dg (g, 1 (a), g-*(a + €)) = €, a triangle inequality proves

dg(x, g7 (a)) +dz(x.g;*(a +¢€)) z €
Suppose that there are x,, @, a + € such that

dz(xo, g5 ' (@) + dg(xo, g7 ' (a + €)) > €.
We apply Lemma 4.4 for Q: = g7i([a, a + €]), A1 = g7t(a), and B,: = g71(a + €) to obtain a family of
1-Lipschitz functions h,: g7 ([a, a + €]) = R, t € (=75, 7;), as in Lemma 4.4, We extend R, to a function
on X by setting hy: = g, on g7 *((—,a) U (@ + €, +)). Then h; is 1-Lipschitz continuous on X and ¢ +
t 1s an atom of (h, ),y forany t € (—15, 1)
It follows from Lemma 4.2 that (hy).px and (f;.).px coineide with each other up to an isometry of R. As a
result, (f.),pty has uncountably many atoms, which is a contradiction because (f.),ly 15 a probability
measure. This completes the proof.
From now on, translating f,. if necessary, we assume that f;. has 0 as an median. For a 1-Lipschitz extension
f.: X = R of f., we define a generalized signed distance function f.: ¥ — R by
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~dg (0. £740)  ifx e £ ((=o0,0)),
de (x.£740)  ifx e f7([0,+00)),

for x € X. It holds that £,.(x) and f.(x) have the same sign for any x € X and that |f,| < |f.] on X by the
1-Lipschitz continuity of f..

Lemma 4.6 (see [34]). We have /. = f, on X.

Proof. For 0 = o = 1, we set

t_(a):=t_((fr)oix: @) and t, (@): = t, ((fr).pix: @).
Note that £_(1/2) is the minimum of medians of f, and £, (1/2) is the maximum of medians of f,.. Since
fr has 0 as an median, we have £_(1/2) < 0 < t,(1/2).

Let us first prove (f;)ufix = (f-).ix. Let (1 — €) be any real number with 0 < € < 1. We see that
1—¢1-—

Sep ((f)ubtxi 5 —5—) = (1 —&)/2) — (1= €)/2),

Sep((f)-txi (1= €)/2, (1 = €)/2) = t.((f)utts (1 — €)/2) = _((f) bt (1 — €)/2).
It follows from |f,-| < |(f,)| that px(fr < 1) < px(fr < t) foranyt < 0 and puy(f; 2 t) < pux(f- = t) for
any £ = 0. Sinee t_((1—€)/2) = 0,t.((1 —€)/2) = 0, we have qu(f;, =t_((1— E)/Z)) 2 Uy (ﬁ, <
t (%)) > (1-€)/2 and te(F. 2 £, (1 — €)/2)) = py (ﬁ, >t (%)) > (1 — €)/2. Therefors,

. o 1-

(et (1= €/2) 2 14 ((1 = /2) and £ ((Foteri——) < £-((1 = )/2).

Since (f;.).flx dominates (f;.),fix, we see

Sep((f).tx: (1 — €)/2,(1 — €)/2) = Sep((f) .tz (1 — €)/2, (1 — €)/2).

We thus obtain

froo:= (47)

£ ()bt @) = £(@) and € (7)ot @) = t_(@)

for any @ € (0,1/2], which yields (). pix = (f)«ltx-
Suppose that there is a point x, € X such that f,.(xy) # f,.(x,). Then we have f,.(x,) # 0, because f.(x,) =
0if f.(xg) = 0.
Assume that 0 < f,.(x,) 2 f,.(xp). We have f,.(xo) < f.(xg). Setting
Fr (o) — f-(xo) (o) + fr-(x0)
e and to:= —
we have f, > f.(x,) — 15 =1, and [, < f(xp) + 75 =ty on U, (x,), which implies uy(f, = t5) >
Ux(fr = tg). This is a contradiction.
In the case where 0 > f;.(xo) # f,-(xo), we are led to a contradiction in the same way.
We thus obtain f, = f. on X. This completes the proof of Lemma 4.6.
Lemma 4.7 (see [34]).
(a) If inf f, > —oo, then f, has a unique minimizer.
(b) If supf,. < 4o, then f, has a unique maximizer.
Proof. (b) follows from applying (a) for —f,.
We prove (a). Let us first prove the existence of a minimizer of f,.. We find a sequence of points x,, €
Xn=12 ., in such a way that f.(x,) converges to inf f, as n — oo, If {x,} has a convergent
subsequence, then its limit is a minimizer. Suppose that {x,} has no convergent subsequence. Replacing it
by a subsequenece, we assume that d (x,,,, x,,) = 20 > 0and f,.(x,,) < inff,. + §/2 for any natural numbers
m # n and for a real number & > 0. Define (a + €): = inff. + &, 1, = dg(xn,ﬁ._l(a - E)) and
dy(Xp,x) =1, +(a+e€) ifx e B, (x,),
(G )n(X):= 4 fr(x) if fr(x) = (a + ¢),
(a+€) otherwise ,
for x € X. The function (g,), is 1-Lipschitz continuous on X. It follows from Lemma 4.6 that 1, = (a +
€) — fr(xp)andso §/2 = 1, = §. Therefore, Bs;,(x) and B, (x,,) forany n = 2 are disjoint to each other.
Since f, < fr(xy) +6/2 < (a + €) on Bsy2(xy), we have (g,)n, = (a + €) on Bsy(xy) for n = 2, which
mmplies
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((gr)n)ix({a + €}) = iy (Bﬁ(:xl)) +(f)ux({a+e}) n=2 (4.8)

Sinee ((g, ) )iy is dominated by (f,.), iy, there is a 1-Lipschitz map i1,;: B — R such that (h,). (f).14x
((gr)n)ellx. Let &y:=inf(g, ), — inff,.. Since inf(g,)n = (gr)n(xn) = (@ + €) — 15, we see that &,

Vo

§—1,=0andg, - 0asn — oo It follows from (g, ), = fon{f, = (a + €)} that h,,(t) = t forany ¢
(a+€).
We now prove that

hat(a+e) nsupp(fo).ux © [(a +€) —ena + €] (4.9)

in the following. In fact, h,, does not increase but could decrease the distance between two points. However,
sinee h,, ([inff,., a + €]) 2 [inf(g, ), a + €], the function h,, decreases the distance between two points not
more than €,,. In particular, if a real number t € supp(f,.). Uy satisfies t < (a + €) — €, then h, (t) # (a +
€). This implies (4.9).
By (4.9) and (4.8)
fhux(l(a+e) —epa+e)) =(f)ux(l(@a+e)—e,atel) = (f)ux({a+e)
= (f).x(hy*(a + €) = (f).pux({a + €})
= ({gr)n}x.ux{{a + E}) - (ﬁ"}*.ul'({a + E}}

=y (Bé(xli)) >0,
2

which 1s a contradiction. The function f,. has a minimizer.
We next prove the uniqueness of the minimizer of f,.. Suppose that f. has two different minimizers p and
(p + €). We take a real number (@ + €) with inf f,. < (@ + €) < supf,.. Define r: = (a + €) — inff, and
dy(p,x) +inff. ifx € B.(p),
gr(x):={ fr(x) if f(x) = (a +¢),

(a+¢) otherwise

for x € X. The function g, is 1-Lipschitz continuous on X. By infg, = inff,, Lemma 4.2 implies (g,). lx =
(f+).lix. However, in the same discussion as in (4.8), we obtain
(gr)itx({a +€}) > (fr)ux({a + €}),
which is a contradiction. This completes the proof of Lemma 4.7.
Proof of Theorem 4.1 (see [34]). Without loss of generality, it may be assumed that f; has 0 as an median.
By Lemma 4.6, the function f, defined in (4.7) is a 1-Lipschitz extension of f;..
We prove (a). By Lemma 4.7, the function f,. has a unique minimizer p € X and a unique maximizer (p +
€) € X. Applying Lemma 4.5 for g,: = f.,a:= f.(p).(a + €): = f.(p + €) yields
dx(p, x) + dy(x,p +€) =dy(pp+€) =€
for any x € X, which together with the 1-Lipschitz contmuity of f. leads us to (1).
We prove (b). By Lemma 4.7, the function f,. has a unique minimizer p € X. Applying Lemma 4.5 for g,: =
f. a:= f,(p) yields that, for 1 + € = f.(x),
dx(@0) +dg (v (1 + ) = dy (p.f (A +6)) = (1+6) —a,
which together with the 1-Lipschitz continuity of f,. leads us to (2).
(c) is obtained by applying Lemma 4.5 for g, = f,.
This completes the proof of Theorem 4.1.
5. Proof of Main Theorem
We prove Theorems 1.2, 1.4, and 1.5 by using Theorems 3.4 and 4.1.
We need the following lemma (see [34]).
Lemma 5.1. Let v,. be a dominant of an mm-space X such that
Obs Var;,, (X) = Vary (v,) < +oo.
Then, there exists a 1-Lipschitz function f,.: X — R such that (f;.).iy = V-
Proof. Let x, € X be a fixed point. There is a sequence of 1-Lipschitz funections (f,.),, : ¥ = R with
(fr)n(x0) = 0 such that Var; ((fi)n) converges to ObsVar,, (X) = Vary (v,) as n — . By Lemma [29,
Lemma 4.45], there is a subsequence of {(f.),} that converges in measure to a 1-Lipschitz function
(fr): X — R. We denote the subsequence by the same notation {(f;-)}. It follows from [29, Lemma 1.26]
that ((f.),).ly converges weakly to (f,.),llx as n — oo. Since v, dominates ((f,.), ).y, there is a 1-
Lipschitz function i,,: R = R for each n such that (1,,).v,. = ((f.),). iy Since (R,,),V, converges weakly
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and by the 1-Lipschitz continuity of h,,, we have the boundedness of {h,,(t)} for any fixed t € R.
By the Arzela-Ascoli theorem, there is a subsequence of {1, } that converges uniformly on compact sets.
We replace {n} by such a subsequence. Since A,.(|h, (x) — h,(x")]) £ A.(|]x —x'|) forany x, x" € R and
Var,, (v,.) < +o, the Lebesgue dominated convergence theorem proves that Var, ((h,,).v,) converges to
Var,,(h,v,) as n — o. We therefore have Var, (h,v,) = Var, (v,.), which together with the 1-Lipschitz
continuity of h implies that i 1s an isometry on the support of v,.. Since ((f),.).Ux = (h,).V,. converges
weakly to (f,.).lix and also to k. V., we obtain (f,).fix = .V Let i: R — R be the isometric extension of
hlsuppv,- The composition h=* o f, is the desired 1-Lipschitz function. This completes the proof.
Lemma 5.2 (see [34]). Let f,.: X = R be a 1-Lipschitz function on an mm-space X such that (f.),uy is a
dominant of X, and let y:J — X be a 1-Lipschitz curve defined on an interval [ ¢ R. If f.(y(f)) =
fr(}f{jt{,:)) + t for any number t € [ and for a number £, € [, then ¥ is a minimal normal geodesic.
Proof. The assumption and the 1-Lipschitz continuity of f,. and y together imply

Is =~ t] = [0r(s) — HOE)] = dx(r(). v (1) < Is — 1
for any s,t € I. This completes the proof.
Proof of Theorem 1.2 (see [34]). Let X be an essentially connected geodesic mm-space with fully
supported Borel probability measure such that X satisfies IC(v,.) for a measure v, € V; .
Theorem 3.4 implies that v,. is an iso-dominant of X. We therefore have

Obs Var;, (X) < Var (v,).

We assume the equality of the above. By Lemma 5.1, there is a 1-Lipschitz function f,. : X — R such that
fr Iy coincides with v, up to an isometry of R. Applying Theorem 4.1 for X (= X) and £, yields one of (1).
(2), and (3) of Theorem 4.1.
In the case of (2), we prove that for any point x € X there is a ray emanating from the minimizer p of f,
and passing through x. In fact, we have a minimal geodesic from p to x, say ¥. We extend y to a maximal

one as a minimal geodesic from p. If ¥ is not a ray, then it extends beyond x by (2 — (a + €)), which is a
contradiction to the maximality of .
Thus, X is covered by rays emanating from p.
In the case of (3), the discussion using (3-a) proves that X is covered by the family of normal straight lines
Y1, A € A, such that

fr(v2,(0) = fir(¥2,(0)) + ¢ (5.1)
forany t € R and 4, € A. Assume that y; and y,; have a crossing point y; (a) =y r(a + €).
Let 0(t):=V,(t) for t =< @ and o(t): =y (t + €) for £ > a. Then, 0: R — X is a 1-Lipschitz curve. It
follows from (5.1) that

frla(t) = fr(a(0)) + 1t

for any t € . Lemma 5.2 yields that ¢ is a minimal normal straight line, i... the crossing point ¥, (a) =
¥a.(a + €) is a branch point of y;, and ;2. This completes the proof of Theorem 1.2.
For the proof of the splitting theorem, we need the following lemma (see [34]).
Lemma 5.3, Let X be a complete and connected Riemannian manifold with a fully supported smooth
probability measure py and let v, € V;, where 4,.: [0, +20) — [0, +00) is a strictly monotone increasing
continuous function. If X satisfies IC(v,.) and if Var, (f.) = Var,,(v.) for a 1-Lipschitz function f.: X —
R, then f, is a C* isoparametric function satisfying |Vf,.| = 1 everywhere on X.
Proof. Theorem 3.4 tells us that the distribution of f, coincides with v, up to an isometry of R and is an
iso-dominant of X. By Theorem 4.1, we have Uf(f,-_ltz—m, G]) = i N((~»,a + ¢]) for any a € R and
£ == 0, so that the sublevel sets of f,. realize the isoperimetric profile of X. The first variation formula of
weighted area (see [23, $18. 9] and [13. §9. 4. E]) proves that each level set of f,. has constant weighted
mean curvature with respect to the weight yy. By the result of [1], each level set of f; is a hypersurface
possibly with singularities. However, by Theorem 4.1(3), the level sets of f. are all perpendicular to the
minimal geodesics foliating X. Thus, there are no singularities in the level sets of f,. and also no focal points
to the level sets. Therefore, f,. 1s of €™ and |Vf,.| = 1 everywhere on X. As a result, f,. turns out to be an
1soparametric function on X.
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Proof of Theorem 1.4 (see [34]). We apply Theorem 1.2 for the one-dimensional standard Gaussian
measure y! on R as .. Let f.: X = R be a 1-Lipschitz function attaining the A,.-observable variance of X.
By Lemma 5.3, the funection f, is a C™ isoparametric function with |Vf,.| = 1 everywhere. By translating
£ if necessary, the distribution of f, coincides with 1. The weighted area of £~ (t) with respect to iy is
Ay (1) = et
Vam

We have A,.(t) = —tA,.(t). Since the weighted mean curvature coineides with the drifted Laplacian of f,.,
we see AL(t) = (1 + €)f.(x)4,(t) for x € £,7'(t), where (1 + €): = A — V), is the drifted Laplacian on
X with respect to the weight function e %7 of X. We therefore have (1 + €)f, = —f,. The Bochner-
Weizenbdek formula

. NAE : o
(1+ E_}%— (V. V(1 +€)f.) =l Hess f, 7+ Ric, (V£ Vf)
(see [32, the next to (14.46)]) leads us to Hess f, = 0. The manifold X splits as (X + €) X R (see [15]),
where (X + €) is a complete Riemannian manifold. Let dux(x + €,t) = e ¥+t dvol,, . (x + €)dt in
the coordinate (x + €,t) € (X + €) x R. Since Ric(Vf,, Vf,.) = 0, we have
2

: _ d
1= Rlc;(x(vfrl Vﬁr} = Hess wr{.vfrr vfr) = w‘i’r(-’f + €, t)J
which implies Y, (x + €,t) = - (x + €,0) + t2/2. Defining the weight of (X + €) as dyy..(x + €):=
e~ ¥rlx+e0)dygl, _(x + €), we obtain the theorem.
Remark 5.4. We see that the first nonzero eigenvalue (or the spectral gap) A, of the drifted Laplacian on a
complete Riemannian manifold X with a full supported Borel probability measure satisfies
1

fl S T . Foon
! ObsVar,z(X)
In fact, since the energy of any 1-Lipschitz function on X is not greater than one, the Rayleigh quotient of
any 1-Lipschitz function is not greater than the inverse of the variance of it, which proves (5.2).

(5.2)

Assume that a complete and connected Riemannian manifold X has Bakry-Emery Ricei curvature bounded
below by ene. In the case where ObsVar,z(X) =1 (= Val‘rz{:}’l)), the inequality (5.2) implies 4; = 1.
Thus, Theorem 1.4 for A,.(t) = t2 is also derived from the following.
Theorem 5.5 (Cheng-Zhou [10]). Let X be a complete and connected Riemannian manifold with a fully
supported smooth measure iy of Bakry-Emery Ricci curvature bounded below by one. Then, the drifted
Laplacian has only discrete spectrum and we have
The equality holds only if X is isometric to (X + €) X R and ux = fix.e ® ¥* up to an isometry, where
(X + €) is a complete Riemannian manifold with a smooth probability measure iy . of Bakry-Emery Ricci
curvature bounded below by one.
If ObsVar,z(X) = 1, then the function f: X = (X + €) x R — R defined by f,.(x + €,t) = t attains the
observable variance of X and also is an eigenfunction for 4; = 1.
Proof of Theorem 1.5 (see [34]). We assume that X as in the theorem satisfies IC(v,.) for a measure v, €
V with compact support. Theorem 3.4 tells us that v, is a dominant of X. Let ¢9,.: X — R be any 1-Lipschitz
function. Since (@,.), Uy is dominated by Vv,., we have diam ¢,.(X) = diam supp(¢,.), 1y = diamsupp v,.
This implies diam X = diam supp v,.
Assume diam X = diamsupp v,.. By the compactness of X, there is a pair of points p, p + € € X attaining
the diameter of X. Letting f.:= dx(p,-), we have diam supp(f;).ux = diamf.(X) = diamX =
diam supp v,, which together with (f,.), Uy =< Vv, proves that (f,.), U, and v,. coincide with each other up to
an isometry of R and, in particular, ObsVar, (X) = Var, (f,) = Var,,.(v,). Since v, is a dominant of X,
we obtain ObsVar, (X) = Vara,(v,).
Conversely, we assume ObsVar, (X) = Vary (v,). By Lemma 5.1, we find a 1-Lipschitz function f.: X —
R such that (f.),tx =Vv,. We therefore have diamX = diamf.(X) = diamsupp(f.).lx =
diamsupp v,., so that diam X = diamsupp v,.. This completes the proof.
6. Cheeger Constant and Isoperimetric Comparison Condition
Definition 6.1 (Cheeger constant). The Cheeger constant (X) of an mm-space X is defined by

inf : 'u;. (4,)
o<px(an<tmin{iy (4,), ux(X \ 4,)}
We prove the following proposition, which is useful to obtain an mm-space with the isoperimetric

h(X):=
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comparison condition.
Proposition 6.2 [34]. Let X be an mm-space with positive Cheeger constant. Then, X is essentially
connected and satisfies IC(v,.) for some measure v, € V. If, mn addition, Iy 1s Lebesgue measurable, then

Lo V.=V Llae.
for some v, € V.
See [28, Section 1] for the deseriptions for several works concerning the regularity of the isoperimetric
profile of a Riemannian manifold. [20, Lemma 6.9] proved the (n — 1)/n-Hélder continuity of the
isoperimetric profile of a complete and connected Riemannian manifold with an absolutely continuous
probability measure with respect to the volume measure such that its density is bounded from above on
every ball. This together with Proposition 6.2 implies the following.
Corollary 6.3 [34]. Let X be a complete and connected Riemannian manifold and p, a fully supported
probability measure on X absolutely continuous with respect to the volume measure such that its density is
bounded from above on every ball in X. Assume that (X, 4y ) has positive Cheeger constant. Then there
exists a measure V- € 17 such that

Iyo V.=V L' —a.e.
For the proof of the proposition, we prove a lemma.
Lemma 6.4 (see [34]). Let @,:(0,1) — [0, +00) be a Lebesgue measurable function such that 1/¢, is
locally integrable on (0,1). Then, there exists a measure v,. € 1V such that

@, V.=V [lae.,
where I, is the cumulative distribution function of v,..
Proof. Let du(t):= (1/¢,.(t))dt on (0,1). Note that ¢, > 0L1-a.c. By the assumption, y is absolutely
continuous with respect to L. We define a function p,: (0,1) — R by

. *odt
pr{_x_}:=j% @T{E)

for x € (0,1). Then, p, is a strictly monotone increasing and locally absolutely continuous function with
connected image Im p,.. We denote by V,.:Im p,. — (0,1) the inverse function of p,.. The function V. is also
strictly monotone increasing. Sinee lim,_jnam py+0 V- (£) = 0 and lim, gy p1m p,y—o V7 (£) = 1, there exists
a Borel probability measure v, on R possessing V,. as its cumulative distribution function. For any two real
numbers a and (a +¢€) with 0 < a < a + € < 1, we see that

(V).L:([a.a +€]) = L1 (p ([a,a +€])) = po(a+€) —p,(a),
so that d((1}.),.LY)(t) = (1/¢,(t))dt. This implies that

a+e
[ eovar = 0, d(().£) = | dt
a Ve([a.ate])

Vr([a.a+e])
=V.(a+e)—V.(a) =v,([a a+e].
Thus, v, is absolutely continuous with respect to £ with density @, o V... Since V' is also a version of the
density of v,, we have @, o V. = V}/L1-a.e. This completes the proof.
Lemma 6.5 (see [34]). Let X be an mm-space with positive Cheeger constant. Then we have the following
(1), (i1), and (ii1).
(1) X 1s essentially connected.
(11) There exists a Lebesgue measurable function ¢,.: (0,1) — (0, +0) such that
(a) @p = Iy on Im py,
(b) 1/, 1s locally integrable on (0,1).
(111) If Iy 1s Lebesgue measurable, then 1/Iy is locally integrable on (0,1).
Proof. It follows from the definitions of h(X) and I;(v,.) that
hX) = L
T min{v,. 1-— 1.}
for any v, € Im py \ {0,1}. Since h(X) > 0, we have Ix(,.) > 0, which implies (i). Setting
@, (v.): = h(X)min{v,, 1 — v,}
for v, € (0,1), we have (ii). If Iy is Lebesgue measurable, then the local integrability of 1/Iy on (0,1)
follows from (11). This completes the proof.
Proof of Proposition 6.2. The proposition follows from Lemmas 6.4 and 6.5.
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7. Examples
7.1, Warped Product

We take a compact n-dimensional Riemannian manifold F. with Riemannian metric g, and a
smooth function ¢, (a,a + €) = (0,+00),—w = a < a + € < +o0, in such a way that Jq:_ffpr{:t:)"dt =
1. Let X be the completion of the warped product Riemannian manifold ((a, a + €) x M,dt? + ,(t)%g,),
and f.: X — R the continuous extension of the projection (a,a +¢€) x M 3 (t,x) —» t € . We equip X
with the probability measure

iy (t,): = 4t @ @, (O, (1),

where iz is a smooth probability measure on F,. with full support. Note that if the total volume of F, is one
and if yig, is taken to be the Riemannian volume measure on F,, then iy as defined above coineides with
the Riemannian volume measure. We see that (f,.). [y = @.(0)"dt.
We consider the following (see [34]).
Assumption 7.1. Any isoperimetric domain in X is either the sub- or super-level set of f,.
Assumption 7.2. The observable A,-variance of X is attained by the function f..
Under these assumptions, we have the conditions of Theorem 1.2 for dv,.(t) = @,.(£)"dt.
Precisely. X satisfies [C(¢, (£)"dt) and (f}.).itx = @,(t)™dt is an iso-dominant of X. If @ and (a + €) are
both finite, then we have (1) of Theorem 1.2. If only one of a and (a + €) 1s finite, then we have (2). If a
and (a + €) are both infinite, then we have (3). In particular, we observe that @,(t) = 0 as t = a (resp.
t = (a+¢€))ifa(resp. (a + €)) is finite, because the minimizer (resp. maximizer) of f,. is unique if any.
Assumption 7.1 is satisfied in the following case. F, = §1 = {eig | 6 € ]R}, dug (8) = df/2ma=—(a+
€)<a+e< 4w, @ (—t)=@.(t) fort € [0,a + €), and the Gaussian curvature K (t) = —¢, (t)/¢,.(t)
is positive and strictly monotone decreasing in (@, 0]. Note that K(—t) = K(t) forany t € (a,a + €). By
Ritoré's result [27] we have Assumption 7.1 in this case. If in addition the diameter of X is equal to 2(a +
€), then we also have Assumption 7.2 by Theorem 1.5.
See [6, 24] for further potential examples of warped products.

7.2. Non-Splitting Manifold Containing a Straight Line

Applying Proposition 6.2, we obtain an example of a complete Riemannian manifold X with a fully
supported Borel probability measure such that
(a) X satisfies IC(v,),
(b) X contains a straight line,
(c) X is not homeomorphie to (X + €) X R for any manifold (X + €).
In fact, there is a complete Riemannian manifold X satisfying (b), (c). and with positive Cheeger constant
(for example, a geometrically finite hyperbolic surface, for which the Cheeger constant is positive by [5.
Theorem 5.2] ). By Proposition 6.2, there is a measure v, € V- such that X satisfies IC(v,). Note that
Corollary 1.3 proves

Obs Vary, (X) < Varz, (v,.).

Appendix A. Variance of Spherical Model
We prove (1.2) and see some consequent results. We write Var(-):= Var,z(-) and ObsVar(-):=
ObsVar,z(-).
Proof of (1.2) (see [34]). For 0 = € < +0, we define

(:ﬁ.)l_f(x):=£ cos**e tdt,
z
(615e@i= [ D (Buseli,
Zz r

x
Hie(i= [ D (610,
zZ r
L= —(F)14.(0), Ky 0= —Hy, (0).
We have

e

rZcost* xdx = J.z Z X2 ((F)1se(x))'dx
0 T

|
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-2, W EmP—zf 2 X
=—2f Z ((6:)10e(x)) dx
= =2 Z [ -K(Gr:}1+e(:x:}]§ - J;E (:G}‘)HE(X)de

= —2H,,.(0) = 2Ky,
For 0 < € < 4o, since

i ) 1 1+e .
(F)ase(x) = ECOS”f xsinx +m(ﬂ)e(l)
we have
(G)are() L 05T x + 2 (6,),(0)
p xX)=————cos* " x +—(G,.).(x),
r/2+el (2-‘1-6}2 74 ¢ r/e
i . 1+e
Hzie(x) = —m(ﬁ_}zﬁ(ﬂ +o e (x).
Setting x = 0, we obtain
! 1+ EI
2+¢€ - 2+ ¢ £
K = 1 I + Lte K
e 2462 246 €
Therefore, for 0 < € < +oo,
1
[ .
€—2i
o [ 22
tre 2R ] Lolve-2
i=

where h:= (1+€)/2—-[(1+€)/2] + 1.For 0 < € < 42, we define
[(1+€)/2]-1

1
SRR S -
tre (1+e—2i)2

i=0
This satisfies §,,. = S, + 1/(2+ €)? for 0 < € < +0a. Since
€ 1
Kose + S24cl24e = mr’\’e + (52+e - m) Laie
€
= m(f\’e + SEIE)'
we have, for 0 < € < 400,
[l+e
. e— 21
h1+€ + Sl—EII+e KZh + Szhfzh) 1_[ 1 +te—7i
= (Konlzn +52h)[1+€»
so that
K. .
Var(g?*€) =2 = 2(K,pl5 + Sop — S14c).
I1+E
Putting k: = %} — 1 — i in the definition of §,_ yields
|'1+E] 1
S 1 Z 1
14e — 7 Y
4 e (h+k)

DOI: 10.35629/0743-1103122142 www.questjournals.org 140 | Page



Perfect Isoperimetric Rigidity and Maximal Distributions of 1-Lipschitz Functions

which converges to i{(Z, h) as 1+ € = +00. We see that
m

) z

Var(g?*¢) f xZcost*e xdx
0

m

n?r 1 (7 .

< : sin® xcos'*€ xdx

1+e

El+f - JT3+E

J]'1+<:'
- _2(1 - Eg*"‘)
4 JT1+1_=-

1
ZT(m)—’U asl+e— oo,

Thus we have Kxplsp + Sop = i-,’(:Z, h) and, for 0 < € < +oo,

Var(g?*¢) = %{:{[ZJ h) — 45140

This completes the proof of (1.2).
From (1.2). we observe that
, Var(ag!*t)
lim ———
14—+ \." 1+¢

which is also verified by the Maxwell-Boltzmann distribution law (see [29, Proposition 2.1]) in the case
where 1 + € muns over only positive mtegers.
We also have, for any integer m = 2,

=1,

E
|
-

w2 2 ,

E_Z (2?2 ifm=2n-—1,
ObsVar(s™(1)) = Var(¢™) = k=L

w2 2 ,

T— Z W ifm = 2n.
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