Journal of Research in Applied Mathematics Volume 11 ~ Issue 3 (2025) pp: 16-24

ISSN (Online): 2394-0743 ISSN (Print): 2394-0735

www.questjournals.org

Review Paper

Fixed point theorems on G — metric spaces Via C — Class Functions

Deepika, Ranbir Singh*

Department of Physical Sciences (Mathematics),
Baba Mastnath University, Asthal Bohar, Rohtak-124021, Haryana, India
Department of Physical Sciences (Mathematics),
Baba Mastnath University, Asthal Bohar, Rohtak-124021, Haryana, India
(*Corresponding Author)

Abstract: In this manuscript, we prove generalized fixed point theorems via C – class functions on G – metric spaces. Further, we also provide some examples and corollaries to prove the existence and uniqueness of our results.

AMS(2020): 47H10, 54H25.

Keywords: unique fixed point, C - class functions, G - metric space.

Received 27 Feb., 2025; Revised 04 Mar., 2025; Accepted 06 Mar., 2025 © The author(s) 2025. Published with open access at www.questjournas.org

I. Introduction

Fixed point theory has an application in many fields such as physics, chemistry, biology and many areas of mathematics. The Banach contraction mapping principle [7] is the most pioneer result in the complete metric space. Banach contraction principle establishes that every mapping $\mathcal{R}: Y \to Y$, which is defined on complete metric space (Y, d) and satisfy the following condition for all $u, v \in Y$,

$$d(\mathcal{R}(u), \mathcal{R}(v)) \leq \lambda d(u, v),$$

where $0 < \lambda < 1$ is a constant, has a unique fixed point in Y.

The concept of a \mathcal{G} – metric space was introduced by Mustafa and Sims [13] which is different from further spaces. After this appreciative work of Mustafa and Sims [13], many writers inspired to study the hurdles of the fixed point, common fixed point, common fuzzy fixed point by using different contractive conditions for mappings, see for examples ([1], [6], [8], [10], [11], [12]).

II. Preliminaries

Definition 2.1 [13] Let *Y* be a non-empty set and $G: Y \times Y \times Y \to \mathbb{R}_0^+$ be a function such that for all $u, v, w, a \in Y$, satisfying the following properties

$$(G1) G(u, v, w) = 0 \text{ if } u = v = w;$$

$$(G2) G(u, u, v) > 0$$
 with $u \neq v$;

$$(G3) G(u, u, v) \le G(u, v, w)$$
 with $w \ne v$;

$$(G4)$$
 $G(u, v, w) = G(u, w, v) = G(v, w, u) = G(w, u, v) = \cdots$, (Symmetry in all three variables);

(G5) $G(u, v, w) \le G(u, a, a) + G(a, v, w)$, (Rectangle inequality).

Then, the function \mathcal{G} is called a \mathcal{G} – metric on \mathcal{Y} , and the pair $(\mathcal{Y}, \mathcal{G})$ is a \mathcal{G} – metric space.

All these properties are satisfied when G(u, v, w) is the perimeter of the triangle with vertices at u, v and w in \mathbb{R}^2 .

Example 2.2 [13] Let (Y, d) be a metric space. The mapping $\mathcal{G}_S: Y^3 \to \mathbb{R}_0^+$ defined by

$$G_S(u, v, w) = d(u, v) + d(v, w) + d(u, w)$$
, for all $u, v, w \in Y$,

is a \mathcal{G} – metric and therefore (Y, \mathcal{G}_S) is a \mathcal{G} – metric space.

Definition 2.3 [13] The G – metric space (Y, G) is called symmetric if G(u, u, v) = G(v, v, u), for all $u, v \in Y$.

Proposition 2.4 [13] Let (Y, \mathcal{G}) be a \mathcal{G} – metric space. Then for any $u, v, w, a \in Y$, it follows that:

- (i) If G(u, v, w) = 0, then u = v = w;
- (ii) $G(u, v, w) \leq G(u, u, v) + G(u, u, w);$
- (iii) $G(u, v, v) \leq 2G(v, u, u)$;
- (iv) $G(u, v, w) \le G(u, a, w) + G(a, v, w);$
- (v) $G(u, v, w) \le \frac{2}{3} [G(u, v, a) + G(u, a, w) + G(a, v, w)];$
- (vi) $G(u, v, w) \le G(u, a, a) + G(v, a, a) + G(w, a, a)$.

Definition 2.5 [13] Let (Y, \mathcal{G}) be a \mathcal{G} - metric space and let $\{u_n\}$ be a sequence of points of Y. Then, the sequence $\{u_n\}$ is \mathcal{G} - convergent to $u \in Y$ if $\mathcal{G}(u_m, u_n, u) \to 0$ as $m, n \to \infty$.

Proposition 2.6 [13] Let (Y, \mathcal{G}) be a \mathcal{G} – metric space, therefore for a sequence $\{u_n\} \subseteq Y$ and a point $u \in Y$, the following are equivalent:

- (i) $\{u_n\}$ is \mathcal{G} convergent to u.
- (ii) $G(u_n, u_n, u) \to 0 \text{ as } n \to \infty.$
- (iii) $G(u_n, u, u) \to 0 \text{ as } n \to \infty.$

Definition 2.7 [13] Let (Y, \mathcal{G}) be a \mathcal{G} – metric space. A sequence $\{u_n\}$ is called \mathcal{G} – Cauchy sequence, if for any $\varepsilon > 0$, there exists an $N_0 \in \mathbb{N}$ such that $\mathcal{G}(u_n, u_m, u_m) < \varepsilon$, for all $n, m \ge N_0$.

Definition 2.8 [13] If every G — Cauchy sequence in (Y, G) is G — convergent in (Y, G), then a G — metric space (Y, G) is said to be G — complete.

Definition 2.9 [2] A mapping $\mathcal{F}: \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}$ is called a C – class function if it is continuous and satisfies the properties:

- (i) $\mathcal{F}(r,t) \leq r$;
- (ii) $\mathcal{F}(r,t) = r$ implies that either r = 0 or t = 0, for all $r, t \in \mathbb{R}$.

Also, for any \mathcal{F} , we obtain $\mathcal{F}(r,t) = 0$.

The class of all C – class functions is denoted by C. The upcoming example proves that C is non-empty.

Example 2.10 [2] Each of the functions $\mathcal{F}: \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}$ explained below are elements of \mathcal{C} .

(i) $\mathcal{F}(r,t) = r - t;$

- $\mathcal{F}(r,t) = \frac{r}{(1+t)^s}, s \in (0,\infty);$ (ii)
- $\mathcal{F}(r,t) = mr, 0 < m < 1;$ (iii)
- $\mathcal{F}(r,t) = r\beta_0(r)$ where $\beta_0 : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ and is continuous; $\mathcal{F}(r,t) = \frac{r}{(1+r)^s}, s \in (0,\infty).$
- (v)

The above items (i) (iii) and (iv) are central results in [2]. Also see paper [4] and [9].

Definition 2.11 [2] Let $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ be a function which satisfies the properties:

 $(\varphi 1) \varphi$ is continuous and non-decreasing function;

$$(\varphi 2) \varphi(t) = 0$$
 if and only if $t = 0$.

Then, φ is called an altering distance function.

Remark 2.12 The class of all altering distance functions is denoted by Φ .

Definition 2.13 [2] Let $\psi: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ be a function which is also non-decreasing and continuous function such that $\psi(t) > 0$ for t > 0.

Then, ψ is called an ultra-altering distance function.

Remark 2.14 The class of all ultra-altering distance functions is denoted by Ψ_u .

Definition 2.15 Let (Y,\mathcal{G}) be a \mathcal{G} - metric space and \mathcal{R} be a self-mapping defined on Y. Then $\mathcal{R}:Y\to Y$ is called a contraction if there exist a constant κ with $0 \le \kappa < 1$ such that for all $u, v, w \in Y$,

$$G(\mathcal{R}u, \mathcal{R}v, \mathcal{R}w) \leq \kappa G(u, v, w).$$

III. **Main Results**

In this manuscript, we prove fixed point theorems via C – class functions on G – metric spaces. Further we also provide some examples and corollaries to prove the existence and uniqueness of our results.

Theorem 3.1 Let $h: Y \to Y$ be a self-mapping defined on complete \mathcal{G} – metric space (Y, \mathcal{G}) and

satisfy the following inequality for all $u, v, w \in Y$,

$$\varphi(\mathcal{G}(hu, hv, hw)) \le \mathcal{F}\left(\varphi(\Theta_0(u, v, w)), \psi(\Theta_0(u, v, w))\right), \tag{1}$$

where

$$\Theta_0(u, v, w) = k_1 G(u, v, w) + k_2 G(u, u, hu) + k_3 G(w, w, hw) + k_4 G(u, v, w) + k_5 G(u, w) + k_5 G(u, v, w) + k_5 G(u, v, w) + k_5 G(u, w) + k_5 G(u, w$$

$$k_4[\mathcal{G}(w,w,hu)+\mathcal{G}(u,u,hw)]+k_5\left(\frac{\mathcal{G}(w,w,hw)}{\left(1+\mathcal{G}(u,v,w)\right)}\right)$$

and $k_1, k_2, k_3, k_4, k_5 > 0$ are non-negative reals with $k_1 + k_2 + k_3 + 2k_4 + k_5 < 1, \varphi \in \Phi$,

 $\psi \in \Psi_u$ and $\mathcal{F} \in \mathcal{C}$. Then, h has a unique fixed point in Y, that is, hl = l.

Proof. Let $u_0 \in Y$ be any arbitrary point.

Consider that $u_{2n+1} = hu_{2n}$ for n = 0,1,2,...

Now, we have to show that $\{u_n\}$ is a \mathcal{G} – Cauchy sequence in (Y,\mathcal{G}) . But for this, firstly we will prove that

$$\lim_{n\to\infty}\mathcal{G}(u_{n+1},u_{n+1},u_n)=0.$$

Now, putting $u = v = u_{2n}$, $w = u_{2n-1}$ in equation (1) and using property (G1), (G5) and Definition 2.3, we get

$$\varphi(\mathcal{G}(u_{2n+1}, u_{2n+1}, u_{2n})) = \varphi(\mathcal{G}(hu_{2n}, hu_{2n}, hu_{2n-1}))$$

$$\leq \mathcal{F}\left(\varphi(\Theta_0(u_{2n}, u_{2n}, u_{2n-1})), \psi(\Theta_0(u_{2n}, u_{2n}, u_{2n-1}))\right), \tag{2}$$

where

$$\Theta_0(u_{2n}, u_{2n}, u_{2n-1})$$

$$= k_1 \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1}) + k_2 \mathcal{G}(u_{2n}, u_{2n}, hu_{2n}) + k_3 \mathcal{G}(u_{2n-1}, u_{2n-1}, hu_{2n-1})$$

$$+k_4[\mathcal{G}(u_{2n-1},u_{2n-1},hu_{2n})+\mathcal{G}(u_{2n},u_{2n},hu_{2n-1})]+k_5\left(\frac{\mathcal{G}(u_{2n-1},u_{2n-1},hu_{2n-1})}{(1+\mathcal{G}(u_{2n},u_{2n},u_{2n-1}))}\right)$$

$$= k_1 \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1}) + k_2 \mathcal{G}(u_{2n}, u_{2n}, u_{2n+1}) + k_3 \mathcal{G}(u_{2n-1}, u_{2n-1}, u_{2n})$$

$$+k_4[\mathcal{G}(u_{2n-1},u_{2n-1},u_{2n+1})+\mathcal{G}(u_{2n},u_{2n},u_{2n})]+k_5\left(\frac{\mathcal{G}(u_{2n-1},u_{2n-1},u_{2n})}{(1+\mathcal{G}(u_{2n},u_{2n},u_{2n-1}))}\right)$$

$$\leq k_1 \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1}) + k_2 \mathcal{G}(u_{2n+1}, u_{2n+1}, u_{2n}) + k_3 \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1})$$

$$+k_4[\mathcal{G}(u_{2n-1},u_{2n-1},u_{2n})+\mathcal{G}(u_{2n},u_{2n},u_{2n+1})]+k_5\left(\frac{\mathcal{G}(u_{2n},u_{2n},u_{2n-1})}{(1+\mathcal{G}(u_{2n},u_{2n},u_{2n-1}))}\right)$$

$$=k_1\mathcal{G}(u_{2n},u_{2n},u_{2n-1})+k_2\mathcal{G}(u_{2n+1},u_{2n+1},u_{2n})+k_3\mathcal{G}(u_{2n},u_{2n},u_{2n-1})$$

$$+k_4[\mathcal{G}(u_{2n-1},u_{2n-1},u_{2n})+\mathcal{G}(u_{2n+1},u_{2n+1},u_{2n})]+k_5\left(\frac{\mathcal{G}(u_{2n},u_{2n},u_{2n-1})}{(1+\mathcal{G}(u_{2n},u_{2n},u_{2n-1}))}\right)$$

$$\leq k_1 \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1}) + k_2 \mathcal{G}(u_{2n+1}, u_{2n+1}, u_{2n}) + k_3 \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1})$$

$$+k_4[G(u_{2n},u_{2n},u_{2n-1})+G(u_{2n+1},u_{2n+1},u_{2n})]+k_5G(u_{2n},u_{2n},u_{2n-1})$$

$$= (k_1 + k_3 + k_4 + k_5)\mathcal{G}(u_{2n}, u_{2n}, u_{2n-1}) + (k_2 + k_4)\mathcal{G}(u_{2n+1}, u_{2n+1}, u_{2n}). \tag{3}$$

Putting the value of $\Theta_0(u_{2n}, u_{2n}, u_{2n-1})$ from equation (3) in equation (2) and also using the property of \mathcal{F} , we have

$$\varphi(\mathcal{G}(u_{2n+1},u_{2n+1},u_{2n}))$$

$$\leq \mathcal{F}\left(\frac{\varphi\big((k_1+k_3+k_4+k_5)\mathcal{G}(u_{2n},u_{2n},u_{2n-1})+(k_2+k_4)\mathcal{G}(u_{2n+1},u_{2n+1},u_{2n})\big)}{\psi\big((k_1+k_3+k_4+k_5)\mathcal{G}(u_{2n},u_{2n},u_{2n-1})+(k_2+k_4)\mathcal{G}(u_{2n+1},u_{2n+1},u_{2n})\big)}\right)$$

$$\leq \varphi \Big((k_1 + k_3 + k_4 + k_5) \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1}) + (k_2 + k_4) \mathcal{G}(u_{2n+1}, u_{2n+1}, u_{2n}) \Big). \tag{4}$$

As $\varphi \in \Phi$, then using the property of φ , we get

$$G(u_{2n+1}, u_{2n+1}, u_{2n}) \le (k_1 + k_3 + k_4 + k_5)G(u_{2n}, u_{2n}, u_{2n-1}) + (k_1 + k_3 + k_4 + k_5)G(u_{2n}, u_{2n}, u_{2n-1})$$

$$(k_2 + k_4)G(u_{2n+1}, u_{2n+1}, u_{2n}).$$

That is,
$$\mathcal{G}(u_{2n+1}, u_{2n+1}, u_{2n}) \le \left(\frac{k_1 + k_3 + k_4 + k_5}{1 - k_2 - k_4}\right) \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1}) = \alpha \mathcal{G}(u_{2n}, u_{2n}, u_{2n-1}),$$
 (5)

where
$$\alpha = \left(\frac{k_1 + k_3 + k_4 + k_5}{1 - k_2 - k_4}\right) < 1$$
,

because $k_1 + k_2 + k_3 + 2k_4 + k_5 < 1$.

Therefore,

$$\mathcal{G}(u_{n+1}, u_{n+1}, u_n) \le \alpha \mathcal{G}(u_n, u_n, u_{n-1}),\tag{6}$$

for n = 0,1,2,...

Now, consider $d_n = \mathcal{G}(u_{n+1}, u_{n+1}, u_n)$ and $d_{n-1} = \mathcal{G}(u_n, u_n, u_{n-1})$.

Hence, from equation (6), we obtain

$$d_n \le \alpha d_{n-1} \le \alpha^2 d_{n-2} \le \dots \le \alpha^n d_0. \tag{7}$$

As $0 \le \alpha < 1$, then taking the limit as $n \to \infty$, we obtain

$$\lim_{n\to\infty} \mathcal{G}(u_{n+1}, u_{n+1}, u_n) = 0.$$
 (8)

Next, we will prove that $\{u_n\}$ is a \mathcal{G} – Cauchy sequence in (Y, \mathcal{G}) .

We assume that m > n, for all $n, m \in \mathbb{N}$ and also using the property (G5), Definition 2.3 and using equation (7), we get

$$\begin{split} \mathcal{G}(u_{n},u_{n},u_{m}) &\leq \mathcal{G}(u_{n},u_{n},u_{n+1}) + \mathcal{G}(u_{n+1},u_{n+1},u_{m}) \\ &\leq \mathcal{G}(u_{n},u_{n},u_{n+1}) + \mathcal{G}(u_{n+1},u_{n+1},u_{n+2}) + \mathcal{G}(u_{n+2},u_{n+2},u_{m}) \\ &\leq \mathcal{G}(u_{n},u_{n},u_{n+1}) + \mathcal{G}(u_{n+1},u_{n+1},u_{n+2}) + \mathcal{G}(u_{n+2},u_{n+2},u_{n+3}) + \cdots \\ &\qquad \qquad + \mathcal{G}(u_{m-1},u_{m-1},u_{m}) \\ &\leq (\alpha^{n} + \alpha^{n+1} + \alpha^{n+2} + \cdots + \alpha^{m-1})\mathcal{G}(u_{0},u_{0},u_{1}) \\ &= (\alpha^{n} + \alpha^{n+1} + \alpha^{n+2} + \cdots + \alpha^{m-1})\mathcal{d}_{0} \\ &= (\sum_{n=n}^{m-1} \alpha^{p}) \mathcal{d}_{0}. \end{split} \tag{9}$$

Letting $n, m \to \infty$, we get $\mathcal{G}(u_n, u_n, u_m) \to 0$, as $0 \le \alpha < 1$.

Therefore, $\{u_n\}$ is a G – Cauchy sequence in Y. Also, (Y,G) is G – complete, then there exists $l \in Y$ such that $\lim_{n\to\infty} u_n = l$.

Now, we will prove that l is a fixed point of h.

Putting $u = v = u_{2n}$ and w = l in equation (1), we obtain

$$\varphi(\mathcal{G}(u_{2n+1}, u_{2n+1}, hl)) = \varphi(\mathcal{G}(hu_{2n}, hu_{2n}, hl))
\leq \mathcal{F}(\varphi(\theta_0(u_{2n}, u_{2n}, l)), \psi(\theta_0(u_{2n}, u_{2n}, l))),$$
(10)

where

 $\Theta_0(u_{2n},u_{2n},l)$

$$= k_1 \mathcal{G}(u_{2n}, u_{2n}, l) + k_2 \mathcal{G}(u_{2n}, u_{2n}, hu_{2n}) + k_3 \mathcal{G}(l, l, hl)$$

$$+k_4[\mathcal{G}(l,l,hu_{2n})+\mathcal{G}(u_{2n},u_{2n},hl)]+k_5\left(\frac{\mathcal{G}(l,l,hl)}{(1+\mathcal{G}(u_{2n},u_{2n},l))}\right)$$

$$= k_1 \mathcal{G}(u_{2n}, u_{2n}, l) + k_2 \mathcal{G}(u_{2n}, u_{2n}, u_{2n+1}) + k_3 \mathcal{G}(l, l, hl)$$

$$+k_{4}[\mathcal{G}(l,l,u_{2n+1})+\mathcal{G}(u_{2n},u_{2n},hl)]+k_{5}\left(\frac{\mathcal{G}(l,l,hl)}{(1+\mathcal{G}(u_{2n},u_{2n},l))}\right). \tag{11}$$

Taking $n \to \infty$ in the above equation (11) and using the property (G1), we obtain

$$\Theta_0(u_{2n}, u_{2n}, l) = (k_3 + k_4 + k_5)\mathcal{G}(l, l, hl). \tag{12}$$

Using the property of \mathcal{F} and also using equation (12) in equation (10), we get

$$\varphi(\mathcal{G}(u_{2n+1}, u_{2n+1}, hl)) = \varphi(\mathcal{G}(hu_{2n}, hu_{2n}, hl))
\leq \mathcal{F}(\varphi((k_3 + k_4 + k_5)\mathcal{G}(l, l, hl)), \psi((k_3 + k_4 + k_5)\mathcal{G}(l, l, hl)))
\leq \varphi((k_3 + k_4 + k_5)\mathcal{G}(l, l, hl)).$$
(13)

Again, taking $n \to \infty$ in equation (13), we get

$$\varphi(\mathcal{G}(l,l,hl)) \le \varphi((k_3 + k_4 + k_5)\mathcal{G}(l,l,hl)). \tag{14}$$

As $\varphi \in \Phi$, then using the property of φ in equation (14), we conclude that

$$\begin{split} \mathcal{G}(l,l,hl) & \leq (k_3 + k_4 + k_5) \mathcal{G}(l,l,hl) \\ & \leq (k_1 + k_2 + k_3 + 2k_4 + k_5) \mathcal{G}(l,l,hl) \\ & < \mathcal{G}(l,l,hl), \end{split}$$

as
$$(k_1 + k_2 + k_3 + 2k_4 + k_5) < 1$$
,

a contradiction.

Therefore, G(l, l, hl) = 0.

In other words, hl = l.

This proves that l is a fixed point of h.

Uniqueness: Let l' be another fixed point of h such that hl' = l' with $l' \neq l$.

Now, using equation (1) for u = v = l and w = l' and also using the property (G1) and Definition 2.3, we obtain

$$\varphi(\mathcal{G}(l,l,l')) = \varphi(\mathcal{G}(hl,hl,hl'))$$

$$\leq \mathcal{F}\left(\varphi(\Theta_0(l,l,l')),\psi(\Theta_0(l,l,l'))\right), \tag{15}$$

where

 $\Theta_0(l,l,l')$

$$= k_{1}G(l, l, l') + k_{2}G(l, l, hl) + k_{3}G(l', l', hl') + k_{4}[G(l', l', hl) + G(l, l, hl')] + k_{5}\left(\frac{G(l', l', hl')}{(1+G(l, l, l'))}\right) = k_{1}G(l, l, l') + k_{2}G(l, l, l) + k_{3}G(l', l', l') + k_{4}[G(l', l', l) + G(l, l, l')] + k_{5}\left(\frac{G(l', l', l')}{(1+G(l, l, l'))}\right) = k_{1}G(l, l, l') + 0 + 0 + k_{4}[2G(l, l, hl')] + 0$$

$$= (k_{1} + 2k_{4})G(l, l, l'). \tag{16}$$

Putting the value of $\Theta_0(l, l, l')$ from equation (16) in equation (15) and also using the property of \mathcal{F} , we get

$$\varphi(\mathcal{G}(l,l,l')) = \varphi(\mathcal{G}(hl,hl,hl'))$$

$$\leq \mathcal{F}\left(\varphi((k_1+2k_4)\mathcal{G}(l,l,l')),\psi((k_1+2k_4)\mathcal{G}(l,l,l'))\right),$$

$$\leq \varphi((k_1+2k_4)\mathcal{G}(l,l,l')). \tag{17}$$

As $\varphi \in \Phi$, then again using the property of φ in equation (17), we obtain

$$G(l, l, l') \le (k_1 + 2k_4)G(l, l, l')$$

$$\le (k_1 + k_2 + k_3 + 2k_4 + k_5)G(l, l, l')$$

$$< G(l, l, l'), \tag{18}$$

as $(k_1 + k_2 + k_3 + 2k_4 + k_5) < 1$,

again, we get a contradiction.

Hence, G(l, l, l') = 0, that is, l = l'.

Therefore, l is a fixed point of h in Y.

Corollary 3.2 Let $h: Y \to Y$ be a self-mapping defined on complete \mathcal{G} – metric space (Y, \mathcal{G}) and satisfy the following inequality for all $u, v, w \in Y$,

$$\varphi(G(hu, hv, hw)) \le \varphi(\Theta_0(u, v, w)) - \psi(\Theta_0(u, v, w)), \tag{19}$$

where

$$\Theta_{0}(u, v, w) = k_{1}G(u, v, w) + k_{2}G(u, u, hu) + k_{3}G(w, w, hw) + k_{4}[G(w, w, hu) + G(u, u, hw)] + k_{5}\left(\frac{G(w, w, hw)}{(1 + G(u, v, w))}\right)$$

and $k_1, k_2, k_3, k_4, k_5 > 0$ are non-negative reals with $k_1 + k_2 + k_3 + 2k_4 + k_5 < 1, \varphi \in \Phi$,

 $\psi \in \Psi_u$ and $\mathcal{F} \in \mathcal{C}$.

Then, h has a unique fixed point in Y, that is, hl = l.

Proof. If we take $\mathcal{F}(r,t) = r - t$ in Theorem 3.1, then we get the required result.

Corollary 3.3 Let $h: Y \to Y$ be a self-mapping defined on compete \mathcal{G} – metric space (Y, \mathcal{G}) which satisfy the following inequality for all $u, v, w \in Y$,

$$G(hu, hv, hw) \le \kappa G(u, v, w),$$
 (20)

where $\kappa \in [0,1)$ is a constant.

Then, h has a unique fixed point in Y, that is, hl = l.

Proof. If we consider $\mathcal{F}(r,t) = mr$ for some m such that 0 < m < 1, $\varphi(t) = t$, for all $t \ge 0$ and taking $k_1 = \kappa$, where $\kappa \in [0,1)$ and also $k_2 = k_3 = k_4 = k_5 = 0$ in Theorem 3.1, then we get the required result (with $m\kappa \to \kappa$).

Corollary 3.4 Let $h: Y \to Y$ be a self-mapping defined on complete \mathcal{G} – metric space (Y, \mathcal{G}) which satisfy the following inequality for all $u, v, w \in Y$,

 $G(hu, hv, hw) \le k_1 G(u, v, w) + k_2 G(u, u, hu) + k_3 G(w, w, hw) +$

$$k_4[G(w, w, hu) + G(u, u, hw)] + k_5 \left(\frac{G(w, w, hw)}{(1 + G(u, v, w))}\right),$$
 (21)

where $k_1, k_2, k_3, k_4, k_5 > 0$ are non-negative reals with $k_1 + k_2 + k_3 + 2k_4 + k_5 < 1$.

Then, h has a unique fixed point in Y, that is, hl = l.

Proof. If we consider $\mathcal{F}(r,t) = mr$ for some 0 < m < 1, $\varphi(t) = t$, for all $t \ge 0$ in Theorem 3.1, then we get the required result (with $mk_1 \to k_1$, $mk_2 \to k_2$, $mk_3 \to k_3$, $mk_4 \to k_4$, $mk_5 \to k_5$).

Example 3.5 Let Y = [0,2] and $h: Y \to Y$ be a mapping defined as $h(u) = \frac{u}{3}$, for all $u \in Y$.

Also, a mapping $G: Y^3 \to [0, \infty)$ be defined by

$$G(u, v, w) = \begin{cases} 0, & u = v = w, \\ \max\{u, v, w\}, \text{ otherwise,} \end{cases}$$

for all $u, v, w \in Y$, is a \mathcal{G} – metric space on Y.

Case 1: If we consider u = v = w, then both equations (21) and (20) are truly hold.

Case 2: (a) If we consider u > v > w, for all $u, v, w \in Y$, then

$$G(hu, hv, hw) = \max\left\{\frac{u}{3}, \frac{v}{3}, \frac{w}{3}\right\} = \frac{u}{3},$$

$$G(u, v, w) = \max\{u, v, w\} = u,$$

$$G(u, u, hu) = \max\left\{u, u, \frac{u}{3}\right\} = u,$$

$$G(w, w, hw) = \max\{w, w, \frac{w}{3}\} = w,$$

$$\mathcal{G}(w, w, hu) = \max\left\{w, w, \frac{u}{3}\right\} = \frac{u}{3},$$

$$G(u, u, hw) = \max\left\{u, u, \frac{w}{3}\right\} = u.$$

Using equation (21) of Corollary 3.4, we obtain

$$\frac{u}{3} \le k_1 u + k_2 u + k_3 w + \frac{4}{3} k_4 u + k_5 \frac{w}{1+u}.$$

Now, consider u = 2, v = 1, $w = \frac{2}{3}$, then we get

$$\frac{2}{3} \le 2k_1 + 2k_2 + \frac{2}{3}k_3 + \frac{8}{3}k_4 + \frac{2}{9}k_5.$$

That is,
$$6 \le 18k_1 + 18k_2 + 6k_3 + 24k_4 + 2k_5$$
. (22)

The above equation (22) is valid for:

(i)
$$k_1 = \frac{2}{4}$$
, $k_2 = \frac{2}{5}$ and $k_3 = k_4 = k_5 = 0$;

(ii)
$$k_1 = \frac{1}{3}, k_3 = \frac{1}{4}, k_4 = \frac{1}{5} \text{ and } k_2 = k_5 = 0;$$

(iii)
$$k_2 = \frac{2}{7}$$
, $k_3 = \frac{3}{7}$ and $k_1 = k_4 = k_5 = 0$,

with
$$k_1 + k_2 + k_3 + 2k_4 + k_5 < 1$$
.

Hence, all the required conditions of Corollary 3.4 are satisfied.

Therefore, *h* has a unique fixed point in *Y* by applying Corollary 3.4.

Evidently, $0 \in Y$ is the unique fixed point of h in this case.

(b) Now assume equation (20) of Corollary 3.3, we obtain

$$\frac{u}{3} \leq \kappa u$$
,

or
$$\kappa \geq \frac{1}{3}$$
.

If we consider $0 < \kappa < 1$, then all the required conditions of Corollary 3.3 are satisfied and $0 \in Y$ is the unique fixed point of h in this case also.

References

- [1]. Abbas M., Nazir T. and Radenovic S., Common fixed point of generalized weakly contractive maps in partially ordered G metric spaces, Applied Mathematics and Computation, 218(18)(2012), 9383-9395.
- [2]. Ansari A. H., Note on φ-ψ-contractive type mappings and related fixed points, The 2nd regional conference on Math. and Appl., Payame Noor University, (2014), 377-380.
- [3]. Ansari A. H., Barakat M. A. and Aydi H., New approach for common fixed point theorems via C class functions in \mathcal{G}_p metric spaces, Hindawi Journal of function spaces, 2017, Article ID 2624569, 9 pages.
- [4]. Ansari A. H., Chandok S. and Ionescu C., Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions, J. Inequl. Appl., 2014(429)(2014), 17 pages.
- [5]. Aydi H., Karapinar E. and Salimi P., Some fixed point results in G_p metric spaces, Journal of Applied Mathematics, **24**(2012), Article ID 891713, 86-93.
- [6]. Babu G. V. R., Babu D. R., Rao K. N. and Kumar B. V. S., Fixed points of (φ, ψ) -almost weakly contractive maps in \mathcal{G} metric spaces, Applied Mathematics E-Notes, 14(2014), 69-85.
- [7]. Banach S., Sur les operation dans les ensembles abstraits et leur application aux equation integrals, Fund. Math., 3(1922), 133-181.
- [8]. Hamaizia T. and Ansari A. H., Common fixed point theorems involving C class functions in G metric spaces, Ser. Math. Inform., 37(5)(2022), 849-860.
- [9]. Hoxha E., Ansari A. H. and Zoto K., Some common fixed point results through generalized altering distances on dislocated metric spaces, Proceedings of EIIC, September 1-5, 2014, 403-409.
- [10]. Kumar M. and Araci S., Common fixed point theorems for $G \eta \chi$ contractive type mappings with applications, Bol. Soc. Paran. Mat., 37(1)(2019), 9-20.
- [11]. Kumar N., Kumar M. and Ashish, Common fixed point theorems for weakly compatible maps satisfying integral type contraction in *G* metric spaces, Communications in Mathematics and Applications, **14**(1)(2023), 21-36.
- [12]. Kumar P. S. and Thiruveni P., Some common fuzzy fixed point theorems on \mathcal{G} metric space, Asian Res. J. Math., **19**(10)(2023), 246-259.
- [13]. Mustafa Z. and Sims B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2006), 289-297.
- [14]. Nashine H. K., Saluja G. S. and Ibrahim R. W., Some fixed point theorems for (φ ψ)-almost weak contractions in S metric spaces solving conformable differential equations, J. Inequalities Appl., **2020**(139)(2020), 1-27.
- [15]. Saluja G. S., Common fixed point theorems on S metric spaces via C class functions, International J. Math. Combin., 3(2022), 21-37.
- [16]. Sedghi S., Shobe N. and Aliouche A., A generalization of fixed point theorems in S metric spaces, Mat. Vesnik, **64**(3)(2012), 258-266
- [17]. Sedghi S. and Dung N. V., Fixed point theorems on S metric spaces, Mat. Vesnik, 66(1)(2014), 113-124.