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I.  Introduction
Fixed point theory has an application in many fields such as physics, chemistry, biology and many

areas of mathematics. The Banach contraction mapping principle [7] is the most pioneer result in the complete
metric space. Banach contraction principle establishes that every mapping R : Y — Y, which is defined on
complete metric space (Y, d) and satisfy the following condition for all u,v € Y,

d(Rw),R(v)) < Ad(u,v),
where 0 < A < 1 is a constant, has a unique fixed pointin Y.

The concept of a G — metric space was introduced by Mustafa and Sims [13] which is different from further
spaces. After this appreciative work of Mustafa and Sims [13], many writers inspired to study the hurdles of the
fixed point, common fixed point,common fuzzy fixed point by using different contractive conditions for
mappings, see for examples ([1], [6], [8], [10], [11], [12]).

1. Preliminaries

Definition 2.1 [13] Let Y be a non-empty setand G : Y X Y x Y — R¢ be a function such that for all v, v,w,a €
Y, satisfying the following properties

G Guw,v,w)=0ifu=v =w;
(G2) G(u,u,v) >0 withu # v;
(G3) G(u,u,v) < G(u,v,w) withw # v;

G4) G(uw,v,w) = Gu,w,v) = Gv,w,u) = G(w,u,v) = -, (Symmetry in all three variables);
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(G5) G(u,v,w) < G(u,a,a) + G(a,v,w), (Rectangle inequality).
Then, the function G is called a G — metric on Y, and the pair (Y, G) isa G — metric space.

All these properties are satisfied when G(u, v, w) is the perimeter of the triangle with vertices at u, v and w in
R?.

Example 2.2 [13] Let (Y, d) be a metric space. The mapping Gs : Y3 — R} defined by

Gs(uw,v,w) =du,v) +d(w,w) + d(u,w), forall u,v,w €Y,

isa G — metric and therefore (Y, Gs) is a G — metric space.

Definition 2.3 [13] The G — metric space (Y, G) is called symmetric if G(u, u,v) = G(v,v,u), forall u,v € Y.
Proposition 2.4 [13] Let (Y, G) be a G — metric space. Then for any u, v,w, a €Y, it follows that:

M IfG(u,v,w) =0,thenu = v = w;
(i) Gu,v,w) < Glu,u,v) + G(u, u, w);
(iii) G(u,v,v) < 2G(v,u,u);

(iv) Gu,v,w) < G(u,a,w) + G(a,v,w);

V) G@v,w) <3G v, a) + G aw) +G(a,v,w)];
(vi) Gu,v,w) < G(u,a,a) + G(w,a,a) + Gw,a,a).

Definition 2.5 [13] Let (Y,G) be a G — metric space and let {u,} be a sequence of points of Y. Then, the
sequence {u,} is G — convergentto u € Y if G(u,, u,,u) » 0asm,n - oo,

Proposition 2.6 [13] Let (Y, G) be a G — metric space, therefore for a sequence {u,,} <Y and a point u € Y, the
following are equivalent:

(i {u,} is G — convergent to u.
(i) G(uy, uy,u) > 0asn - oo,
(iii) G(uy,,u,u) > 0asn - oo,

Definition 2.7 [13] Let (¥, G) be a G — metric space. A sequence {u,,} is called G — Cauchy sequence, if for any
€ > 0, there exists an Ny € N such that G(u,, U, u,) < ¢ foralln,m = N,.

Definition 2.8 [13] If every G — Cauchy sequence in (Y, G) is G — convergent in (Y, G), then a G — metric space
(Y, G) is said to be G — complete.

Definition 2.9 [2] A mapping F : R{ x R{ — R is called a € — class function if it is continuous and satisfies
the properties:

(M Frt)<n
(i) F(r,t) = r implies that either r = 0 ort = 0, forall r, t € R.

Also, for any F, we obtain F(r,t) = 0.
The class of all C — class functions is denoted by C. The upcoming example proves that € is non-empty.
Example 2.10 [2] Each of the functions F : R x R} — R explained below are elements of C.

M F(r,t)=r—t;
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. _ r .
(ii) F@r,t) = 7m0 € (0,);

(iii) Flr,t)=mr,0<m < 1;
(iv) F(r,t) = rBy(r) where B, : Rf - R{ and is continuous;
(v) F(r,t) =——,s € (0,).

(1+r)s’
The above items (i) (iii) and (iv) are central results in [2]. Also see paper [4] and [9].
Definition 2.11 [2] Let ¢ : R — R¢ be a function which satisfies the properties:
(1) ¢ is continuous and non-decreasing function;
(92) @(t) =0 ifand only if t = 0.
Then, ¢ is called an altering distance function.
Remark 2.12 The class of all altering distance functions is denoted by ®.

Definition 2.13 [2] Let ¢ : R — R} be a function which is also non-decreasing and continuous function such
that Y (t) > 0 fort > 0.

Then, v is called an ultra-altering distance function.
Remark 2.14 The class of all ultra-altering distance functions is denoted by W¥,,.

Definition 2.15 Let (Y,G) be a G — metric space and R be a self-mapping defined on Y. Then R: Y = Y is
called a contraction if there exist a constant x with 0 < k < 1 such that forall u,v,w € 7,

G(Ru, Rv, Rw) < kG(u,v,w).
1. Main Results

In this manuscript, we prove fixed point theorems via C — class functions on G — metric spaces. Further we also
provide some examples and corollaries to prove the existence and uniqueness of our results.

Theorem 3.1 Let h : Y — Y be a self-mapping defined on complete G — metric space (Y, G) and

satisfy the following inequality for all u,v,w €Y,

o(G(hu, hv,hw)) < F ((p(@o(u, v,w)), P (0,(w, v, w))), 1)
where

0o (u,v,w) = k,G(u,v,w) + k,G(u,u, hu) + ksG(w, w, hw) +

RalG v, w, ) + Gy, )] + I ((E )

and kq, k,, k3, k,, ks > 0 are non-negative reals with k; + k, + k3 + 2k, + ks < 1,9 € D,
Y € W, and F € C. Then, h has a unique fixed point in Y, that is, hl = L.

Proof. Let u, € Y be any arbitrary point.

Consider that u,,,, = hu,, forn =0,1,2, ...

Now, we have to show that {u,} is a G — Cauchy sequence in (Y, G). But for this, firstly we will prove that
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limnewg(un+1' Un+1, un) = 0.

Now, putting u = v = u,,, W = u,,_, in equation (1) and using property (G1), (G5) and Definition 2.3, we get
(P(g(u2n+1' Uzn+1, uZn)) = ‘P(g(hum: huyy, thn—l))
<F (‘P(G)o (Uzn, Uz, uZn—l)): Eb(@o(uZn‘ Uzn, uZn—l)))' 2
where
0o (Uzn, Uz, Uzp-1)

= k1 G(Uzn, Uzn, Uzn—1) + k2G(Uap, Upn, hUzn) + k3G (Uzn—1, Uzp—1, hUlgn_1)

+k4[G(Uan—1, Uzn—1, RUizy) + G(Uzp, Uy, AUlzp—1)] + ks (Q(u2n—1.u2n—1.hu2n—1))

(1+g(u2n-u2n-u2n—1))

= k1 G(Uzn, Uzn, Uzn—1) + k2G(Uan, Ugn, Uzpi1) + k3G (Uzp—1, Uzn—1, Uzp)

G(Uzn—1,U2n-1,U2n)
+k4[G(Uan—1, Uzn—1, Uzns1) + G(Uap, Usp, Upn)] + Ks ((1+g2(1112:.uz:ulzn2j)))

< k1G(Uan, Uzny Upn—1) + koG (Uoni1, Uzns1s Uzn) F k3G (Uan, Uppn, Upn—1)

GuanUanUzn—1)
+k4[G(Uzn—1, Uzn—1, Uzn) + G(Uzn, Upp, Uppir)] + Ks ((1+g(121121n;2n.12[21ni1)))

= k1G(Uan, Uzn, Upn-1) + k2§ (Ui, Upna1, Uzn) + k3G (Upn, Unp, Upn—1)

G(uzanuznUzn-1) )
(1+g(u2n:u2n:u2n—1))

+k4[G(Uan—1, Uzn—1, Uzn) + G(Uzns1, Usns1, Uzp)] + ks <
< k1G(Uan, Uzny Upn—-1) + koG (Uoni1, Uzns1s Uzn) + k3G (Upn, Uppn, Upn—1)
+h4[G(Uan, Uz, Ugn—1) + G(Uant1, Uzns1, Uzn)] + KsG(Uap, Upp, Usn—1)

= (ky + k3 + ky + k)G (Uap, Upn, Upp—1) + (ky + k1) G(Uzns1, Uzns1, Uzn)- 3)

Putting the value of 0, (u,,, Usp, Usn—1) from equation (3) in equation (2) and also using the property of F, we
have

(P(g(u2n+1' Uzn+1s uZn))

<F (‘P((’ﬁ + k3 + ky + k)G (Uzp, Upn, Unp—1) + (ky + k0)G(Uzns1, u2n+1'u2n))'>
B 1/’(0‘1 + ks +ky + ks)GUzn, Upn, Upn—1) + (K + k)G (Upni1, Uans1s uZn))

< (P((k1 + ks + ky + ks)GUpn, Upn, Upn—1) + (ky + k)G (Upni1, Uansrs uZn))- (4)
As ¢ € @, then using the property of ¢, we get
G(Uapi1, Upns1, Uzn) < (kg + k3 + Ky + ks)G(Uap, Upp, Upp—1) +

(k2 + ky)G(Uzpi1, Uzn1) Uzn)-

ki+k3z+kst+ks

That is, G(Uzp41, Uzns1, Uzn) < ( PEp— )g(um' Uz, Upn—1) = @G (U, Upn, Upn—1),  (5)
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kq+k3+kst+ks

) <1,
1—ky—ky

where a = (

because ky + k, + ks + 2k, + ks < 1.

Therefore,

G(Unt1, Untr, Un) < aG(Uy, Uy, Up_1), (6)
forn=10,12,..

Now, consider d,, = G(Upt1, Uns1, Up) ANA dpy_q = G(Up, Uy, Up—q)-

Hence, from equation (6), we obtain

dp < adyp_1 < a’dp_, < - < a’d,. ©)
As 0 < a < 1, then taking the limit as n — oo, we obtain

limy 500G (Un1, Uns1, Un) = 0. 8
Next, we will prove that {u,} is a G — Cauchy sequence in (Y, G).

We assume that m > n, for all n,m € N and also using the property (G5), Definition 2.3 and using equation (7),
we get

G(Un, Un, W) < G(Un, Un, Uny1) + G(Uny1, Ungr, Un)

< G(Un Uny Un1) + GUny1, Ungr, Unsz) + G (Untz, Unya Um)

< GQun, Uy Un1) + G(Untr, Unss, Unsa) + G(Untz, Unsz, Unss) + o

+ G (Um-1, U1, Um)

< @+ a™ + a™2 + o+ a™ G (U, U, Uy)

=(a™+ a™t 4+ a™? + -+ a™ Dd,

= (Tt a) dy. ©
Letting n,m — oo, we get G(uy,, Uy, Uy) = 0,850 < a < 1.

Therefore, {u,} is a G — Cauchy sequence in Y. Also, (Y, G) is G — complete, then there exists [ € Y such that
lim,ou, =L

Now, we will prove that [ is a fixed point of h.
Putting u = v = u,, and w = [ in equation (1), we obtain
@(G(Want1 tznsr, BD)) = @(G(httgn, hitgn, A1)
< F (@O0 (tzn, Uz, 1)), (80 (ns uzn, D)), (10)
where

09 (Uzn, Uzp, 1)
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= k1G(Uzn, Uzn, 1) + k2G Uz, Upp, hUzy) + k3G (L L RD)

+k4‘ [g(l' l' thn) + g(u2n’ uan hl)] + k5 <M)

(1+g(u2n,u2n,l))

= k1GUan, Uzn, D) + kG (Uan, Uzn, Uppnir) + k3G L RD)

LAY
+ka[GU L ugnsr) + GQUzp, Upn, hD] + ks (W) (11)

Taking n — oo in the above equation (11) and using the property (G1), we obtain

00 (Ugn, Usn, D) = (ks + kg + k5)G(L L RID). (12)
Using the property of F and also using equation (12) in equation (10), we get

(G Wantr, Uznsr, hD)) = (G (huzn, huizn, hD))

< F (@(Cks + ks + k)G L RD), Y((ks + kg + ks)G (L 1 D))

< o((ks + ky + ks)G(L, L RD)). (13)

Again, taking n - oo in equation (13), we get
o(GU LAD) < @((ks + ky + ks)G(L, L D). (14)
As ¢ € @, then using the property of ¢ in equation (14), we conclude that
G LA < (ks +ky + k)G L RD

< (ky+ ky + ks + 2k, + ks)G(, L RD)

<G LR,
as(ky +ky+ ks +2k,+ks) <1,
a contradiction.
Therefore, G(I, 1, hl) = 0.
In other words, hl = L.
This proves that [ is a fixed point of h.
Uniqueness: Let I’ be another fixed point of h such that hl’ =" with I" = L.

Now, using equation (1) for u =v =1 and w = [’ and also using the property (G1) and Definition 2.3, we
obtain

o(6L L)) = o(G(hL, AL AL))

SACICNAANRTCHAR))] (15)
where

®0(ll ll l’)
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= kyG(L L 1) + koG L RD) + ksG(U, U, L) + ka[GQU, U, RD) + GL L RI)] + ke (%) -

KaGULE) + G LD + ksG U1 1) + kal§ 1D +GU LI + ks (i) = oG LI +0+0 +
kal2G(L LRIV +0

= (ky + 2k )G L. (16)
Putting the value of ©,(l,1,1") from equation (16) in equation (15) and also using the property of F, we get
o(6(L L)) = o(G(hL AL AL))

<F (<p((k1 +2k)G(U L), (ke + 2k)G( L, l'))),

< o((ky + 2k )G LTY). (17)

As ¢ € @, then again using the property of ¢ in equation (17), we obtain
GULLL) < (ky + 2k )G LT

< (ky + ky + ks + 2k, + ks)G(L LT

<GgLly, (18)
as (ky + ky + ks + 2k, + ks) < 1,
again, we get a contradiction.
Hence, G(I,1,1") = 0, thatis, l = I'.
Therefore, [ is a fixed pointof hin'Y.

Corollary 3.2 Let h: Y - Y be a self-mapping defined on complete G — metric space (Y, §G) and satisfy the
following inequality for all u,v,w €Y,

@(G(hu, hv, w)) < @(0o(w, v, w)) — P(04(w, v, w)), (19)
where

0., v,w) = kG(u,v,w) + k,G(u, u, hu) + ksG(w, w, hw) +

RalG v, w, ) + Gy, )] + I ((E )

and kq, k,, k3, k,, ks > 0 are non-negative reals with k; + k, + k3 + 2k, + ks < 1,9 € D,
Y eW,and F € C.

Then, h has a unique fixed point in Y, that is, hl = L.

Proof. If we take F(r,t) = r — t in Theorem 3.1, then we get the required result.

Corollary 3.3 Let h : Y = Y be a self-mapping defined on compete G — metric space (Y, G) which satisfy the
following inequality for all u,v,w €Y,

G(hu, hv, hw) < Kk G(u, v, w), (20)
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where k € [0,1) is a constant.
Then, h has a unique fixed point in Y, that is, hl = L.

Proof. If we consider F(r,t) = mr for some m such that0 < m < 1,¢(t) =t, forall t > 0 and taking k; =
k, where x € [0,1) and also k, = k; = k, = ks = 0 in Theorem 3.1, then we get the required result (with
mK = k).

Corollary 3.4 Let h : Y - Y be a self-mapping defined on complete G — metric space (Y, ) which satisfy the
following inequality for all u,v,w €Y,

G(hu, hv, hw) < k,G(u, v,w) + k,G(u, u, hu) + ksG(w, w, hw) +

KalGOw, w ) + Gy, )] + ks (L)), 21)

where kq, k,, k3, k4, ks > 0 are non-negative reals with ky + k, + ks + 2k, + ks < 1.
Then, h has a unique fixed point in Y, that is, hl = L.

Proof. If we consider F(r,t) = mr for some 0 < m < 1,¢(t) =t, forall t = 0 in Theorem 3.1, then we get
the required result (with mk, = k,, mk, - k,, mks = ks, mk, = k,, mks = kg).

Example 3.5 LetY =[0,2]and h : Y — Y be a mapping defined as h(u) = g forallu eY.

Also, a mapping G : Y3 - [0, ) be defined by

0, u=v=w,
max{u, v, w}, otherwise,

Gw,v,w) = {
forall u,v,w €Y, isa g — metric spaceon Y.
Case 1: If we consider u = v = w, then both equations (21) and (20) are truly hold.
Case 2: (a) If we consider u > v > w, for all u,v,w €Y, then

u v w u
g(hu, hU, hW) = max {g,g,;} = ;,

G(u,v,w) = max{u,v,w} = u,

u
G(u,u, hu) = max {u, u, 5} =,
G(w,w, hw) = max {w, w, K} =w,
3
u u
G(w,w, hu) = max {W, w, E} =3
w
G(u, u, hw) = max {u, u, ;} =u
Using equation (21) of Corollary 3.4, we obtain

u 4
3 < k1u+k2u+k3w+§k4u+k5%.

Now, consider u = 2,v = 1,w = g then we get
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w N

< 2ky + 2ky + kg + Shey + ks,
That is, 6 < 18k, + 18k, + 6k, + 24k, + 2ks. (22)

The above equation (22) is valid for:

() k=t ky=2andky;=ky=ks=0;
M 1 1 1

(") k1=§,k3=z,k4=gandk2=k5=0;
(III) k2 zg,k3 :; and kl = k4 = kS =0,

With ky + ky + ks + 2k, + ks < 1.

Hence, all the required conditions of Corollary 3.4 are satisfied.
Therefore, h has a unique fixed point in Y by applying Corollary 3.4.
Evidently, 0 € Y is the unique fixed point of h in this case.

(b) Now assume equation (20) of Corollary 3.3, we obtain

If we consider 0 < k < 1, then all the required conditions of Corollary 3.3 are satisfied and 0 € Y is the unique
fixed point of h in this case also.
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