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Abstract

Following the stream of the authors in [32] we introduce complete characterizations in terms of Carleson
measures for bounded/compact differences of weighted composition operators with series of symbols acting on
the standard weighted Bergman spaces over the unit disk. We allow the weight functions to be non-holomorphic
and unbounded. We obtain a compactness characterization for differences of unweighted composition operators
acting on the Hardy spaces in terms of Carleson measures and show that compact differences of composition
operators with univalent symbols on the Hardy and weighted Bergman spaces are exactly the same. We also show
that an earlier characterization due to Acharyya and Wu for compact differences of weighted composition
operators with

bounded holomorphic weights does not extend to the case of non-holomorphic weights. Some extended explicit
examples are shown.
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. INTRODUCTION
For D be the unit disk in the complex plane C. Denote by &§ (D) the set of all holomorphic self-maps

of D. Given the sequence ¢; € §(D), the composition operator Cs, e, with symbol }; @; is defined by
Cjosfy =12 ), 0¥
i

for functions f; holomorphic on D. A wide study on the theory of composition operators has been
established on various settings, see [8] and [27] for various aspects on the theory of composition operators
acting on classical holomorphic function spaces.

A weighted composition operator is a composition operator followed by a multiplication operator.
Hence, for a Borel function % on D. the weighted composition operator Cy; ¢ . With symbol 2j; and

weight u is defined by

CEjQGJ'.IUG =U f:; @ Z P;
7
for functions f; holomorphic on D. These operators appear naturally in studying operator theory on classical
holomorphic functions spaces. For example, isometries on Hardy or Bergman spaces are weighted
composition operators: see [12, 16, 17]. Also, Brennan’s Conjecture, an important conjecture in univalent
function theory, is closely connected with weighted composition operators: see [21]. The boundedness and

compactness of weighted composition operators with holomorphic weights are characterized on various
settings: see [7, 9, 10, 24, 25].
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Suppose we are familiar by the study of path-connected components in the space of composition
operators. the study on differences, or more generally linear combinations, of unweighted composition
operators has been of growing interest: see [4]. In similar way, one may study differences of weighted
composition operators. In fact such operators also appear naturally, when the setting of differences of
unweighted composition operators is changed from a holomorphic function space into another; (see, [1])
first obtained a compactness characterization for differences of weighted composition operators acting from
a weighted Bergman space into another. However, their weights are restricted to a elass of holomorphic
functions satisfying certain growth rates. For example, for operators acting from a weighted Bergman space
into itself, their weights are restricted to the class of bounded holomorphic functions so that individual

operators are automatically bounded. Wang, Yao and Chen also [30] obtained some partial results
coneerning compactness of those operators acting on the weighted Bergman spaces. Their weights are also
restricted to the class of bounded holomorphic functions. Following the authors in [32] we obtain complete
characterizations in terms of Carleson measures for bounded/compact differences of weighted composition
operators with series of symbols acting on the weighted Bergman spaces. The significance of our
characterizations lies in allowing the weights to be non-holomorphic and unbounded. In particular,
individual operators are no longer guaranteed to be bounded.

Now given € > 0, we denote by A._; the normalized weighted measure defined by

dA,_,(z) = ()(1— |z[P)**dA(z), z€D

where A denotes the area measure on D normalized to have the total mass 1.

For 0 < € < oo, the (¢ — 1)-weighted Bergman space AL*$(D) is the space of all holomorphic

functions fj on D for which the “norm”

1+¢
1l =1 | D151 s
J

is finite. The space AL*$(D) is a closed subspace of L1§(D) = L'*¢(D,A__,). the standard Lebesgue
space associated with the measure A__,. So, it is a Banach space for 0 < € < o0 and a complete metric

1/1+¢e

. . . . . 1+€ .
space for 0 < € < 1 with respect to the translationin-variant metric [:fj,g}.) — "f} - ngAHE. We fix the
E—1

parameters € > 0 and 0 < € < oo throughout the sequel.
To begin with we keep the notations of [32]. We reserve symbol functions @, 1; € S(D) and
weights u, v to be considered throughout the sequel. We put
p(2) =d(9;(D.Y;(2), zeD
where d denotes the pseudohyperbolic distance on D: see Section 2.2. Given a positive Borel measure i on
D and ¢; € §(D). wedenote by jt © (pj_l the pullback measure on D defined by (;1 o qaj_l (Ey=pu [(p;l (:E:)]

for Borel sets E © D. With these notation we now consider several pullback measures on D associated with
e—1l.1+e¢
@ o Yy b-

w = (lpul***dA._,) o @;* + (lpv|**“dA._,) e Pt

J
Also, for € = 0. we define a pullback measure ¢17¢ = J;;i’.l#zi:“e by

o't = [(1—p)*"*lu—v|**dA._,] e ;' + [(1 — )™ c|lu — v]**dA._] o p;t.
Finally, for 0 < € < 1, we put

qoj,wj, u, v, € — 1and 1 + €. First, we define a pullback measure w = w

Gi_.={zeD:p(z)<1—¢} (1.1)

_ . _ e—1l1+e
and define a pullback measure o,__ = O p i jvii—e by

01 = (XGL_J” - 1-’|1+Edﬂe—1) o (Pj_l + (XG-‘_JH - E"ll_EdA.-s—l) e wf‘-

Let y denotes the characteristic function of the set specified in its subseript.
Note that w, g€
The first result is the following Carleson measure criterion for a difference of composition operators with

and 0y _. are finite measures if u, v € L1*S(D).
series of symbols to be bounded/compact. For the notion of the (compact) (¢ — 1)-Carleson measures we
refer to Section 2.4, When the weights # and v are bounded, there are additional characterizations: see
Proposition 4.6.
Theorem 1.1 (see [32]). Ler€ > 0,0 = € <, and 0 < € < 1. Ler ¢, ; € (D) and u,v € LE5(D).
Then the following statements are equivalent:

(@) Cs;pjmu — Cxj gy 179(D) — LLE5(D) is bounded (compact, resp.).

(b) @ + 0¥ is a (compact, resp.) (e — 1)-Carleson measure.

(¢) w + 0y_. is a fcompact, resp.) (€ — 1)-Carleson measure.
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The authors in [28] studied the isolation phenomena in the space of composition operators acting
on the Hardy space H*(D). In their study they were naturally led to the conjecture that two composition
operators are in the same path component if their difference is compact. Their conjecture later turned out
to be false (see [2, 13, 15]), but the problems of characterizing the path components and the compact
differences attracted broad interest in this field. Here, as a consequence of Theorem 1.1, we obtain an
(implicit and abstract) answer to such a long-standing problem in terms of Carleson measures.

Theorem 1.2 (see [32]). Ler € > 0 and 0 < € < 1. Let @, Y; € S(D). Then the following statements are
equivalent:
(a) Cy; p; — Cy; w; is compact on H*(D).
(b) w + 0% is a compact 1-Carleson measure.
(¢) w + 01— is a compact 1-Carleson measure.
;f,qu}:wj.lp}’ giTe = U;f;f;;l#j and 0, = G;fqv}@j-w}l—f'
As a nontrivial application of Theorem 1.2, we will obtain a characterization of the Julia-

Here, w == w

Caratheodory type for compact differences of composition operators with univalent symbols on the Hardy
spaces. As for single composition operators which are always bounded on the Hardy spaces and on the

weighted Bergman spaces by the Littlewood Subordination Prineiple, it is known by MacCluer and Shapiro

[20] that compactness of Cy ., on AL*S(D) is characterized by the Julia-Caratheodory type condition
- 1—|zI?
Ry (z) = % -0 (1.2)
i .
1= |o;(2)]

as |z| = 1. However, this characterization does not extend to the Hardy spaces. In fact, while this condition

is necessary for compactness of (3, ;o0 the Hardy space H2(D) (see [29]). it is not sufficient by Shapiro’s

characterization [26]. Nevertheless, when restricted to univalent symbols ¢;, MacCluer and Shapiro [20]

noticed that (1.2) is also sufficient for compactness of Cy;p; on HZ(D).

As for differences of composition operators, Moorhouse [22] found quite a natural extension of

(1.2). Namely, she characterized compactness of Cz,p, = Cyjyp; on ALTS(D) by the Julia-Caratheodory type

condition
lim, [Rp,(2) + Ry, (2)] p(2) = 0 (13)

actually only the case € = 2 was considered by Moorhouse and then if is relaxed to general 1 + € in [6].

Moorhouse [22] also observed that this condition 1s necessary for compactness of Cy; o — Cy;y; on a class

of function spaces including HZ(D).

Motivated by the aforementioned remark about single composition operators with univalent
symbols, one may suspect (1.3) to be also sufficient for compactness of Cy ¢, — Cy;y; o0 H?*(D) when
symbols ¢; and 1; are univalent. Using Theorem 1.2, we show that it is actually the case.

Theorem 1.3 (see [32]). Ler @; and ; be univalent maps in §(D). Then Cs;p; = Cyjyp; is compact on
H2(D) if and only if (1.3) holds.

In fact it is known by Nieminen and Saksman [23] that compactness of Cs;0; — Cxju; o0 the Hardy
spaces H™*(D), 0 < € < o, is independent of the parameter 1 + €. So, Theorems 1.2 and 1.3 also hold
with H***(D). 0 < € < oo, in place of H*(D).

We collect some basic facts and several technical lemmas to be used in the sequel. We also observe
some additional characterizations when the weights are bounded. At the end of the section we include three
examples. The first one is to show that boundedness/compactness of operators under consideration depends
on parameters € — 1 and 1 + €. The second one is to show that the exponent 1 + € in Theorems 1.1 cannot
be smaller than it. The last one is to show that unbounded weighted composition operators can possibly
form a compact difference in a nontrivial way. Finally, we prove Theorems as applications of Theorem 1.1.
As another application, we show by an explicit example that an earlier work of Acharyya and Wu [1]
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concerning compactness for differences of weighted composition operators with bounded holomorphic
weights does not extend to the case of non-holomorphic weights.

Throughout the sequel we use the same letter 1 + £ to denote positive constants which may vary at each
occurrence but do not depend on the essential parameters. Variables indicating the dependency of constants
1 + €. For nonnegative quantities X and ¥ the notation X S ¥V or ¥ = X means X = (1 + €)Y for some
inessential constant 1 + €. Similarly, we write X &~ ¥ if both X < YV and ¥V < X hold.

1. Preliminaries:

We collect well-known basic standard facts and details in to be used in later sections. See [8] and
[27].

2.1, Compact operator,

We clarify the notion of compact operators, since the spaces under consideration are not Banach
spaces when 0 << € << 1. Let X and Y be topological vector spaces whose topologies are induced by
complete metries. A continuous linear operator L : X — V¥ is said to be compact if the image of every
bounded sequence in X has a convergent subsequence n Y.

We have the following convenient compactness criterion for a linear combination of weighted
composition operators with L5 -weights acting on the weighted Bergman spaces.

Lemma 2.1 (see [32]). Letr € > 0 and 0 < € < oo. Let T be a linear combination of weighted composition
operators with weights in L1*S(D) and assume that T : AL*S(D) — L1*5(D) is bounded. Then T :

AL*S(D) — L1*5(D) is compaet if and only if T(f}) = 0 in L1*5 (D) for any bounded sequence {(fj) }

in AL*S(D) such that (}‘}) — 0 uniformly on compact subsets of D.

Proof. Assume that T : A1*S(D) — L1*5(D) is compact and let {(fj) } be a bounded sequence in AL¥5(D)
with (fj) — 0 uniformly on compact subsets of D. Then {T( f}) } has a subsequence which converges in
[1*< (D) by compactness of T. Since (fj) — 0 on any compact subset of D, we see that T(f}) (z) = 0 at
almost every Z € D. Since this is true for any subsequence of {(f})n} we conclude that T(fj)n -0 in
LE*5(D).
Conversely, let [(g j)n} be any bounded sequence in Al*5(D). By normality we may find a

subsequence [[:g ;‘J } converging uniformly on compact subsets of D to some holomorphic funection g;.
ny = -

1+ ; 1+
Note g; € A;Z1(D) by Fatou’s Lemma. Note also that the sequence [(g}-)nk - g}-} is bounded in AL¥5(D)
and converges to 0 uniformly on compact subsets of D. Thus the hypothesis guarantees that T(gj) -
ng

Tg;in LL*5(D). The proof is complete.
The proof above is basically the same as the proof of [8, Proposition 3.11] for single composition
operators. It is included above for completeness.

2.2 Pseudohyperbolic Distance. The well-known pseudohyperbolic distance between z,w € D is given
by

—w
diz,w) = |1
By a straightforward caleulation we have
(1 —1z»)(A = wl*)
|1 —zw|?
for z,w € D. The pseudohyperbolic disk with center z € D and radius (1 — €) € (0, 1) is defined by
. 1-(1-¢€)? 1—|z|?
510 =0 (g e T g 9)

Here. and elsewhere,

d?(z,w) =1-— (2.1)

(2.2)
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D(a,t) ={weC:|w—a| <t} (2.3)
denotes the Euclidean disk with center a € C and radius 7 > 0. Since each holomorphic self-map of D 1s a
d-contraction by the Schwarz-Pick Lemma, we have

0;(Er-e(2)) € Ex—c (9,(2)) (2.4)

for ¢; € S(D).
Given 0 < € < 1, we will frequently use the estimate
1—|z| = |1 —2Zw| = 1— |w| (2.5)

forallz,w € D withd(z,w) < 1 — €: constants suppressed in these estimates depend only on 1 — €. Given
€ > 0and 0 < € < 1. one may use the above estimate to verify

A 4[Ey (2]~ (1 — |z (2.6)
for z € D: constants suppressed in this estimate depend only on 1 — € and € > 0.

All the details for the statements above can be found in [31, Chapter 4].

2.3 Test Functions. Given € >> 0 and 0 < € < 1, we recall the submean value type inequality
1+e 1+e€
|fi(a)] —: |a|2)5+1J- Z|f;| dA._y. a€D (2.7)
Ey_gla)

valid for functions f; holomorphic on D and 0 < € <0 o where € = 0 is a constant depending onlyon e — 1

. . . . .. 1+¢
and 1 — €. This is easily verified via (2.2), (2.5) and the subharmonicity of |f}|
Note from (2.7) with € = 2 that each point evaluation is a continuous linear functional on the Hilbert
space ALTS(D). Thus, to each a € D corresponds a unique reproducing kernel whose explicit formula is

known as z = 7571(z) where

T,(z) = (2.8)

1—az
Powers of these functions will be the source of test functions in conjunction with Lemma 2.1. The norms
of such kernel-type functions are well known. Namely, when t > 1, we have

Tallazze = (1 —laD™™, aeD; (2.9)
constants suppressed in this estimate are independent of a: see, for example, [31, Lemma 3.10]. Thus
t
.
——— — 0 uniformly on compact subsets of D (2.10)
||fa||A:_jf
as |a| — 1.
2.4 Carleson measure. For i be a positive finite Borel measure on D. For € > 0 and 0 < € < 1, setting
A HIE e (2)]
11— z:—i zeD, 2.11
He—11 E( ) 45 1[51 E }] ( }
we recall the following well known characterizations for each 0 < € < oo:
the embedding A1*$(D) c L**<(dy) isbounded & sup fe_11 ¢ < (2.12)
and
the embedding AL*$(D) < L'*<(du) is compact < 11111 fe_11_£(2) = 0. (2.13)

We say that u 1s an (¢ — 1)-Carleson measure if either side of (2.12) holds. Also. we say that [t is a compact
(€ — 1)-Carleson measure if either side of (2.13) holds. Note that the notion of (compact) (€ — 1)-Carleson
measures is independent of the parameters (1 + €) and (1 — €). Givene > 0.0 < e < land 0 < ¢ < oo,

it is also well known that

||1+E

||i.p.1+€ & |||u'||E—1,l—E = Supﬁe—l.l—e (214}
D

for (¢ — 1)-Carleson measures y: constants suppressed above are independent of i and (1 + €). Here,
|| i#|1+€|| denotes the operator norm of the embedding
fpase = ALTS(D) © L**(dp): see [31. Section 7.2].
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The connection between composition operators and Carleson measures comes from the measure
theoretic change-of-variable formula (see [14, p. 163])

IZ heo;)du = J-Z hd(po@;t) (2.15)

valid for ¢; € §(D) and positive Borel iuuctlons honD. For example. using this formula, one may easily

see that Cy. 4. ALZ9(D) - LZ1(D) is bounded (compact. resp.) if and only if (Ju[***dA._;) o @' is

a (compact, resp.) (€ — 1)-Carleson measure. Also, in the special case = A._,, since each composition

operator is bounded on AL*S(D), it is immediate from (2.15) that A__ o qoj_l is an (¢ — 1)-Carleson

measure for each @; € §(D). Also is well known via (2.15) that Cs,0; is compact on AL (D) if and only
i {p_,-_l is a compact (€ — 1)-Carleson measure. Moreover, we see from (2.14) and (2.15) that

1+e

0l e

denotes the operator norm of Cy : ATTS(D) — ALF5(D): see [31, Theorem 7.4].

A |l oy i—e (2.16)

where || CE; ®; ‘

L+E{

In connection with the equality (2.15) we also note for easier reference later that there is a constant
C=C(e—1,14+¢€1—¢) > 0suchthat

fDZmed;{ < CJDZ|j5-|HEﬁE_L1_EdAE_1 (2.17)

for functions f; € AL*S(D). In fact one may apply (2.7) in The left hand side of the above, interchange the
order of integrations, and then conclude the asserted mequality by (2.5) and (2.6).
3. Technical Lemmas:

Before proceeding, we introduce some notation associated with nonzero a € D. Put

this is the inversion of @ with respect to the unit circle. For € > 0 and 0 << € <Z 1, put

0.,_.(a) { p. -] 1-a |}
1 _la)y=<we T < su — Az r.
oime (1+e)? zEEJ__lj(a,:]

Clearly, we have

El—e[:ﬂ) = Qe.l—e{:a) = Ql.l—e{:a) (3-1)
for any € € (0,1]. Also, note from (2.2)
. 1—|al? 1—(1—¢)?
T s ETIEA N o _1—(j'1—6j}2|alza‘
1—lal? 1—(1—¢)? 1—al?
— (1 —¢) +|a = . —.
T 1-(1-e’a |2 (lﬂl2 1-(1- €}2|ﬂ|2> la|(1—|a|(1-¢€))
We thus have
| 1+ (1 [a?)
Qey-c(a)=D ﬂ D (a TalT=Jali= E))). (3.2)
Finally, for N > 0. we put
ay = ae"Na-1al) where § = —1.
Note
a*—aj 1 1 — g=iV{i-lal}

= - N; 3.3
a* 1—|al 1—|al ! (3.3)

as |a| = 1. We also put

I'y(a) ={al:[{| =1and [Arg{| = N(1—[a])}.
Note

b _ .
|1 _E‘ < |1 — e MOl < N(1 - |al) (3.4)
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for b € Ty(a).
We now prove some technical facts concerning the sets 0, ;_ (@) and Iy (a) which will be used in

the proof of Theorem 4.1 in the next section. In what follows we denote by

Cr={wel+e:Im(aw) >0} a=0
the “upper” half-plane with respect to the straight line passing through the origin and a
Lemma 3.1 (see [32]). Let 0 < € < 1 and N > 0. Put

wfz2)
iy

_ 8i
|.}1"3-1161_E’N(a'} = Arg [1 + ,-\i'(e)]'

Proof. Given nonzero a € D, setting

Bi_enl@) = sup
wefly—glainct

foraeD,a=#0. Then

4(1—lal®) a o 4(1—al?) .
lal(1—lal(1-¢€))|a| 1—lal(1—¢)

*

Ay—e =0 —

we note from (3.2)

A1 — Ay
2;_ a)=Arg| ———|. 35
s-en0) = arg () (35)
In conjunction with this, we note from (3.3)
a,_.— a 4(1 - |al? a’ 8i
em i H0-) @
ar — ay 1L—lal(l—€)a —ay N(e)

as |a| — 1. So. the lemma holds by this and (3.5). The proof is complete.
Lemma 3.2 (see [32]). Ler 0 < € << L and N = 0. Then
al—=1 z€E,_(a)

*
Z— Ay
Arg( )
w—ay
well,e(a)ncg

Proof. Given a € D. a # 0, denote by {, = {,,_. the Euclidean center of the disk E,_.(a).
Letz€ E,__(a)and € 0,,_.(a)n CF . Note

wW—ay
(25
{a — Oy

where 8,_, (@) is the quantity introduced in Lemma 3.1. Also, note from the first inclusion in (3.1) that

lim sup sup

= 3Arg {1 +

= 61_en(a) (3.6)

to each z € E,__(a) corresponds some w, € ﬂl’l_f{_a} N C; satisfying

Z— a; w,—a
(=5 (23]
6& — Ay (a N

< 6;-en(a);
the second mequality holds by (3.6). It follows that
Ar g (ga ‘:J)
Ay

(z—ay |, (z—ay a® —ay
‘Alg(w — G:};.) = ‘Alg ({a N) + |Arg (—w — G.;;’)
Arg (gﬂ a‘f ) (3.7)
N

<28, _.yla) +
for a with |a| sufficiently close to 1. Note that the second inequality above is independent of z € E,__(a)
and € Q4 _(a)ynCg .
Meanwhile, we have by (2.2)

L_(1-Q-e* 1N\ aPf-1 “
eIl R T G- d- e

Ca_a.;;’ 1+:a_a;\' 2i

and hence by (3.3)

14+
a* —ay a* —day - N(1—-(1-¢€)?)
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as |a| — 1. This, together with (3.7) and Lemma 3.1, implies the lemma. The proof is complete.
Lemma 3.3 (see [32]). Let 0 << € << 1 and N > 0. Then there is a constant C = C(1 — €, N) > 0 such that

|1 —bw|

=——— —=1+¢ 3.8
] (3.8)
fora € D\{0} with N(1 — |a|) < m, b e Ty(a) andw € 0y ,__(a).
Proof. The first inequality is clear. On the other hand. for a, b € D with |a| = |b|. we note
_ b
|1 —bw| = allb” —w| < la||b” — a*| + |alla” —w]| = ‘1 -+ lalla® —w]

for all w € D. Thus the second inequality holds by (3.4) and (3.2). The proof is complete.
Lemma 3.4 (see [32]). Let 0 < € < 1 and N > 0. Then there is a constant C = C(1 — €, N) > 0 such that
. . |1—bz
1—d(zw)=(1+¢) T —Iw
fora € D\{0} with N(1 — |a|) < m, b € Ty(a), z € E;_.(a) and w € D.
Proof. Note from (2.1)

. i 1—|z|
1—d(z,w) =4 m
and thus
[1—d(zu}]| 1—bw |l—bw|
|1 “bz| |1 — Zw|
forall b, z, w € D. Moreover, we have
|1—Eiw _ w(z—_b) _ z__b‘=1+d(b,z)|1_f_]z - |.1—bz|
1-—2zw 1—zZw 1—zw 1—zw 1—|z]

for all b, z, w € D. Now, one may conclude the lemma by (2.5) and Lemma 3.3. The proof is complete.
Lemma 3.5 (see [32]). Ler 0 < € < 1 and N = 0. Then there is a constant C = C(s,N) > 0 such that
1+t 1-bz|
|al 1— bwl|
fora e D\{O} with N(1 —|a]) <m, b eIyla), z € Ei_<(a), andw € 0y 1_.(a).
Proof. Note

d(z,w) =

. l—bz|_ b(w —z)|
l—bw| l—bwl
|b|d(zu)|l — |
= Ibld(z,w)|l_ |u|!|

for all b,z,w € D. Note |b| = |a| for b € Iy(a). We thus conclude the lemma by (2.5) and Lemma 3.3.
The proof is complete.
4. Characterizations:

We first prove Theorem 1.1. In fact we will prove a more detailed version of Theorem 1.1. We then
notice that there are several other versions when the weights are bounded. We also exhibit a couple of
examples related to Theorem 1.1 at the end of the section.

Before proceeding, we decompose the measures w, 0% and g, _, (associated with Ppu, v, € —
1,1 + €) defined in the Introduction into two parts as follows:

W= Wy oyt Wy

O—1+€ — O’l+€ +0 ~1+&
Oy

Ul—e = U{pj,l—f + JJ,IJj,l—E

I TR - 1+¢ - o -
where measures Wi T, T, 1-e AIE defined by
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w;o_;.u = [:|P“|1+Ed’qe—1:) ° (Pj_li

ok = [(1— p)*lu— v[**dA_] o o}

Opji—e = (X6, Ju—vI**edA._1) o o7
measures Wy, Jt}J}'E, Oypja1-e ate defined similarly. Parameters omitted in these notation should be clear
from the context.

Note that the equivalences of Assertions (a), (b) and (d) below are the content of Theorem 1.1.
Theorem 4.1 (see [32]). Ler € > 0, 0 < € < o, and 0 < € < 1. Ler ¢;,); € S(D) and u,v € LZ7(D).
Then the following statements are equivalent:

@) Cx; pju— Cs; gy Alre(D) — [1*5(D) is boundedicompact, resp.).
(b) w+ J“Tf and w + U‘EE are (compact, resp.) (€ — 1)-Carleson measures.
(c) w+ J”E or @ + J,}Jj_'e is a (compact, resp.) (€ — 1)-Carleson measure.
(d) w+0p;1-c and w + Oy 1-e Are (compact, resp.) (e — 1)-Carleson measures.
(6) W+ 0y a-corw+ Oyji-e IS a (compact, resp.) (€ — 1)-Carleson measure.
We will complete the proof of Theorem 4.1 by proving the sequences of implications
(b) = () = (e) = (a) = (b)
and
(b) = (d) = (e).
Note that the implications (b) = (c) and (d) = (e) are trivial. Also, since
p=1—€ on Gy_,
foreach 0 < € < 1, the implications (b) = (d) and (¢) = (e) are clear for any € > 0. Thus it remains to
prove the implications
(e) = (a) = (b).
The following lemma, which is to be used in the proof of the implication (e) = (a), can be found
in [18, Lemma 2.2].
Lemma 4.2 (see [32]). Let € >0, 0=€e<0 and 0<e <1 Then there is a constant C =

Cle—1,1+¢,1—¢€) > 0such that
14 _ . A¥E(z,w) e
T o 20104
E

i) - [ =c 1—|zDED

1-¢lz)

for functions f; € AZX{(D) and z,w € D with d(z,w) < 1 — €.

We now prove the implication (e) = (a).
Proof of () = (a). We first consider boundedness. Assume (e). By symmetry we may assume that w +
Opj1-c 15 a0 (e — 1)-Carleson measure. Put

fi=w+0, . and T = CEJ'{P;'M - CE,-qDJ-.v
for simplicity. We claim that there is a constant C = C(e — 1,1 + €,1 — €) > 0 such that

||Tﬂ||lrff = CJ’ Z|fj|l+eﬂf—l,l—fdﬂe—l (4-1)

for functions f; € AL*S(D): recall that fi__y ;. is the functlon introduced in (2.11). With this claim granted,
we see from (2.12) that T : A1*$(D) — L1*%(D) is bounded and

||T”‘¢1-1+E (D)=LEE5(D) = (1 + E)H#"'-He—l 1-¢
where ”T"AJ+£(D]_)LJ.+E () denotes the operator norm of T : AZ5(D) — L*5(D).

Let f; € € ALTS(D). To establish (4.1) we write

7 =, L, 20 00 = o0 o) T s =i
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recall that G, _. is the set specified in (1.1). We will estimate each integral separately. For the integral [; ..
we note p = 1 — € on D\G;_. and therefore

flexfm (s )|
< 1__6}1+Ef 25 lou(y e o)™+ lov(fy o )| JdAecs
=WLZ'}3'M“’“
5#[{)2@”5@:

the equality above holds by (2.15). By this and (2.17) we conclude
1_ ~
Be= [ D IA Rerameddens (42)
D&
j

+[o(fy o wy)| 1dAy

for some constant € = 0 independent of f;. Meanwhile. for the integral II; .. we note

Mees | YH@=o(fe o) +o(f 0= fo v 1ddes

GJ.E f

= [ DU ot [ DN 00 fy e ) A
D 7 Gi—¢ I

the equality holds again by (2.15). For the first term of the above, we have by (2.17)

f Z|;3.|”Edaq,j_l_s < f Z|fj|l_sd,u < f:f Zl}jl“eﬁe_l,l_edﬂs-l
D 7 D j D J

for some constant € = 0 independent of f;. To estimate the second integral, werecall p < 1 —€on G,_,

1+e 1+E( ) 1+e
(75 = 0;) @) = (f; = ¥)(2)] ZWZ)D-HLL (w{|2|j| dAc_,

forall z € G;_.. Now, integrating over G,_. both sides of the above against measure |v|***dA._; and then
applying Fubini’s Theorem, we obtain

DI EGTTIR R o

1_£}
o[ yreober: zn: [ [ dA.f_lzzw)]dAf-lw
- 1_|¢,}( )| Ey sk!PJtz)

1+e prre()|v(z)| e :
< If;(w)| [ —mdAe_l(Z)I dAc_ (W)
sz &wﬂwm—mwn

1+e
* [ DI (0,0), A0
j
we used (2.5) and (2.6) for the last estimate. Combining these observations, we obtain
) 1+e ,
Moo= c [ 31 Reramedacy (43)
D

for some constant € = 0 independent of f;. Finally, we conclude (4.1) by (4.2) and (4.3), as asserted. This
completes the proof for boundedness.
We now turn to the proof of compactness. By symmetry again, we may assume that y is a compact

(e — 1)-Carleson measure. By what we have proved above, T : A175(D) — LL7$(D) is bounded. To prove
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compactness of T : ALT5(D) — LLZ5(D). we consider an arbitrary sequence {(fj)n} in AL7{(D) such that

1),

= 1and (f}) — 0 uniformly on compact subsets of D. We claim
Aétf n

T(fj)n -0 in L*5(D) (4.4)
as 1 — oo, With this claim granted, we conclude by Lemma 2.1 that T : AL*$(D) — LL*$(D) is compact.
It remains to prove (4.4). Let t € (0,1). We have by (4.1)

1+e 1+e
J‘ Z |T(ﬂ)n| dAE—l (x J‘ Z ‘(fr)n ﬂe—l.l—ed"qf—l = J‘ +J‘
D T D G tD \tD

for all n. Note that ye, s is bounded on D by (2.12). So, since (ﬂ)n — 0 uniformly on tD, we have

im | 37|5),
J

= 1 for all n. we have

1+e .
.”e—l,l—EdAe—l =0.

On the other hand, since " ( fj)

1+€
T ATT

1+e
J‘ Z ‘(ff)nl fe11-edAe—y = SUD fle1-e
D\tD 5 D\tD

for all n. Accordingly, we obtain

l+e
lim supf Z |T(}j}n| dA._, < supfi._y, .
& D\¢D

n—co

Note that this holds for arbitrary t € (0,1). Also, since 4 is a compact (¢ — 1)-Carleson measure by
assumption, we note from (2.13) that the right hand side of the above tends to O as t — 1.
Thus, taking the limit ¢ — 1, we conclude (4.4), as claimed. The proof is complete.
We now proceed to the proof of the implication (a) = (b). which is the hardest step. The next
lemma, which is immediate from the triangle inequality, will be repeatedly used in the proof of the
implication (a) == (b). It is included here for easier references.
Lemma 4.3 (see [32]). Let € > 0. If A and { are nonzero complex numbers such that (1 + €)|{| < |4], then
€ _ |4 =] - 2+|‘_—'I
1+e JA] ~1+e€

In what follows S, denotes the truncated angular sector consisting of all 4 € C such that |Arg A| = %

and < |1] = é .

Lemma 4.4 (see [32]). Ler 0 < € < 1 and § > 0. Then there is a constant C = C(€,8) > 0 such that
1_p=2

cC— |1—-4 —

whenever 4,2° € S.\{1}.
Proof. Let 1 € S.\{1}. Note that the line segment connecting 1 and 1 is contained in S.. Thus, noting

1
1-2° = 5f {°1dg,
A

We s

|1 — %] ( 1
< §| sup| |5“) 515(6'5‘1+ )
TR A =
Now, further assume A% € §_\{1} and put ¢ :== A%. Then {*/¢ = A € §_\{1}. It thus follows from what we

have observed above that

[1— 4] =|1—c1[§| (::E(Elf’5—1+ 1 )
T8 1-4 "9 ei71)
This completes the proof.
Now we prove the implication (a) = (b).
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Proof of (a) = (b).Fix 0 < € < 1. Also, fix ¥ > 0 such that
}f = 1
and choose N > 0 so large that

Note from Lemma 3.2

sup
ZEE, _¢(a)

A [1 8i } {Tl’ n}
Aro e

|ty ol M1y
wel, 1 (a)nCy

1—Tyz
Arg (7N )
1—ayw
for all a € D with |a| sufficiently close to 1.
We now introduce our test functions. Let ¢ € D and assume N(1 — |a|) < m. For t > 1 to be fixed

T
< min {— —} (4.5)
4 4y

later, we put
t

T )
(f-})b,t = "t_ib, b = FN (a)

Tb ||,q;jf
where 7}, 15 the function specified in (2.8). Put
f= Wy, + O'H.'E

for simplicity. Since 1, v € L1*5(D) by assumphon we see lh"ﬂ‘ [ is a finite measure.
We claim that there 15 a constant C = C[E —1,1+¢, 1—¢€) > 0 satisfying

1+s 1+e
|u'£ 1,1- -E(ﬂ"j - Cz |T(}:‘ any 1+e H (f:’)aN,zy Létf-l- ||T(f:f)ﬁy Létf
€ 1+e
o LA W A L O i BT
for all @ with |a| sufficiently close to 1. Here ||- || 1t denotes the “norm™ on L1*5 (D). With this claim

granted, we deduce by (2.12) and (2.13) that y is a (compacr resp.) (€ — 1)-Carleson measure from the
boundedness(compactness, resp.) of T : AL7S(D) — LL*S(D): for compactness we also use (2.10) and

Lemma 2.1. By symmetry the same assertions also hold for the measure Wy v + J$+E. which completes

the proof of the implication (a) = (h).
It remains to establish (4.6). For the rest of the proof we assume that @ € D is an arbitrary point with
|a| sufficiently close to 1. Setting

'1—5@9- i
Q, = ——=, beTL(a)
e AR
we have by (2.9)
1+e
v
I75)scl @ = tabrsme | Z|(
1— .

be,) (1-bu,)]

| . lu — v§ |
> (1 - lal) s D dAes

oj (Bi-ela)) T |1 = b, |
1 J, Z
S [u—vQE|**edA._;; (4.7)
(1 - |ﬂ|)£+l _l(EL s(aJ) > b el
the last estimate holds by Lemma 3.3. In conjunction with this, we note from Lemma 3.4
1Qsl 2 1—p>[1-p]"" on ¢ (Ei_(a)): (4.8)

the constant suppressed in this estimate depends only on 1 — € and N.

In order to estimate the integrals in (4.7), we introduce several auxiliary notation. We first choose
=€e(1—¢, N,y) € (0, 1] such that
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|1 -ayz|" 1
sup — < —
seme@ 1= Tyw| T V2[(1+ )2 - 1]
well, ) la)ncg
as |a| — 1. Existence of such € is guaranteed by Lemma 3.3 and (2.5). Now, using such €, we put
Q;—,l—e(a:} =01 (a)NCZ,
02y-c(a) =0 (a\0Z,_(a),
Qre.l—f(:a) = D\ﬂf,l—f(a’:)

(4.9)

so that
D= Q;l—e(ﬂ':) U Q;l—e(:ﬂ) u ﬂ;,l—e{:a)
for each a. Accordingly, setting
Fy(@) = 07 (Bye(@) N2 (02,-c(@),
Fa(a) = 97 (Ee(@) N7 (021_o(@)),
Fs(a) = @7 (Es—e(@)) n 97 (0L, (2))
we have by (4.7)
1+ 1
T(f. = -
[76sell s = G=rapes

forj = 1,2, 3. We will obtain lower estimates for the above integrals with suitably chosen b and r depending

f lu—vQp|**edA._, (4.10)
Fjla)

on the regions Fj(a).
"First, for the integral over F; (a), we choose b = a,, and t = y. Noting
u—vQy =u(1-Qr )+ (u—v)QL,. (4.11)

we further decompose the region F; (@) into two parts. Namely, we set

: : - 1 .
Fa(@ = {7 € i@ : @) [1 - 0%, @)] = o u@) — v(@)l| ek, )]}

and
Fi2(a) = Fi(a)\Fpi(a).

In conjunction with the integral over Fy (). we note from (4.11) and Lemma 4.3 that

1+e

1+e (1+ely

lu —vQL |7 ~ ful"e |1 - QL | + lu—v|"*¢|Qq,| on F,,(a). (4.12)
In conjunction with the integral over Fy ;(a). note that
T 1
Arg|0Y || =— and [0Y | = ————— on F,(a)
| g[ ﬂN]| 4 | an \'2[{1 + E)z _ 1] 1

by (4.5) and (4.9). So, we have
1 i
Re {—},] =(1+¢)?—1 on F(a)
Qay
and therefore

an E
u—vilo| T+

We also note from Lemma 3.3

lul|t—Qzh| 1

1| _
=1+ on F;(a)
2 e

_ 1—|al _ - -
[Qerl = [ g2 1 00 ¥ (0a-@)
and from (4.5)
[1-@L,|=1 on F(a)

Combining these observations with (4.11), we obtain by Lemma 4.3
A2 1+e " 2y 1+€
lu—vQ7r|" ~ Jul**e|1— k| + |u—v|**€|Q,,

(1+e)y
an |
+ |lu— a:l|1—f|QaN

= |u|1+€|1 - OEN a |[1+E'IY on Fy,(a). (4.13)
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We also note from (4.5), Lemma 4.4 and Lemma 3.5 that
[1-0Q2,|~|1-Qay| Zp on Fila). (4.14)
Combining the observations in (4.12), (4.13), (4.8) and (4.14), we obtain

)

L.J.fﬂ)

1+e l+e
lu—vQl | dA._, + f |u — LQiz dA._,

Fyz(a)
= f (|15|1+E|1—Q§N
Fyla)

2 J- [oul™*€+ (1 —p)t*elu—v|[**<]dA._,
F;

1+€

. (1+ely
+ |u— "¢ Qqy | )dAE_l

1(a)
so that
1+e 1+e
|| T(}(})ﬂm}’ Lite + H T(ﬁ)amz?" Lt
! 1+e 1+e 1+e
2 A apt [ ][|P“| + (1 —p)clu—v|*"]dA._1(4.15)
- - Fila
by (4.10).
Next, for the integral over F,(a), we also have by an symmetric argument
1+e 1+s
|7y e+ 17| e

1
e 1+e _ 1+¢ _ aa|14E
2 A jape Lz{azl[lpul +{(1—p)"cu—v|**]dA._;. (4.16)

One may keep track of the constants suppressed in the estimates (4.15) and (4.16) to see that they are
independent of a.

Finally, we consider the integral over F;(a). We decompose the region F;(a) into two parts as in
the case of the integral over F, (a). We set

Fy1(a) = {z € F(a) : u(z)] <

1
Te |1.-{_Z,}||Qa{_z}|}

and
F32(a) = F3(a)\Fz1(a).
Note from Lemma 4.3 and (4.8)
1 1 . . )
lu —vQlk| TN it + [vQl] T e+ oo (1 — p)**e on Fii(a).

Also, note

[pul** + (1 = p)**lu—v[** < Jul** + (1 - p)* = (Jul**= + [v][**)

= 2|ultte 4 (1 — p)rre| vt (4.17)

Accordingly, we obtain
1+e 1

765y e = T apess

by (4.10). In conjunction with the integral over F; 5(a), we note
Qal = (1+€)72 on Fy(a)
by definition of the set (_;_.(a) and therefore

f pul™ + (1 — p)t*<lu — v|**] dA,_, (4.18)
Fa,(a)

EPQY_1|
ﬁcz (1+6)|Qq] = T3 0 F3,(a). (4.19)
In addition, we have by (4.8)
(1—p)*<lut*e < QL™ < (1 + )*<|ul™** on Fs,(a). (4.20)

It follows from (4.19), (4.20) and Lemma 4.3 that

1+
lu = vQI™ "~ JulH*€ 2 Jul**€ + (1 - p)**¥|v]**¢ on Fa(a).
Accordingly, we obtain
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1+e 1 : .
[7eyuall = T f [loul ™ + (1= p)**<lu — v dAey

a.zfa)

by (4.10) and (4.17). This, together with (4.18), yields

1+e 1+e
[P o+ [7Ga

- 1 +E +E £
szUDpMI =) e lu = v+l dA, . (421)
- - Fla

Consequently, combining (4.15), (4.16), (4.21) and (2.6), we conclude (4.6), as required. The proof is
complete.

1+€
L’E—J.

Having completed the proof of Theorem 4.1, we now proceed to observe additional Carleson
measure characterizations with bounded weights. We first recall the following estimate which is implicit in
the proof of [22, Lemma 1] or [6, Lemma 4.3].

Lemma 4.5 (see [32]). Let € = Qand 0 < € < oo, Pury = min E, '1}. Letp; €S(D), e > 0and W : D —
[0, 1] be a Bovel function. If
sup|(WR,. ) < e, (4.22)
(o)

then there is a constant C = C(e — 1) = 0 such that

fZ'f? o g, Wda,_, < cfyZ”;;H;f;_
for f; € AZ1(D).

When the weights are bounded, one may now use the next proposition to obtain several other
versions of Theorems 1.1 and 4.1,
Proposition 4.6 (see [32]). Let € > 0 and y = 0. Let ¢; € S(D) and W : D — [0, 1] be a Borel function.
Put
ui=(WdAe_y) e @ and v = (R;J_Wd,ﬁle_l) o @it

Then 1 is a compact (€ — 1)-Carleson measure if and only if v is a compact a-Carleson measure.

Proof. The “only if” part is clear, because R, is bounded on D by the Schwarz-Pick Lemma. We now
prove the “if” part. Assume that v is a compact (€ — 1)-Carleson measure. Let £ € (0, 1) and put
K,={zeD:R, (2) <€l

ORI IS BRI
@7 HEINKe 7 1[51\;\3 >
J. Z.(KEWdAe 1 V{EJ
971 (E)

tor any Boreal set E < D. It follows that

Note

1
B et v

where p. = (,}:K‘?Wd.fle_ljl o qoj_l. Accordingly, fixing 0 < € < 1 and using the notation introduced in
(2.14), we obtain

-I?E—l,l—f(z) = “.MEHE—I.l—E + ;ﬁf—l,l—e(z)
forall z € D. Now, since V is a compact (¢ — 1)-Carleson measure, we obtain by (2.13)
limsup fi._y1-£(2) < [lfelle—p1-e

|lz]—=1
for each € > 0. Note from Lemma 4.5 and (2.14) that |[g.llc_11-« = 0 as € — 0. Thus, taking the
limit e — 0, we obtain
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lylllll.ﬁe—l.l—f(:zj =0
and thus conclude the lemma by (2.13). The proof is complete.

We now exhibit some examples related to our characterizations. First, we provide an example
showing that boundedness/compactness for the operators under consideration may depend on the
parameters (€ — 1) and (1 + ¢€). In fact our example below is a single weighted composition operator with
holomorphic weight. Such an example, which might have been known to experts, is included here for
completeness.

Example (see [32]). Lete > 0and 0 < € < o0, Let 0 < € < 1. Consider functions ¢; and 1. given by
9;(z)=1—(1—2)%? and u.(z) = (1_—12)6
forz € D. It is elementary to check that ¢; € §(D). Also note u. € AL*{(D) by[31. Lemma 3.10], because

0 < e < 1.We claim the following:

(1) (3 o, 15 bounded on AL*S(D) if and only if € = % .

(i)  Cg;pju, is compact on AlTE(D) if and only if € < i .
In order to see this, we use the Carleson measure criteria for the pullback measure
o= (luc|**dA._,) o @; .

Fix 0 < € < 1. Note that ¢;(D) is contained in a non-tangential region with vertex at 1. Thus it is
enough to investigate the behavior of fi._, ;_.(a) as @ — 1. Inaddition, there ist = t(1 — €) € (0, 1) such
that

07 (Ei_(@)) © @7 (E(lal)
for a near 1. So, we assume 0 < a < 1 for the rest of the proof.

Note from (2.2)

(1-a)(e)
1+a(l—¢)

(1-a)2—-¢)

T eti=o (4.23)

DO 11— )| <
andthus [1 —z| ¥ (1 —a)? forz € (pj_l(El_E(a)j. We thus obtain

ulEr-c(a)] = j ddea(2) Zﬂé—l[(ﬂgi—l(‘g‘k—e(a}jll

o7 (Er-ol@) & |1 = z|e(i+e) } (1—a)2e1+o)

In conjunction with this, we note from (4.23)

AE_l[(pj—l(El_E(a:))] < f | ) dA._,(z) ~ (1 - a)2e+D) (4.24)
1-z|=c2(1—a)?

.
where ¢ = (2=¢)

: see [8, Exercise 2.2.8] for this estimate. On the other hand, since
E,_.(b) c 97 *(E;_.(a)) where b= ¢;*(a) =1—(1—a)?
by (2.4), we obtain by (2.6)
Aeca[07 (Eee(@)] 2 Ay [ (D] & (1= D)0 = (1 - @)D (4.25)
for0 < a< 1.
Now, combining (4.24) and (4.25), we obtain by (2.6)
1 —

for 0 < a < 1; constants suppressed i this estimate are independent of a. We thus conclude (i) and (it) by

fe_gq-c(a) =

(2.12) and (2.13), respectively.
Next, we provide an example showing that the exponent (1 + €) in Theorem 4.1 cannot be strictly
less than (e + 1). However, we do not know whether it can be reduced to (e + 1).
Example (see [32]). Let € = 0 and 0 < € < oo. Let € > —1 and pick t, such that
to = 1.
Define
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1
u(z) = A= zeD.
Since ty < 1, we have u € 4%_,(D): see [31, Lemma 3.10].
Now, consider the weighted composition operator Cy,, given by
Couf; = uf;(0)

for f; € AZ_, (D). Taking y); = id, the identity map on D, and v = 0, we may view Cy,, as a difference of
weighted composition operators. That is. we have Cy,, = Cg, — Cyj0- Since the point evaluation f; —
£;(0) is compact on A{_; (D). we note that Cy,, is also compact on AZ_, (D).

On the other hand, with ¢; = 0 and ¥; = id, note p(z) = d(0,z) = |z|. Thus, fixing 1 —€ €
(0, 1), we have by (2.6), (2.5) and (2.7)

1fe r v 1 1+e|,, () |1+e
(37 s @ = e, = D @A 2
z (1 - laD* < lula)|**e
(1—la])t**
for a € D. Since ty > 1, the last expression diverges to o as @ — 1 along the real axis. It follows from

(2.13) that J&JE is not even an (¢ — 1)-Carleson measure.

Finally, we provide an example showing that unbounded weighted composition operators can form
a compact difference in a nontrivial way.
Example (see [32]). Put

u(z) =

and ¢;(z) =

1—z 2

for z € D. Also, put
4 4
ve=u+e€(1—¢;) and (q’)}-)e = @; +e(1—g@;)
where € > 0 is a small number to be chosen in a moment. Note

1—z)? 2
> 1-@;(2)] (4.26)

for z € D. Using this, one may check (QJJ)E € S(D) fore < i. So,wefixe € (U,ﬂ for the rest of the proof.

Let € =2 0,0 < € < o and assume € > —1 so that u, v. € AL¥$(D) by [31. Lemma 3.10]. We claim the
following:

1-|e,@| = [1-g,@)| +

-3

1) Csjp;u— Cs, () ve is compact on A1*5(D).
(i) Cypyuand Cy (4 ., are not even bounded on ALZ5(D).
£

In order to see this we will use again the Carleson measure criteria. For that purpose we note from (4.26)

_ 4
|1-0,@ (), @] = 1= o, — 0,2 (1-0,@) |
_ 1-9,02]|°
= 1_¢IJ(Z)|2_| 8_? |
i-e@f
- 2
and thus
-9, |1-¢;@|
p(z) = e (4.27)
[1—0,((¥,) @)
forz € D;weusede < é for the inequality above.
Fix 0 < € < 1. Note from (4.26) and (2.5) that
1-z2<4(1- g, ) » 1-1lal, z€ g (E () (4.28)
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for a € D. This, together with (4.27), yields
2

S (1-lah*2, z €97 (B (@)

Y[ 1+E = 1
@@ < |

for a € D. As a consequence, we obtain

gyulBre (@] = |

‘P;L(El—s[ﬁ]

D lp@u@FedA 4 (2)

)%

=(1- |G|)1+EKZZ(AE—1 o @;1)[51—5('?)]
7

so that )
(0pu) _,  @%Y @=lal)*|acse o],
J
for a € D: recall ",45_1 o qof_1||e—1.1—e < woby (2.16). Similarly, we have the same estimates for
(w(-]‘;:;g.'vs)e—l.l—el Using the fact that |u(z) — v.(2)| < |1 — z|* instead of |p(z)u(z)| < |1 — z|, we also

obtain similar estimates for the measures Ué}'fand 6(1,; E) . Thus we see that Assertion (b) of Theorem 1.1
g

holds and hence conclude (1).

Meanwhile, note from (2.4)

Ey_c(b) € 97 *(Ei_c(a)) where b= ¢;*(a) = 2a — 1
for a € D. It follows from (2.6) that
(Aecr o @5 ) [Er-e(@)] = Acs[Er o (D)] & Acy[Eyo(a)] (4.29)
for 0 < a < 1. Now, setting
= ([ul***dAc_;) o @; 7,
we have by (4.28) and (4.29)
1 dA. 4(z) _ 1

AE—l[El—E(G:]] J:P‘;'_;(EJ.—EIG)} > Il - le—E ~ (1 _ aj}1+EJ,f2

for 0 <@ < 1. This shows that y is not an € — 1-Carleson measure. or equivalently, that Cy; ;v 1s not

ﬁE— 11-¢ (a} =

bounded on AL7S (D). Using this and (i), we conclude (ii), as required.
5. Applications:

We observe some consequences of Theorem 1.1. We first verify Theorem 1.2 and then use it to
prove Theorem 1.3.

We begin with some preliminary observations. For 0 < € < oo, recall that H***(D) is the Banach

space of all holomorphic functions f; on D whose norm is given by

2m e
il = 22 13 |, 2205 (=) oo

1/1+€

<l—e<l

When € = 1, the well-known Littlewood-Paley Identity asserts that the H2-norm can be converted to an
area integral:

2 Y- 1
Uil = OF + [ D 15/ g graac

Since log|z| ™! is integrable near 0 and comparable to 1 — |z|? near boundary, this yields
- 1
175 = £,z = 17

constants suppressed here are independent of f; € H 2(D). Thus, denoting by @ the differentiation operator

(5.1)

;
A

fi= j;f. we see from (5.1) that the operator
d : H*(D) — A(D)

DOI: 10.35629/0743-11032548 www.questjournals.org 42 | Page



Difference of Weighted Composition Operators with Series of Symbols

is bounded. Conversely, denoting by T the integration operator f; — f; fi(§)dl. we also see that the

operator
T : A}(D) — H*(D)
is bounded.
Now, given ¢, ; € §(D), note that

_ - _ A 20
Csys5s0) ™ Cnurmyy = 0 (Cjey = Ogyyy) o T on 43(D)
and
_ — . _ 2
Csjop = Cypuy = 30 (CE;%E;@; CE;%»E;!&}) 20+ oo (CE;'@:' CE:"P:'] on H*(D)
where Ay : H2(D) — H?(D) is the point evaluation at 0. Since A, is a compact operator on H2(D), it
follows that
Cs;e; — Cx;y,; * compact H*(D)
_ . 2

= CZ; 25! CE,.-W;.ZJ- i compacton Ay(D).

Thus Theorem 1.2 is now immediate from Theorem 1.1.

We now turn to the proof of Theorem 1.3. We begin with a lemma relying on the Koebe One-quarter
Theorem (see [11, Theorem 2.3]): If 7} is a univalent holomorphic function on D normalized so that §{0) =

0 and n'(0) = 1, then %D < 17(D). In what follows recall that R,,; denotes the function introduced in (1.2).
Lemma 5.1 (see [32]). Ler @;,; € S(D) be univalent maps sarisfving (1.3). Let K < D and assume

infRy, > 0. (5.2)
Then

lim Zlfﬂ}(z} —yi(2)| = 0. (5.3)
i

|zl=1.zeK
Proof. From (1.3) and (5.2) we note p(z) — 0 as |z| — 1 inside K and henee

2 2
1—|o;(@| = 1— |¢;(2)
forall z € K by (2.5). Thus we also have
infRy, > 0.
Now, suppose that (5.3) fails. We will complete the proof by deriving a contradiction. Since (5.3)
fails, there is a sequence {2, } in K and € > 0 such that |z,,| = 1 and

|0} (2) — W;(z,)| = Be (5.4)
for all n. By passing to a subsequence if necessary, we may assume by symmetry
[0}z = 4e (5.5)
for all n. Note that R ® 1s bounded on D by the Schwarz-Pick Lemma. Thus, we may further assume
: 1
Ry, (z,) = ye (5.6)
for all n.
Meanwhile, applying the Koebe One-quarter Theorem to the normalized univalent functions

A+z,
@ (m) — ¢;(zn)
AED = — :
@;{Zn)(l - |zn|2)

we obtain

; nl 1- n z
D (@I{znl |¢JJCZ )|(4 |Z | )) c (PJ(D)

for each 1 recall that D(,-) is the Euclidean disk defined in (2.3). This, together with (5.5), shows that the

inverse function @ * is defined on the disk D (qoj (z,),e(1— |z, |2)j for each n. Thus, applying once again

the Koebe One-quarter Theorem to the normalized univalent functions
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@;1(@;'{:211) + Etl - |Zn|2)j—) — Zn
— :
E(l — |Zn|2.) '
@ (zn)

AeD

we obtain
E(l - |Zn|2:}) -1 W
D T - i D jlands 1-— n 2_) .
()<l s 1a)

In connection with this, choosing & € (0,1) with 46 < infR, j» we note by the Schwarz-Pick Lemma
K

1 :
T =Ry (2,) =46
|¢J_; (_Zn)l e
and thus by (5.6)
. _ 1—|o;(z,)
D(Zn’6€(.1 - |Zn|)) = QDJ- ! [D ({Pj(zn}:%
for each n. This yields
L=zl # 1=z, and 1-|g;(2)| ~ 1-|g,(z,)| (5.7)
forz e D(zn, Se(1 — |zn|)) As a consequence we have
R, (2) ® Ryp(2,) ¥ 1, 2z € D(zp, 8e(1 — |2n))
for all n: constants suppressed in these estimates are independent of z and n. It follows from this and (1.3)
that

M, = sup p—0 (5.8)
D(zy.8<(1-Izn|))

as N — . In view of this, we note from (2.5) and (5.7)
|1~ 9@, @] = 1~ ;@] * 1~ lzul, 2 € D(zn, 661~ |2:]))
for all n. Consequently, we conclude by the Cauchy Estimates

' e | 1
|@j(z2) — ¥} (z0)| < m( sup lo; — 1,!.'_},|> o

D(zp.8e(1-|24]})
for all n: constants suppressed in this estimate are independent of n. This, together with (5.8), yields a
contradiction to (5.4), as desired. The proof is complete.
We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. As mentioned in the Introduction, Moorhouse [22] already noticed that the necessity
is true for general @; and 1);. not necessarily univalent. So, we only need to prove the sufficiency. Assume
that (1.3) holds. Let @ and @, _, be the measures in Theorem 1.2. We will show that @ + 7,__ is a compact
1-Carleson measure for any 0 << € < 1, which
concludes the theorem by Theorem 1.2.
First, we consider the measure w. Let 0 < € < 1. Setting
M, (a) = _,sup ['OZR"PJ
¢} '(Bi-ela))
for short, we have

2 .
E po;| dA; = 2M .(_ajf
L;"Esl_gtan J,-| s < 2Me,(@ |

=22M¢j(¢} - (1—|w[*)dA(w)

oy 2 (1 0@ o @I a4
i \Bi—elal I

< Z My, (@)4, [E,_(@)]

i
for a € D: the first equality holds by the change of variables w = ¢;(z). By symmetry the same estimate

with ; in place of @; also holds. Consequently, we obtain
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@y1-c(a) = My (a) + My (a) (5.9
for a € D. Meanwhile, note from (2.5) that 1 — |¢;(z)| = 0 as |a| - 1 uniformly in z € (,a;l(El_E(:G]).
Thus we see from the Schwarz-Pick Lemma that 1 — |z| — 0 as |a| — 1 uniformly in z € qo;l(E 1—5(:53))-
This, together with (1.3), yields MW((‘L) + fww}.(ﬂ) — 0 as |a| = 1. Consequently, we deduce from (5.9)

and (2.13) that @ is a compact 1-Carleson measure, as required.
Now, we let 0 < € < 1 and consider the measure o, _.: recall

O1-¢ = 0pi1-et Op1e
by definition. We will show that Opj1-e is a compact 1-Carleson measure: the same is true for o, Wi-e by
symmetry. Pick 1 —¢ € (0,¢€) and let € > 0. Put
bye={z €D : Ry (2) + Ry,(2) < 2¢}
Ag o= [z ED: R¢J.(z) > 2:‘.—'}
Ag o= [z eD: R%.(z) = 26}

so that

qﬂ El E(G) U[(pj El E ﬂ)) E]
We have

U¢j.1—e[E1—e(“)] J- ZR’GL E|fPJ ‘1{" | dA, =, + L, + 15

{P_; (EJ. —€ ﬂ]
for @ € D where

{f :=f ZXGls —5|§9_.' L{J|d,»"11
IEL g(a

forj = 1,2, 3; recall that ¥ denotes the cha1actenstlc function of the set specified in its subscript. To

Zn |%| = ZEIIL(E;_E{aJ)Z(I ) |%|2) |{P}|2M

< eA4[E_(a@)];
the last inequality holds by a change of variables, as above. Also, since %_—1 (51—5('9)) M G1—e 1s contained

estimate [,, we first note

|

@;J(EL E(G‘-])

my j_l (52(1—5:] (:a)). we have similarly
J‘ ZX'GJ.—EX‘:\J.E|4} | dAl - 25[ .
[5'1 ela)) ‘P;‘(EZ:L—E)CQ:]]

< Er'-ll [Eg{l—e:]{:a):l'

D (1= 1wy [*) e

J

It follows that
I 2 J Z 2 2 _
— < . , HO 4 i )dAy S € 5.10
A (@]~ 4B @] Lya(e, ) & Yoo eXue ()17 + [W5[7) day (5.10)

forall a € D.
For the second integral I, we have by (2.16) (with € = 1) and Lemma 5.1

I I
~ 7= ~0 (511
Ai[Ei-c(a)] Z(A‘ 0 ;) [Es-e(a)] J(EL_MMMZI% ;] (5.11)

as |a] = 1; we used (2.2) to apply Lemma 5.1. Similarly, we have

o b))
—_— = su =il =0 5.12
4.1[51 E{a)] ({P_J (Ej_—gfli)}ﬁ.ﬂglgl(pj [pj |) ( )

DOI: 10.35629/0743-11032548 www.questjournals.org 45 | Page



Difference of Weighted Composition Operators with Series of Symbols

as |a] - 1. One may check that constants suppressed in the estimates (5.10), (5.11) and (5.12) are
independent of @ and €. Thus, combining these estimates and then taking the limit |a| — 1, we obtain

lim sup (0%1_6)11_ (a) = Ce

al-1

for some constant € > 0 independent of €. Since € is arbitrary, we conclude

!:1|r—131 (Jqojll_e_)l.l—e {fl) =0
i

and hence by (2.13) that o is a compact 1-Carleson measure, as required. The proof is complete.

pjl-e
We now turn to the special case when the weight functions u and v belong to H* (D), the class of
all bounded holomorphie functions on D. In such a case, boundedness is out of question, because weighted
composition operators with bounded weights are always bounded on the spaces A1*S(D). Acharyya and
Wu have recently obtained a compactness characterization for differences of composition operators with
bounded holomorphie symbols acting from a weighted Bergman space into another. The theorem below is
their characterization for those operators acting from a weighted Bergman space into itself. We remark in
passing that, as a consequence of this characterization, compactness for differences of weighted
composition operators with bounded holomorphic weights is independent of parameters € — 1 and 1 + €.
Theorem 5.2 (see [32]) (Acharyya and Wu [1]). Ler € > 0, 0 = € < o0 and € > —1. Let ¢;,; € S(D)
and u, v € H* (D). Then the following statements are equivalent:
(a) Cs;pu = Cyjyp,w is compact on Al*s(D).

(b) The following rwe conditions are fulfilled;
lim p**+*(2) [[(2)]***Ry, (2) + [0(2)]**Ry, (2)] = 0

|z

and
lim (1 - p(2)) " |w(z) = v(2) [ [Ry,(2) + Ry, (2)] = 0.

|z|=1
In fact Acharyya and Wu prove that Assertion (a) is equivalent to the following two conditions:
. L ) 1 _
lim p(2) [[u(@)IRY, 4,(2) + [v(2) IR, y,(2)] = 0
and

lim (1 - p[z))llu (z) — v(z)| Réj o, (2) + Ri ij(z)] =0

lz[—=1
Note that functions p, u, v, R o5 R%. are all bounded on D. Thus it is elementary to verify that the above two
conditions are equivalent to the ones in Assertion (b).
In conjunction with Theorem 5.2, we recall the following lemma taken from [22, Lemmal].
Lemma 5.3 (see [32]). Ler € > 0. Let ¢; € S(D) and W : D = [0, 1] be a Borel function. If
lim » W(z)R, (z) =0,
ey (2)R,,( )
i
then (WdA._) © (pj'l is a compact € — 1-Carleson measure.

Now we note by Lemma 5.3 and Theorem 1.1 that the implication (b) = (a) in Theorem 5.2
remains valid for u, v € L*(D). In view of this, one may ask whether Theorem 5.2 extends to the case of
arbitrary bounded weights. The answer is no, as the next example shows.

Example (see [32]). Put
u = ZJ.’D,L
n=2
1

where D,, == D (1 - ;’ﬁ)' Note that the disks D,,’s are pairwise disjoint. Taking ¢; = id, the identity

map on D, and v = ); = 0, we see that
CE;‘ eju Czj Yiv = Cidu
15 the multiplication operator with symbol 1.

DOI: 10.35629/0743-11032548 www.questjournals.org 46 | Page



Difference of Weighted Composition Operators with Series of Symbols

We first check the compactness of Cyy,, : AF(D) = LE(D). Fix 0 < € < 1. Given a € D, let J(a)

be the set of all indices n such that D, N E;__(a) # 0. Forn € J(a) and z € D,, N E,_.(a) = 0, we note
_1_1 _i, 2 _ 4 e _ " (22

1 e lz] <1 ~ti and thus S < n(l—lz]) < S We thus have n(1 — |a|) &~ 1 by (2.2). It

follows that the number of elements of J(a). denoted by |J(a)|. is bounded by some constant times

(1—|a|)~t. We also have A(D,) = !

o (1 — la])*. Accordingly, setting p = (|u|dA) o cpj-_l = |u|dA.
we obtain

.I?U.l—f(a) A # Z A[Dﬂ n El—s(a)]

_ 2
(1—la]) S
|/(a)l
=————| sup A(D,)
(1= [aD? [mest = "
<1—|al

for all @ € D. One may check that the constants suppressed above are independent of a. Accordingly, 1 is
a compact 0-Carleson measure. This, together with Theorem 1.1, implies that Cyg,, : A5(D) — L(D) is
compact, as asserted.

On the other hand, since p(z) = |z| and Ry, =1, we see that conditions in (b) of Theorem 5.2
reduce to the condition

Jim [u(z)| = 0,

which is certainly not possible. This shows that the implication (a) = (b) in Theorem 5.2 is no longer true
for arbitrary bounded weights.

Before closing the paper, we remark that the arguments of the current paper extend to differences
of weighted composition operators acting from AX*S (D) to L1*$(D) for 0 < € < oo,
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