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Abstract. Motivated by the question of Shapiro and Sundberg raised in 1990, study on linear combinations of
composition operators has been a topic of growing interest. In this paper, we completely characterize the
compactness of any finite linear combination of composition operators with general symbols on the weighted
Bergman spaces in two classical terms: one is a function theoretic characterization of Julia-Caratheodory type
and the other is a measure theoretic characterization of Carleson type. Our approach is completely different
from what have been known so far.
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l. Introduction
Let S = S(D)be the class of all holomorphic self-maps of the unit disk Dof thecomplex plane C. Each
¢; € Sinduces a composition operator (1 + €)y ,, : H(D) - H(D)defined by

A+e)yyf=f e Z Pi

whereH (D)is the class of all holomorphic functions on D. An extensive study on the theory of composition
operators has been established during the past four decades on various settings. We refer to standard references
[7] and [25] for various aspects on the theory of composition operators acting on holomorphic function spaces.

We first recall our function spaces to work on. Let dAbe the area measure on Dnormalized to have total
mass 1. For € > 0, put

dAc_1(2) = ((e— 1)+ 1)(1 + |z])¢*dA(2), z € D;

the constant (e — 1) + 1is chosen so that A._;(D) = 1. Now, for 0 < € < oo, the € — 1-weighted Bergman
space AL*¢(D)is the space of all f € H(D)such that the “norm”

11l jae = { j |f(Z)|1+EdAE_1(z)}
D

is finite. As is well-known, the space AL*$(D)equipped with the norm above is a Banach space for 0 < € <
ooand a complete metric space for 0 < e < 1with respect to the translation-invariant metric (f,g) —
If — gl 1142%-

As is well known in the setting of D, every composition operator is bounded on wellknown function
spaces such as the weighted Bergman spaces A*$(D)and the Hardy spaces H'*¢(D)due to the Littlewood
Subordination Principle; see [7] or [25] for precise definition of the Hardy spaces H1*€(D). So, boundedness on
those spaces is out of question and much efforts have been expended in the early stage on characterizing those
maps in Swhich induce compact composition operators. An early result of Shapiro and Taylor [27] in 1973
showed that the Julia-Caratheodory type condition

1— |z|?

Rl =T loi P
is necessary for ¢; € Sto induce a compact composition operator onH2(D)(and hence forthe general Hardy
spaces H'*¢(D)). This means via the Julia-Caratheodory Theorem thatthe non-existence of the angular
derivative of the inducing map at any boundary point is anecessary condition for the compactness of a
composition operator on the Hardy spaces.However, (1.1) turned out to be not sufficient. In fact, later in 1987
Shapiro [24] completely characterized the compactness of composition operators on the Hardy spaces by

1/1+€

-0 as |z| » 1 (1.1)
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findingthe precise formula for the essential norm of a composition operator on H2(D)in terms ofthe Nevanlinna
counting function. The situation for the weighted Bergman spaces turnedout to be quite different from the Hardy
space case. Namely, MacCluer and Shapiro [18]proved that (1.1) is a necessary and sufficient condition for the
compactness of compositionoperators on the weighted Bergman spaces.

At the same time, MacCluer [16] noticed that Carleson measure, which first appearedin the solution of
the corona problem, is an important tool in the study of compositionoperators. Even though it is usually not easy
to verify that a given measure satisfies theCarleson measure criteria, in most cases it is through this process one
verifies that a compositionoperator is bounded (in case of higher dimensional setting) or compact. In fact,the
connection between a single composition operator and a Carleson measure comes fromthe standard identity (see
[9, p. 163])

fD Zlf 0 (D) dAc_y(2) = fD ZIf(Z)I“Ed(Ae-l o 9 (2) (1.2)

valid for functions ¢; € Sand f € H(D); see Section 2.4 for precise definition of the pullback measure A._; ©
@; . Due to the change-of-variable formula (1.2) one can easily deduce the Carleson measure criterion for the
compactness of a single composition operator on the weighted Bergman spaces. That is, (1 + €)y ,,is compact

on AL*$(D)if and only if A._; o @; tis a compact (¢ — 1)-Carleson measure on AL*$(D); see Section 2.4 for the
notion of (e — 1)-Carleson measures. This Carleson measure criterion, which is independent of 1 + €, plays a
fundamental role in the study of composition operators on the weighted Bergman spaces.

With the basic questions such as boundedness and compactness settled, more attention has been paid to
the study of the topological structure of the composition operators in the operator norm topology, which is of
continuing interest in the theory of composition operators. In 1981 Berkson [1] initiated the study of the
topological structure with his isolation result on the Hardy spaces. Berkson’s isolation result was refined later by
Shapiroand Sundberg [26], and also by MacCluer [17]. In [26] Shapiro and Sundberg posed aquestion on
whether two composition operators belong to the same connected component,when their difference is compact.
While this question was originally for the Hardy spaces,it also initiated similar study on various other settings
including the weighted Bergmanspaces. It was answered negatively on both the Hardy spaces (see [2, 8, 20])
and theweighted Bergman spaces (see [19]).

The aforementioned question of Shapiro and Sundberg initiated another direction ofstudy, i.e., the
study of compact differences of composition operators on various settings,which has been a very active topic.
While the characterization for compact differences stillremains open in the Hardy space case, it is completely
settled in the weighted Bergman space case. More explicitly, Moorhouse [19] characterized the compactness of
1+ 6y, — (@ +e)y0n ALl*¢(D)by the Julia-Caratheodory type condition

My, p,(2) = [Rq,i(z) + Rwi(z)]pwi_wi(z) -0 asl|z|-1,(1.3)
where p,, 4, = p(@;, ;). Here, pdenotes the pseudohyperbolic distance on D; see Section2.2 for the definition
of p. We remark in passing that this characterization has beenextended not only to higher dimensional balls and
polydisks, but also to general parameter1l + €; see [3, 4]. The essence of Moorhouse’s characterization is that
suitable cancellationsshould occur at every boundary point which makes either one of the inducing maps fail to
induce a compact composition operator. For further results on compact differences onvarious other settings, we
refer to [10, 11, 12, 13, 17, 20, 21, 22, 23] and references therein.

With the lack of the change-of-variable formula for the difference of two compositionoperators, Koo
andWang [13] introduced a new notion of joint Carleson measures to obtaina Carleson criterion for differences
of two composition operators on A1*¢(B), the weightedBergman space over the ball B, to be bounded/compact.
As a consequence of their result,it turns out that the bounded/compact differences on AL*$(B)depend on the
index 1 + €, when the dimension is bigger than 1. This is in sharp contrast with the one dimensional case;note
that Moorhouse’s characterization (1.3) is independent of 1 + €. Meanwhile, in case eachcomposition operator
is bounded on A}{'e(B)for some —1 < € > 0, the compact differenceon AL*$(B)is known to be independent of

1+ ¢; see [3] and, for a similar result on the poydisk,[4]. We also remark that the compact difference on
H'*€(D), e > 0, is also known to beindependent of 1 + ¢; see [21].

Along the same line of study on differences, study on linear combinations has beena topic of growing
interest. Kriete and Moorhouse [15] first obtained some general, butnot complete, results on compact linear
combinations on A%_, (D). More recently, Koo andWang [14] obtained complete characterizations for compact
linear combinations of threecomposition operators on AL*¢(D). The current authors [6] characterized compact
doubledifferences on AL*$(D). In this paper, in the setting of the weighted Bergman spacesAl*$(D), we
completely characterize the compact linear combinations of composition operatorsin two directions which have
been discussed so far; one is the Julia-Caratheodorytype characterization and the other is the Carleson criterion
by means of joint Carlesonmeasures. Our approach, dealing with general linear combinations, is completely
differentfrom what has been known so far.
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We introduce notation to be used throughout the paper. Given an arbitrary (but fixed)integer N > 2, we
reserve symbol functions

(©)1, (@), -, ()N ES
and coefficients

a{ ...,a{;, € C\{0}
to be considered throughout the paper. We put
T}' = (1 + E)Z(wl)]and 7},1+E = ’T] - T1+E

N
— Jj
T.—ZZajTj

j=1 i

forj,1+e=1,...,N. We put

for short.
Letpybe the group of all permutations on the index set
Ay = {12, .., N}.
Identifying o’ € pywith the ordered N-tuple (o, ..., o} )where o == o'(j), we will sometimes write
o' =(o},...,af).
Given ¢' € py, put

L be i 7Y .— J
A+of =a+af ()= ) >

for j € Ay. Note that we may represent Tas
N-1
r= z Z(l O Torye + Z(l + R Ty (14)
. j=1 i i
for each o' € py.

To state our first main result we introduce more notation. We put for simplicity
R; = Rippp Mji+e = Mg (0)14eA0Pj14e = P9 j(0D14e
for j,1 4+ € € Ay. Note that each R;, and thus each M; ;. .as well, is bounded on Dby the Schwarz-Pick Lemma.
Now, motivated by the representation (1.4), we define

Qi = ZZ @+ oM, + ) Ja+ar
j=1 i :
Q :=Z 1_[ Q,i.(1.6)

i olepy

RUIiv (1.5)

fora! € pyand put

Note that functions Q :are all bounded on D.
Our first result is the Julia-Caratheodory type characterization below. In what follows,1,denotes the
function specified in (2.6) in Section 2.3.
Theorem 1.1.Let € > 0and 0 < € < o. Let (¢;)1, ()2, -, (@)y € Sand al, ..., a}, € C\{0}. Then, with the
notation above, the following three statements are equivalent:
(@) Tis compact on AL*$(D);
(0) tim o ages
im £
211 25T yave
(c) |lille(z) =0.
Z|-
As a consequence of this result, we see that compactness of linear combination is independentof parameters € —
land 1 + €, as expected. We also note that Moorhouse’s characterization(1.3) of compact differences is a direct
consequence of the equivalence of (a) and(c).

As an application of Theorem 1.1, we consider the class of linear combinations satisfyingthe coefficient
non-cancellation condition

(e-1)+2,
1+e '’

= Oforall 1+ ¢ >

(1+€)7 #0 forj=1,...,N—1 ando’€ py.(CNC)
For this class of linear combinations, we obtain the next characterization, which has beenknown for the special
case N = 2; see [4, Theorem 4.6].
Theorem 1.2.Let e > 0and 0 < e < oo. Let (¢;)1, ()2, .., (@;)y € Sand assume that a{, ...,a,’\', € C\{0}
satisfy (CNC). Also, assume that at least one of the operatorsT;, ..., Tyis not compact on A1*¢(D). Then
T is compact on AL*$(D)
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if and only if both of the following two conditions are fulfilled:
(@ X %ial =0;
(b)  Tjiicis compact foreach j, 1 + € € Ay.
Our next result is a Carleson measure characterization. To state it we introduce more notation. Given o' € py,
we put
G,i= {z €ED:Q,i(2) = min QT(Z)}.(1.7)
1+€,e-1

Let € > 0and 0 < e < co. Associated with o' € pyare the measures u i = i’ ; and v_; = ”“ ' defined
J J ]

by

Hyi(E) ::f M11:+€L: dAc_4 +f Mlzrel: dA._,,
7 (@0 Hwnc,; I 07t G, T

j ]+1
v () = | Y ekt dac+ | > ol dAc,
% (@D @G ;4 i @D~} B)nG ;4 T
ot ot i 1 ol i

forl < j < Nand

i (E)=v(E):=
o (E) = 0,4 ) = |

(wa);;v (BING 4

Z RL€dA,
i
forBorel sets E c D. Finally, we put

He-11+¢ = Z Z.Ue 11+¢ Where .Ue 11+e: ZZ|(1+6)] ﬂg]lj (1.8)

olepy i

+e
Ve-1,14¢ = Z Z Ve-1,1+¢ where ve 1,1+€ = ZZ |(1 + 6)] vo-]l:-

olepy i
For the rest of the paper we will freely use the notation introduced so far W|thout any further reference.

Our last result is the Carleson measure characterization. When N = 2and a] + aJ = 0,it is easily seen
that the set G :is simply the whole Dfor each o' € py. Thus, fordifferences of composition operators, the
equivalence of (a) and (c) below is contained in[22] and [13]; see also [5] for the half-plane analogue.

Theorem 1.3.Let € >0and 0 <e <o. Let (¢;))1,(9;)z -, (@)y ESand a,...,a}, € C\{0}. Then the
following three statements are equivalent:
(@) Tis compact on AL*¢(D);
(0) pe—11+¢1S @ compact (e — 1)-Carleson measure on D;
(C) Ve—11+¢is acompact (e — 1)-Carleson measure on D.
We emphasize that our symbol functions in Theorems 1.1 and 1.3 are completely arbitrary, as long as they
belongto S.

The exposition of the paper is organized as follows. In Section 2 we recall some basic facts to be used
in later sections. Section 3 is devoted to the proof of Theorem 1.1. Section 4 is devoted to the proof of Theorem
1.3. In Section 5 we first prove Theorem 1.2 as an application of Theorem 1.1 and observe some consequences.
We then apply our results to provide new simple proofs for some known results about linear combinations of at
most
four composition operators.

Constants. Throughout the paper we use the letter 1 + eto denote various positive constantswhich may change at
each occurrence. Variables indicating the dependency of 1 + ewill beoften specified in a parenthesis. We use
the notation X < Yor Y = Xfor nonnegativequantities Xand Yto mean X < (1 + e)Yfor some inessential
constantl + e > 0. Similarly, weuse the notation X = Yif both X < Yand Y < Xhold.

1. Preliminaries

In this section we collect some basic facts to be used in later sections. One may finddetails in standard
references such as [7] and [28].

and

2.1. Compact Operator. It seems better to clarify the notion of compact operators, since the spaces under
consideration are not Banachspaces when 0 < e < 1. Suppose XandYare topological vector spaces
whosetopologies are induced by complete metrics. Acontinuous linear operator S : X — Yis said to be compact
if the image of every boundedsequence in Xhas a subsequence that converges in Y.
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We have the following convenient compactness criterion for a linear combination ofcomposition
operators acting on the weighted Bergman spaces.
Lemma 2.1.Let e > 0and 0 < € < o. Let She a linear combination of compositionoperators. Then Sis compact
on Al*$(D)if and only if Sf, » 0in Al*¢(D)for any boundedsequence {f,}in Al*¢(D)such that f, —»
Ouniformly on compact subsets of D.

A proof can be found in [7, Proposition 3.11] for a single composition operator and itcan be easily
modified for a linear combination.
1.2 Pseudohyperbolic Distance. The well-known pseudohyperbolic distance betweenz, w € Dis given by

p(z,w) = | |

w
1-zw

By a straightforward calculation we have
1 -1z - wl?)
[1—zw|?
for z,w € D. The pseudohyperbolic disk with center z € Dand radius 0 < € < 1is defined by
Ei_.(2)={weD:p(z,w) <1-—¢}.
It turns out that E; _.(z)is a Euclidean disk with

1-(1-e? . A-1-€e»A -0
mz and (radius) = - 2P = o7 .(2.2)

1—p%(z,w) = 2.1)

(center) =

This implies

1—-p(z.w) < 1—|z| < 1+ p(z.w)

1+pGw)  1—-|wl ™ 1-p(zw)
for z,w € D. Also is well known that, given 0 < € < 1and € > 0, we have

Acq[Er_e(@)] = (1= [2z|DEV*2, 2z € D; (2.4)
constants suppressed in this estimate depend only on € — 1and r.
Given 0 < € < 1and € > 0, we will use the submean value type inequality

FOIe s s [ I A, 2epEs)
= (1 _ |Z|2)(e—1)+2 Ero(2) e—1> .
for functions f € H(D), 0 < € < ooand for some constant 1+ € = (1 +€)(e — 1,1 —¢) > 0. All the details
for the statements above can be found in [28, Chapter 4].
1.3 Test Function. Note from (2.5) with e = 1that each point evaluation is a continuouslinear functional on the
Hilbert space AL*$(D). Thus, to each z € Dcorresponds a uniquereproducing kernel whose explicit formula is
known as w - A D+ 2where

(2.3)

A, (w) =

—, weED(.6)
1—-2zw
forz € D.

Powers of the functions in (2.6) will be the source of test functions in conjunction with Lemma 2.1.
The norms of such kernel-type functions are well known. Namely, when (1+¢€)(14+¢€) > (e —1) + 2, we

have

(e-1)+2 i
AL+ gase = (1 — 121”9 e, o € D;(2.7)
constants suppressed in this estimate are independent of z; see, for example, [28, Lemma 3.10]. Thus
/11+e
% — 0 - 0 uniformly on compact subests of D(2.8)
A5+ € 1 aate
as |z| - 1.
1.4 Carleson Measure. Let € > 0and ube a finite positive Borel measure on D. For 0 < € < 1and 0 < € < oo,
it is well known that
the embedding AL*$(D) c (1 + 2¢)'*¢(du)is bounded
.u[El—e(Z)]
Ssup———m——— < 0 (2.9)
zelr)) Ac_4[Ei_c(2)]
and
the embedding AL*$(D) < (1 + 2¢€)**€(du)is compact
& lim .u[El—e(Z)]
|z1-1 Ae_1[E1-c(2)]
We say that uis an (e — 1)-Carleson measure if (2.9) holds. Also, we say that uis a compact (e — 1)-Carleson
measure if (2.10) holds. Note that the notion of (compact) (e — 1)-Carleson measures is independent of the
parameters 1 4+ eand 1 — €. Given € > 0, it is also well known that

=0.(2.10)
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1+e M[ ( )] —
” ~ lulle=y = SZESAE TE@] where  E(z) = Ey/,(2)(2.11)

for(e — 1)-Carleson measures u; constants suppressed above are independent of pand 1+e€.
Here, ||i,,1+||denotes the operator norm of the embedding i, ;. : A*5(D) < (1 + 2€)**¢(dp); see [28,Section
7.2].

lliw, 1+

The connection between composition operators and Carleson measures comes from thechange-of-

variable formula (see [9, p. 163])
f Z(g PdAcq —f ng(Ae 1o @it (2.12)

valid for ¢; € Sand positive Borel functions gon D. Here, AE 1 o @; tdenotes the pullback measure defined by
(Ae_i 0o @i D(E) = Ac_1[@7 T(E)]for Borelsets E c D. Since each composition operator is bounded on
ALTS(D), it is immediate from (2.12) that A._, © ¢;is an (e — 1)-Carleson measure for each ¢; € §. Also is
well known via (2.12) that (1 + €),,is compact on ALTS(D)if and only if A._; o ;tis a compact (e — 1)-
Carleson measure.
2.5. Angular Derivative. We recall the well-known notion of the angular derivative. LetT := dDbe the unit
circle. A map ¢; € Sis said to have a finite angular derivative at{ € T, denoted by ¢;({) € C, if ¢;has
nontangential limit ¢;(¢) € Tat {such that

. 9i(2) — () ,

4?{3? =i (0)

wherezlimstands for the nontangential limit. As is well known by the Julia-Caratheodory Theorem (see [7,
Theorem 2.44]), ¢;({)exists if and only if

lim inf—1 —le@F

z-¢ 1—|z|?

In this case, the left-hand side of the above is equal to |¢;({)|and, moreover,

Llim 1A ! 213
im = e
21— ;@12 [pi(Q)]

> 0by the Schwarz-Pick lemma. We put

1- |<pt(0)|
1+ (0)]

In particular, we have |@}({)| =

F(p;) = {{ €T :limsupR,, (2) > 0}; (2.14)
z-¢

this is the “angular derivative set” of ¢;consisting of all boundary points at which ¢;has finite angular
derivatives. Note that (1.1) is equivalent to the condition F(¢;) = @

2. Julia-CarathEodory Type Characterization
This section is devoted to the proof of Theorem 1.1. We will complete the proof of Theorem 1.1 by
establishing the implications
(@) = (b) = (c) = (a).
Note that the implication (a) = (b) is clear by Lemma 2.1 and (2.8).
Before proceeding, we fix some notation to be used throughout the section. We put

— J
Sy

jeJ i
for ] € Ay. Given ] ¢ Aywith £ € ], note from (1.4) that the operator T;can be written in the form

> D Guelae +| Y. o |G

j,1+e€e] i jejJ i
for some coefficients c; ;,depending on fand ajj’s with j € J.
We now proceed to the proof of the implication (b) = (c). We need the following estimate, which is
the disk version of [13, Lemma 2.2]; one may also refer to [22, Lemma 3.1].
Lemma 3.1.Let 0 <e <o, e>0and 0 <e < 1. Thenthereisaconstant 1+e=(1+€e)(e—1,1+¢1—
2€,1 — €) > Osuch that
1+e ptte(a’,a’ + €)

iy _ j <@ j
|f(a ) f(a + €)| = ( * 6) Ae—l[E(l—G)z(a})] J;‘(1—5)2(‘1].)

IfI**€dAc-q (3.2)

forf € H(D)and a’,a’ + € € Dwith (a/ + €) € Ey_g), (a)).
Proof of (b) = (c). Assume (b). We suppose that (c) fails and will derive a contradiction.Since (c) fails, there
exists a sequence {z,} c Dsuch that |z,| — 1and
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infQ(z,) > 0.
n
Since functions Q :are all bounded on D, it follows that

infz Q,i(z,) > 0foreach o' € py.(3.3)
n

L
Furthermore, since functions R;and p; ;,.are all bounded, we may assume that the sequences
{Rj(zn)} and {pj‘lﬁ(zn)}both converge asn —

forany j,1+ € € Ay. Put

Fi= {j € Ay : lim R;(z,) = 0} (3.4)

n—-oo
and let
F':= Ay \F
for short. Note
i;lfR]- (z,) >0(3.5)
foreachj € F'.
In conjunction with the set F’, we pause to prove the following claim.

Claim.There are pairwise disjoint sets of indices J;,...,J;42cand a’ subsequence of {z,}still denoted by {z,},
with the following properties:

() F'=Uitli)ise
(i) Toeach1l+e€e =1,...,1+ 2ecorresponds (1 + €);4¢ € J;4cSuch that

Z(«p»,(zn)

(iii) lim p;1,.(2,) = Ofor all j,1+¢ €]1+Ef0r eachl+e=1,...,1+ 2e.
n-oo
(V) Yjes, Xia =0 foreachl+e=1,..,1+2€.

1+2€

Z|((pl)(1+e)1+e(zn)| fOT' alln and] € U ]{’ ’

f=1+€

Proof of Claim.Assume F’ # @ to avoid triviality. Put J, := Ffor convenience. Passing to a subsequence if
necessary, we may choose an index (1 + €); & J,such that

(00 (Z0)| < [(@)14), (Zn)|for all n and j & Jo.
Using such (1 + €),, we set
Ji={j € F'+ 1im pasey, ;(z0) = 0},
Now, let v = 2and suppose that we have chosen pairwise disjoint sets J;,.and points (1 + €),,¢ € J;4¢ for 1 +

€ = 1, ..., v — 1which satisfy
‘Z(wi),-(zn)
i

(1+e)-1

< D @daren, Gl foralinandje | | 1.6
i £=0

and

Jitre = {] EF': lim p(1+e)1+ej(zn) = 0} 3.7)
for 1+e=1,...,v—1. If F/ =UY;1, /14, then we stop. Otherwise, passmg to a further subsequence if
necessary, we choose an index

a+e,e | ] he GO
1+€=0
such that

v-1

Zl(wlxwv @z foralinandj € | | Jise.

1+€=0

Z(«m)}(zn)

Using this (1 + €),,, we set

Jo = {j € ' lim paiay, ;(z0) = 0}
Note from (3.8) and (3.7) that j,and J,,.are disjoint for each 1 + € =1,...,v — 1. This process stops after
finitely many steps by pairwise disjointness of the sets. Thus, (i) holds for some 1 4 2¢. Note that (ii) holds by
(3.6) and (i). Also, since (1 + €)14¢ € J14cforeach 1 + ¢, (iii) is clear by (3.7).
For (iv), we first consider the case 1 + € = 1. For € = 0, put
1+e (E 1) 1
for = Faase=(1=]a?) A e T

a]

for a/ € D. Put
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Wp = (¢i)(1+e)1(zn)
for each n. Note 1 — |w,,|? = 1 — |z,|?by (3.5). So, |w,,| = 1. It follows from (2.7) and (b) that

lim [T, || ,1ec = 0.
n—-oo €e—1
We thus obtain
. 2 (e—1)+2
lim (1 — Jw,|2) 5% |Tf,,,, (2a)] = 0(3.9)
by (2.5).
Note from (iii) and (2.3) that
2,
L=Iwpl? = 1= |(0; )| jEL
for all n. It follows from Lemma 3.1 and (2.4) that
1te 1+€

(1= wa|DEDR2T S (Z)] T S pjTee(zn) » 0, j,1+€€,(3.10)
as n — co. Meanwhile, note

1
1- |Wn|2)(e—1)+2|ijWn(zn)| e _ (

for all n. In particular,

1—|wy,
|1 = (00 (20) W]

|2 (1+e)(1+e)+(e—1)+2
) ,Jj € Ay(3.11)

1+e

1- |Wn|2)(6_1)+2|T(1+e)1fwn(zn)| =1
for all n. Thus, applying (3.1) (with J = J;and £ = (1 + €),), we obtain

(e—1)+2 .
lim (1= w2 e [T, fu, 0| = | > af].3.12)
J€J1 1
Since

1- |Wn|2)(e—1)+2|ijwn(zn)|1+€ < Rj(1+e)(1+e)+(e—1)+2(zn) 50, jEF
by (3.11) and definition of the set F, we also note
lim (1 — [w [ V2T, f,, (2] = 0.(3.13)
We now consider operators Tj,, ,€ > 0. Letj € J;,,, € > 0. nWe have |(¢;);(z,)| < |wyIby (ii) and thus
( 1— w2 ) -y (1 = wal?) (1= (0);z)|)
1 -

— (90 (z) Wy i 11— (00 ; )W’
for all n. It follows from (3.11)

=1- plz,j(zn)

1te 5 (1+e)(1+€)+(e—-1)+2
(1= W HEDR2Tf, ()] < [1-p75(z0)] 2
for all n. Thus, setting
1; = min [rlll_f}c}o Pa+e)y,j (Zn)] >0
where the minimum is taken over all j € U¢sg /7146, We Obtain

lim sup(1 — |w, |?)E-D+2 Z|T]1+Efwn(zn)|

noe €>0
for some constant (1 + €); = (1 + €),(1 + €, N,a}, ..., ax) > 0. Now, since we have by (i)
Th =T—Tr - Z T11+s'

€>0

1+e (1+e)(1+e)+(e-1)+2

<(1+e),1-1%» 2 ;(3.14)

we deduce from (3.9), (3.12), (3.13) and (3.14) that
. (1+e)(1+€)+(e-1)+2
dYHd|saroa-nyE

j€IL i
Recall that € > 0is arbitrary. So, taking the limit ¢ - oo, we conclude

J—
> 5=
) ) JjE€JL @
as required. This completes the proof for the case € = 0.
We now proceed by induction on 1 + €. So, let e > 0and assume

ZZajj=---= Z Za}=0.(3.15)

) J€J1 i J€J14+e-1 1
We will show
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Z Za]f =0.(3.16)

JE€J1+e 1
This time our test functions are f; where &, = (¢;)(1+¢),,.(Zz)for each n. Using (3.1), (3.5) and the induction
hypothesis (3.15), we have as in the proof of (3.10)
1+e

lim (1= &, Y |7, fe G = 0.

€20

Also, as in the case of € = 1, we obtain

lim (1 — 16,12 |Tefe ()] 7 =0

n—oo
and

. 2 (e-1)+2 j
lim (1= 16 e [T, fr, )| = | D) ) df|
JE€J1+e 1

Setting

Ni+e *= min [711_1){}0 p(1+e)1+5_j(zn)] >0
where the minimum is taken over all j € U.sq /14, We also have

- _ 14e a+olrer e+
limsup(1 = [, )% Y |1, fe, G TS A+ -nt)

€>0
Now, as in the case of € = 1, we conclude (3.16), which completes the induction. So, (iv) holds. The proof of
the claim is complete.

Having proved the claim above, we now continue the proof of the implication (b) = (c). We may
assume that the sets Ji,...,J;42. Fare all nonempty; otherwise the proof issimpler. Let n,,. == #J,,., the
number of elements in J, ., and put

jl+e = (j1+e,1: ---vj1+e,n1+é): 1 +e= 1; ---;1 + 26
Whereji 4 1, s ji+en,,.are the distinct elements of J; ... Also, let d := #Fand put
f = (jl' ""jd)
wherej,, ..., jqare the distinct elements of F. In these definitions of the vectors j;,.and f we simply choose
arbitrary but fixed permutations of components.
Now, consider T € pygiven by
7= (g, s f1420 -

Using this, we may rephrase Claim (iv) as
Nyt +nite

Z Z(af)fj=0(3.17)
j=1 i

N-d 1+2€

DA+ ey, = > > D oM.

j=1

1+e=1j,1+€€]14¢

for1+e=1,...,1+ 2¢. This yields

wherec].(ﬂ?are nonnegative coefficients depending on {aj,' 1P E ]1+E}for each m. On the other hand, note
N-d
Z |1+ €M, + 1L+ O IMy, < Z ¢ R;
j=N-d+1 JEF
wherec; are nonnegative coefficients depending on {a}l, s a}d}. It follows that

N-1

Q= Y |+ My, +10+ ORI,

j=1
1+2€
(1+€)
< Ciite Mj‘1+e + ¢ Rj.
1+€=1 j,1+€€J14¢ JEF i

Note that the first term of the above tends to 0 along the sequence {z,}by Claim (iii). The second term also tends
to 0 along the sequence {z,, }by definition (3.4) of the set F. Consequently, we obtain
rllgrc}o Q‘L’(Zn) =0,
which is a contradiction to (3.3). The proof is complete.
We now proceed to the proof of the implication (c) = (a). We recall a couple ofknown estimates.
First, we recall the following estimate which is implicit in the proof of[19, Lemma 1] or [4, Lemma 4.3].
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(e-1)+1

Lemma 3.2.Lete >0and 0 < e < oo, Put1 + € := min{
Borel function. If

,1}. Let @; € S, > O0andW : D — [0, 1]be a

sup E [W(@)R,,(2)] < €,(3.18)
ZED &=
L
then there is a constant 1 + € = (1 + €)(e — 1) > Osuch that
f § If o @il WdA._; < (1 + el f Il %
D -
l

for f € AL*$(D).
Next, the following lemma is taken from [6, Lemma 3.3].
Lemma 3.3.Lete > 0and 0 < € < oo. Let ¢;,y; € §,€ > 0and K c Dbe a Borel set. If
sup ) My, y, <€,(3.19)

ZEK
i

then there is a constant h(e) > Osuch that
limh(e) =0
-0

and

| Direwi-romiwaa,, < n@lrILE
k=

for f € AL*$(D).
We are now ready to prove the implication (c) = (a). In the proof below we use the notation

Q50) :={ZED:1—6<|Z|<1,|{—é|<6}.

for e Tand 0 < § < 1.
Proof of (¢) = (a). Assume (c). Our proof relies on Lemma 2.1. So, consider an arbitrary sequence {f,}in
AL*€(D)such that ||fn||A1+e < 1land f,, — Ouniformly on compact sets of D. According to Lemma 2.1, it suffices
to show that T'f,, - 0in AL¥$(D).
Let € > Oand put
Uy, ={z€D:Q,i(2) <€}
for o' € py. Note from (c) that to each { € Tcorresponds 8¢ = 8¢ (€) € (0,1)such that

05,0) U Uy, (3.20)
alepn
Indeed, if this does not hold, then there would be some {, € Twith the following property: For any § € (0, 1)the
set Q5({p)contains a point zs € Dsuch that Q,i(zs) > efor all o' € pyand hence Q(z5) > ™', which is
impossible by (c).
Now, by compactness of T, we can find finitely many points {;, ..., {,in Tsuch that

D\(l—e)DcUQ§ (¢)c U Ui

olepy

whereg; = 5<].and 1-—¢€:= max(l - 6]), the second |nclu5|on above holds by (3.20). It follows that

Llen|1+€dAe_1 f(l oo Z Zf

LE;, i
=1, + Z Zu;{“f
olepy |

for each n. For the first term of the above, note that f, — Ouniformly on UJY_,(¢,);((1 —€)D), which is

contained in a compact set of D. It follows that
I, - 0(3.21)
asn — oo, To estimate the second term, let o € py. Recall that Qi < eon U_: .. Thus, in conjunction with the
representation (1.4) of T, we see from Lemma 3.3 that there is a constant h_i(e) > Osuch that 161_1)13 h,i(e) =

Oand
ZZ|(1+6)] 1+ fu

ole

for all n. In addition, we see from Lemma 3.2 that there are constants € > 0, independent of ¢, such that

1+e€

dAG—l < h L(E)

Tyigh, fn
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z |(1 +e)gi f |T fn| dA._, < (1 + )el+e

for all n. Accordingly, there i |s aconstant e > 0, mdependent of €, such that

Z I, <+ e)[h,i(e) + €'€](3.22)
i
for all n. We now conclude by (3.21) and (3.22) that
limsup | |Tf|**¢dA._; < h(e)
D

n—-oo
for some constant h(e) > Osatisfying h(e) — Oas € — 0. Finally, taking the limit e — 0in the right-hand side of
the above, we conclude, as required, that Tf,, — 0in A1*¢(D).The proof is complete.

3. Carleson Measure Characterization:
This section is devoted to the proof of Theorem 1.3. Before proceeding, we observe acouple of basic
properties of the joint pullback measures defined in (1.8). Lete > 0and0 < € < oo.

Let o¢ € py. We note from definitions of Qiand uel 11+e

lie 114e(E) <2 Z f 1+EdAe—1 (4.1)
¢

I COR LI
forBorel sets E c D. We also note via the standard argument that led to (2.12) the change-of-variable formula

N-1
i i11+e€
| Y otutsne= Y Y Nawof |7 [oo@itae oy, |Mire dac,
b 5 j=1 1 Gy ! ped

w) lavor]™ (92 G0,g) R dAes (42

valid for positive Borel functions gon D.
Lemma 4.1.Let e > 0and 0 < € < oo. Let ¢;,y; € Sand W : D - [0, 1]be a Borel function. Let x and v be the
measures defined by

u(E) = f Z(Rq,i +Ry,) WdA_, + J Z(Rq,i +Ry,) WdA,_,
P NE)Y S B S

U(E) = j z WdAE—l + J Z WdAE—l
oM EY S Vit () S

forBorel sets E c D. If uis a compact (¢ — 1)-Carleson measure on D, then so is v.
Proof.Let € € (0,1)and put

and

K, = {z ED: R, (2) + Ry, (2) < E}.
Let E c Dbe a Borel set. Note

f Z WdAE—l = J Z + J Z WdAE—l
PNE) S o7 N EINK @7 HEN\Ke 55

1
< f Z e WdAcs + = f Z(R +Ry,)  WdA._,
o7 H(E) 07 (E)

whereyy._is the characteristic function of the set K. The same estimate holds for ;. Thus, setting the measure

v (E): = f Z X WdAc_y + f Z X WdAc_y,
o7 () S vilE S

we deduce
1
V<1 + EH
Accordingly, using the notation introduced in (2.11), we obtain
v[E(2)] 1 ulE@)]

T < vl o
Ae_ 1[E(2)] Uelle-1 + 1+€ Ae—l[E(Z)]
for all z € D. Now, assuming that uis a compact (¢ — 1)-Carleson measure on Dand letting |z| — 1, we obtain
v[E(2)]

limsup ——— < [|vell.-
|z|—>1pAe—1[E(Z)] elert
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for each € > 0. Note from Lemma 3.2 and (2.11) that ||v.||._; = 0as € = 0. Thus, taking the limit € - 0, we
conclude the lemma. The proof is complete.

We will complete the proof of Theorem 1.3 by establishing the equivalences

(a) & (b)and (b) & (0).

Note that the implication (b) < (c) holds by Lemma 4.1. The implication (c) < (b)is clear, because functions
R;are all bounded. It remains to establish the equivalence (a) < (b).

In what follows we put

E(z) =Ei(z), z€D
for short. Also, we put ’
DI¢:=D\(1-¢€)D
for0<e< 1.
Proof of (a) = (b). Assume that Tis compact on AL*$(D). Let o' € py. Note from definition (1.7) of the set
G,i
!
[0,:m)]" < Qw), weG,i(43)
Thus, given € > 0, we see from Theorem 1.1 and (4.3) that there is 0 < € € 1such that
1
Q,iw) <[QwW)V<e, weGnD"
Choose 0 < € € 1such that
(9);j((1—€e)D) c (1 -€)D, orequivalentlym,  (¢;);*(D?"9) c D¢

for each j.

Note from (2.2) that there is 0 < e € 1such that E(z) c D~9for € D1~ _ |t follows from the
observations in the preceding paragraph that

Q,i<e on (p)j'[E@]NG,i,ze DO

for each j. This, together with (4.1), yields

N
B2 el E@] < 267 ) Y (s o (0] )IE@], 7€ DU
j=1 1
so that

i N

He_11+elE(2)] B

sup ) EEAER <2614 3 M ey o (007 -
zED(lp_e) 7 Ae—l[E(Z)] =4 ” el ((pl)] ||E—1

Note [|4c_y o (9)7"[|__, < oofor each j; see the remark after (2.12). It follows from the above that

. .“gl1,1+e[E(Z)]
lim ——— =0,
lz1-14a Ae_4[E(2)]
. l
or said differently, that ,ug'il,lﬁis a compact (e — 1)-Carleson measure. Since o' € pyis arbitrary, we finally
conclude that p._; 1.is & compact (e — 1)-Carleson measure. The proof is complete.
Proof of (b) = (a). Assume that p._, 1. .is a compact (e — 1)-Carleson measure. As in the proof of Theorem
1.1, our proof relies on Lemma 2.1. So, consider an arbitrary sequence {f, }in A1*¢(D)such that supllntIAg; <
n
1and f;, - Ouniformly on compact sets of D. We need to show that Tf,, — 0in AL*$(D).
Fix 0 < € € 1. Since f,, = Ouniformly on (1 — ¢)Dand

we have

lim supf ITf|**€dA._; = lim supf TS|t edA_,
D D1-€

n-oo n-oo
< lim sup Z ZJ- ITfu | tedA._; (4.4)
n—oo o Gri

olepy 1 I
where G;L = GO'i n Dl_e.
Fix o' € py. Let € > 0. With the representation (1.4) in mind, put

olej ._
In . -
Go-in{MO'i i 26} =

jOj+1 t

1+e

To-é ol fa dA._; (4.5)

JUt

and
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1+€

dA,_, (4.6)

i .
€] P
I[n '_f E TO—L.O—‘. fn
Griﬂ{M i <E} ™ USRS
led “j'”j+1 14

for each 1 < j < Nand n. Similarly, put

; 1+e
11({ N = f Z'Tai(N)fnl dAc_1 (4.7)
G;in{RJ;'VEE} 1

and

4

i 1+€
g <N = f E T i ful  dAc_; (4.8)
Grin{R i <e}
g O’N

for each n. Using these notation and the representation (1.4) of T, we have
N

i|1+e i . i
fi E ITf,|1*€dA, , < E E la+o7 | (17 +17%7) 4.9
G1l7€ &
at L

j=1 i
for each n.
For the integrals in (4.5) and (4.7), we have
i 1 1+e
[t < i 1+e. <
In - €1+Ej(; izi: ng'0j+1fn MO']l',O'}+1dAE_1 , 1< ] <N

and

o < L |7, |1+6R1+6dA
n = gl+e ‘fllvfn “Iiv e-1
G5

1+e 1+e
2. < 2lrarl 42
i i i
N 1+

i1*e slej i
Y farar| T m Y s o [ Y I dng s
- n D >
j=1 1 L

for all n; the constant suppressed above depends only on 1 + €. Note that ug‘imﬁis a compact (e — 1)-
Carleson measure, because .4 1iS by assumption. Also, recall that supllfnllAéw_L; < land f;, » Ouniformly on
n

for all n. Now, since
1+€

T i T ,
G}"’}an ‘7}+1fn

it follows from (4.2) that

1
cl+e

compact sets of D. Thus the above estimate implies

N i|1t+e (J'ie'
lim ZZ |(1 +e)? | 127 = 0. (4.10)
n—oo

=

Meanwhile, for the integrals in (4.6) we have by Lemma 3.3 a constant h_i(e) > Osuch that lim h_i(e) = Oand
n—-oo
N_

1
i|1t+e i
Z Z |(1 +e)? | 11575 < h_i(€) (4.11)
j=1 1
for all n. For the integrals in (4.8) we have by Lemma 3.2 constants € > 0, independent of ¢, such that

i|1te ien
Z |(1 + )5 | 12N < (1 + €)el*€(4.12)
for all n. Now, we see from (4.9), (4.10), (4.11) and (4.12)

: 1+€ . 1+€
n e-1 = :
lim supf E ITful "€dAc_y < hi(e) + (1 +€)e
glre &
al 2

n—-oo

So, taking the limit € — 0, we obtain

lim f N ITful*edAc, =0
n-oo G1i—e -

and thus conclude by (4.4) that Tf,, - 0in AL*$(D), as required. The proof is complete.
4. Applications

In this section we first prove Theorem 1.2 as an application of Theorem 1.1. Also, applying our results,
we will recover some known results about compactness of linear combinations of composition operators.
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We begin with the simple lemma below, which will be used repeatedly in our proofs later. Recall that
R,,and M, ., are the functions defined in (1.1) and (1.3).
Lemma 5.1.Let ¢;,y; € S. Let {z,,}be a sequence in Dsuch that

i%‘fz Ry, (z,) >0 and 1111_)%2 Ry, (z,) =0.(5.1)
Then l l
lim " p(guz), i) = 1
and l
lim sup Z My, (2) > 0.
noe g

Proof.By (2.1) we have
2 1— gl

1-p*(pu ) < 4W-

L
Note that the right-hand side of the above tends to 0 along the sequence {z,,}by (5.1). So, the first part of the
lemma holds. The second part is also clear by (5.1) and the first part.
We now prove Theorem 1.2.

Proof of Theorem 1.2. The sufficiency is obvious by (1.4). For the necessity, suppose that Tis compact on
AL*€(D). We first prove (a). Due to the compactness of T, we have by Theorem 1.1

im2, || =0

i olepn
Consider an arbitrary sequence {z,}such that |z,| — 1. We see from the above that there exists T € pyand a
subsequence {z,, }such that
lim Q¢(z,,) = 0.
This, together with (CNC), yields
lim My (2,,) = 0(5.2)
for1 <j <N.
We now assume that (a) fails and will derive a contradiction to complete the proof of (a). Since (a)
fails, we have in addition to (5.2)
lim RTN(ZW) =0.

{—-00
This, together with Lemma 5.1 and (5.2) with j = N — 1, yields lim R, (zn,) = 0.
Repeating the same argument, we have
}l_glo R]'(an) =0
foreach j = 1,..., N. This subsequential property implies
lim R;(z) = 0,
lz|-1
for each j = 1,..., N. Thus operators Tj,..., Tyare all compact on A1*¢(D)by the characterization (1.1) due to
Shapiro and Taylor, which is impossible by assumption that at least one of the operators is not compact on
AL*¢ (D). This completes the proof of (a).
We now turn to the proof of (b). Having proved (a), we note that (b) is trivial for N = 2.
So, we assume N > 3. We introduce some temporary notation. For 1 + € € Aywith 1 + € = 1, let B, .(+ @)be
the set of all ¢ € pysuch that
{in, O’J-i+1} ={1,1+ e}for somej # N

Q31+e = 1_[ Qoi'

oleBy e
Note that each o € pybelongs to at least one and at most two of the sets B,, ..., By. Since functions @ :are all
bounded, it follows that

and put

N
1_[ Qs,,. < (1 +6)Q (53)
1+€e=2
for some constant € > 0.

To prove (b), it suffices to show that T, ;is compact on AL*§ (D)for each j = 2,...,N.
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Suppose not. For simplicity we may suppose that Tj,is not compact on A;*{(D). By the
characterization (1.3) due to Moorhouse, there is a sequence {z, }in Dsuch that |z,| — 1and

inf{[Ry (70) + Ra(z)1p12(z2)} > 0. (5.4)
In addition, since R,and R,are bounded on D, we may also assume
infp; ,(z,) > 0.(5.5)
n
Note also from (5.4) that Qp, stays away from 0 along the sequence {z,}. It follows from (5.3) and Theorem 1.1
that

N
lim [ ] .0 =0.

1+€e=3
This implies that one of the factors tend to 0 along a subsequence, still denoted by {z,}. So, we may assume
Qp,(z,) — 0. By the same argument we may further assume
Qy(z,) = 0(5.6)
for some n € B;. Since
N-1
Q= Z|(1 + 6);"|Mnj.nj+1
j=1
by (a), it follows from (CNC) that (5.6) is equivalent to
71115?0 M,,].‘,,].H(zn) =0(5.7)
foreach1 <j <N.
Note from (5.4) that (after passing to a subsequence if necessary)
infR; (z,) > 0
n
for some j, € {1, 2}. It follows from Lemma 5.1 and (5.7) that (after passing to a subsequence if necessary)
infR; (z,,) > 0,
n

whenj, is adjacent to j,, i.e., when {jy,j;} = {nj,nj+1}for some 1 < j < N. Starting with the above, we see by
the same argument that (after passing to a subsequence if necessary)
infR;,(z,) >0
n
whenj,is adjacent to j,. Repeating the same arguments, we can find a subsequence of {z,}, still denoted by {z,},
such that
infR;(z,) >0
n
for each j € Ay. This, together with (5.7), implies
Pnjmjes(Zn) = 0
for each j € Ay. It follows that p, ,(z,) — 0, which is a contradiction to (5.5). The proof is complete.
We now notice an easy special case of Theorem 1.2, which might be of independent interests.
Corollary 5.2.Let € > 0and 0 < € < . Let (¢)1, (®i)2,...,(@;)y € S. Assume ¢; > Ofor each j = 2,..., N.

Then
N

Z ¢jTy; is compact on A*§(D)
j=2
if and only if
T} 14¢ls compact on A*S(D)for each j, 1+ € € Ay.

Proof.The sufficiency being trivial, we only need to prove the necessity. Before proceeding, we note

N N
POXLESWL
j=2 i j=1 i
wherea! = ¥¥ . Yicand ajj = —cjfor j = 2,...,N. Itis easy to see that (CNC) holdsand};Y_, Ziaf =0.

If all the operators T,,, ..., Tyare compact on AL*$(D), there is nothing to prove. If atleast one of them
is not compact on Az*§ (D), then we see from Theorem 1.2 that T; ;,.iscompact on AL*{(D)for each j, 1+ € €
Ay. The proof is complete.

Example. Applying Theorem 1.2, we can easily check whether a linear combination ofcomposition operators,

for which (CNC) is fulfilled, is compact on A1*¢ (D). For example:

o 6Ty — Typs1 — 2Tz — 3Tim43is compact on Az*§(D)if and only if T; 4, is compact onA¢t§(D)for each
J1+e=1,234.

o 4T, — 2Tpi1 — Trmy2iS cOmpact on ALXS (D)only when T,,,, Tryi1, Tinszare all compact onAl*S (D).

DOI: 10.35629/0743-11036381 www.questjournals.org 77 | Page



Compact Linear Combination of Composition Operators on Bergman Spaces

o T, —iTpi1 — 2T ,is compact on ALXS(D)only when Ty, Tpy41, Trnopare all compact onAl+é (D).
In [14] the last two of the current authors characterized compactness of 3-combinations.Here, we provide
new proofs based on Theorem 1.1 in the next three corollaries. First,when (CNC) is satisfied, we have the
next immediate consequence of Theorem 1.2.

Corollary 5.3 ([14]).Let € > 0and 0 < € < oo. Let (¢;)1, (¢;)2, (¢;)3 € Sand a{,a%,aé € C\{0}. Assume a]f +

a{+6 # Ofor each j,1 4+ € = 1, 2, 3. Also, assume that at least one of theoperators T, Tyt 1, T 21S NOt cOmpact
on AL*$(D). Then
a{Tm + aéTm+1 + aéTm+2is compact on AL*¢(D)
if and only if both of the following two conditions are fulfilled:
(i) a{+a£+a§ =0,
(i) T, — Typy1andT,, — Ty, 4 .are both compact on AL*S(D).
Next, when (CNC) is not satisfied, note that 3-combination reduces (after re-indexing)to a nontrivial
combination of T,,, — T,,+1and Ty, 4. In conjunction with this observation wehave the next corollary.
Corollary 5.4 ([14]).Let e > 0and 0 < € < o. Let a’ € C\{0}. Let (¢;)1, (¢;)2, (9;)3 € S. Suppose that none
of T, Tyt 1> Tins21S COMpact on ALS (D).
If T, — Tppyq + @’ Tpyipis compact onAlt¢ (D), then a/ = lora/ = —1.
Proof.We first compute the function Qassociated with the operator under consideration.
Note
T = (T — Tm+1) + @/ Ty ]
= (T — Tma2) + 1 + @) (T2 - Tin+1)@ Tiis
= —(Tm41 — Tr) + @' Tz ]
= _(_Tm+1 - Tm+2) + (_1 + a])(Tm+2 - Tm) + a]Tm
= aj_(Tm+2 — T + (o/ + DT — Tinsr) + a}Tm+1
=&/ (T1z2 = Tins1) + (@ = D) (T — Tn) + @/ Ty
Thus, setting
Sy =My, + |a/|Rs
Sy =My, + |al + 1|M5, + |a/|R,
S3 =My, + |a’|Rs
Sy =My +|al — 1|My; + |a/|R,
S5 = [0l My + [af + 1My + o7,
Se = |a/|Ms, + |a/ — 1|My, + |a|Ry
we have
Q = 515,535,55S5¢.
Now, assume Tis compact on AL*$(D). Note that T,, — Ty,,1iS not compact. Thus there is a sequence {z,}in
Dwith |z,| - 1such that
il;llfMl,Z(Zn) >0.(5.8)
Assume a’ # +1. Then S;5;SS.stays away from 0 along the sequence {z,}. Accordingly, we have
11113)10 S,(2,)S4(z,) = Oby Theorem 1.1. Thus, we may assume either Tlll_l;l;lo S,(z,) = Oor 1111_)r£10 S, (z,) = Oafter
passing a subsequence if necessary.
Suppose rllggo S,(z,) =0, i.e.,
() lim R,(z,) = 0,
(ii) rlll_{rgo M, 3 (z,) =0,
(i) r111—>r§o M;3(z,) = 0.
By (i), (iii) and Lemma 5.1 we have 111_{210 R;(z,) = 0. This, together with (ii) andLemma 5.1 again, in turn
yields
rlzl—{rolo Rl(zn) = 0'
which is impossible by (5.8) and (i). We thus conclude a’ = 1or a/ = —1, as desired. The proof is complete.
Finally, when (CNC) is not satisfied, note from Corollary 5.4 that 3-combination reduces (after re-
indexing) to a constant multiple of T,,, — T,,+1 — Tne2- In conjunction with this observation we have the next
corollary. Recall that F (¢;)denotes the angular derivative set of ¢;defined in (2.14).
Corollary 5.5 ([14]).Let e>0and 0<e <oo. Let (¢;)1, (@) (¢;)s €S. Suppose that none of
Ty Trns 1> Tt 21S COMpact on ALF$ (D). Then
Ty — Trns1 — Tinsa is compact on ALY$(D)
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if and only if both of the following two conditions are fulfilled:

(@ F((@;)1)is the disjoint union of F((¢;);)and F((¢;)3);
(b) lzl_r}g M, ;(z) = Ofor each ¢ € F((¢,);)and j = 2,3.

Proof.By Theorem 1.1 it suffices to prove
lim Q(z) = 0 & (a) and (b) hold.

|z|->1
In conjunction with this assertion, we note that the function Qassociated with T, — Ty, 41 — Tin421S given by
2 2
Q= (M1,2 + Rs) (M1,3 + Rz)

X (Mysz + 2My 3 + Ry )(Mys + 2M, 5 + R,)(5.9)
by the proof of Corollary 5.4. Using this explicit expression of @, one may easily verify that (a) and (b) imply
Q(z) — 0Oas z —» (for any ¢ € T. Thus the implication<holds.

We now prove the implication =. So, assume
Ililm1 Q(2) =0.(5.10)
z|-
We first prove (a). Let {, € F((¢;)1). We have
infR,(z,) >0
n
for some sequence {z,, }with z, — {,. We have by (5.9) and (5.10)
(My, + R3)(My; + R,) > 0 along the sequence{z,}.
Now, suppose ¢, & F((¢;);)s0 that R,(z,) — 0. Note from Lemma 5.1 that
infM; ,(z,) >0
n
after passing to a subsequence if necessary. It follows from the above that M; 3(z,) — 0. Accordingly, we have
Rs(z,) » 0(5.11)
by Lemma 5.1 and thus ¢, € F((¢;)3). We therefore conclude
F((¢:)1) € F((9:)2) U F((91)3)- (5.12)
To prove the converse inclusion, suppose not and pick ¢; € F((¢;),) U F((@;)3)such thatl; & F((¢;);). We
may assume {; € F((¢;),)by symmetry so that
infR,(w,) > 0(5.13)
for some sequence {w,,}with w,, = ;. Meanwhile, since {; & F((¢;),), we have
R, (w,) — 0(5.14)
and thus inf M, ,(w,,) > Oby Lemma 5.1 after passing to a subsequence if necessary. Now we have by (5.10)
n
and (5.9)
(1) lim M;3(w,) = 0and (ii) lim M; 3(w,) = 0.
n-oo n—oo
Applying Lemma 5.1, we note from (5.13) that (i) implies R;(z,) +» 0, and thus (5.14) and (ii) implies
R;(z,) — 0. This contradiction shows that the inclusion in (5.12) can be reversed, as required.
If &5 € F((91)2) N F((91)3) < F((9)1), then we havelby (2.13)

Z llm (RleRS)(Z) =
z-43

(BB BICOABI
which is impossible by (5.9). So, we conclude F((¢;),) N F((¢p;)3) = @. This completes the proof of (a).

We now prove (b). Suppose not. By symmetry we may assume that there is {3 € F((¢;),)such that
lim sup M, ,(z) > 0as z — (3. Pick a sequence {{,,} © Dwith ;, = {3such that
inf M, ,({,) > 0.(5.15)
n

So, we may further assume
(iii) inf R, (g;,) > O or (iv) infR,({,) > 0
n n

after passing to a subsequence if necessary. Since {5 € F((¢;),), we note {5 & F((¢;);)and thus R5({,) — 0.
In case of (iii), we see from (5.15) and (5.9) that M;3({,) + R,({,) — 0. So, we have {53 € F((¢;)3)as
in the proof of (5.11), which is a contradiction. In case of (iv), since R5({,) — 0, we have by Lemma 5.1
inf My 5(¢,) > 0(5.16)

after passing to a subsequence if necessary. So, we see from (5.15), (iv), (5.16) and (5.9) that Q({,) -+ 0, which
is also a contradiction to (5.10). We thus conclude (b). The proof is complete.

The current authors have recently characterized compactness of double differences of composition
operators. Here, we provide a new proof below, which is much simpler (thanks to Theorem 1.1) than the
original one.

Corollary 5.6 ([6]).Let e > 0and 0 < € < 0. Let (¢;)1, (9:)2, (9;)3, (9;)4 € S. Then
(Tm - Tm+1) - (Tm+2 - Tm+3) is compact on Aéti (D)
if and only if
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lim [My,(2) + M5,4(2)][My3(2) + My 4(2)] = 0.(5.17)

|z]>1
Proof.We first identify the function Qassociated with the operator under consideration. Note
T := (Tm - Tm+1) - (Tm+2 - Tm+3)
= (Tm - T3) - (Tm+1 - Tm+3)
= (Tm - Tm+3) + 2(Tm+3 - Tm+1) + (Tm+1 - Tm+2)
= (Tm - Tm+3) + 2(Tm+3 - Tm+2) + (Tm+2 - Tm+1)
= _(Tm+1 - Tm+2) - 2(Tm+2 - Tm) - (Tm - Tm+3)
= _(Tm+1 - Tm+2) - 2(Tm+2 - Tm+3) - (Tm+3 - Tm)
= _(Tm+2 - Tm+1) - 2(Tm+1 - Tm) - (Tm - Tm+3)
= _(Tm+2 - Tm+1) - 2(Tm+1 - Tm+3) - (Tm+3 - m)
= (Tm+3 - Tm) + Z(Tm - Tm+1) + (Tm+1 - Tm+2)
= (Tm+3 - Tm) + Z(Tm - Tm+2) + (Tm+2 - Tm+1)'
Associated with these representations, put
S1=Mip+ Mz, Sy =Mz + My,
S3=Myy+2Myy +My3, Sp=M,+2My3+ M3,
S = My3+2M31 + My, Sg:=My3+2M3,+ My,
S; =Mz, +2My1 + My, Sgi=Mz,+2My,+ My,
Sgi=Myq +2My,+ M3, Sio:=My; +2M;3+ Ms,.
It is routine to check
Q= (5152)8(5354 "+ S9510)-(5.18)
Hence, to complete the proof, it is sufficient to prove the equivalence
|£i|r_r)11 0(z)=0 & |£i|r_r>11 5,(2)S,(2) =0(5.19)

by Theorem 1.1. The implication «is clear.
For the implication =, we suppose that it fails and will derive a contradiction. So,assume Q(z) — Obut
$,(2)S,(z) » 0Oas |z| - 1. Then there is a sequence {z, }in Dwith |z,| — 1such that
infS;(z,) > 0, infS,(z,) > 0(5.20)
n n
andlim S;(z,) = Ofor some j > 3. We consider the case j = 3; proofs for other cases are similar. So, we have
n—-oo
lim S;(z,) = 0, or said differently,
n—-oo
(1) lim My 4(z,) =0,
n—oo
(i) lim M, 5(z,) =0,
n—-oo
(i) lim M, 4(z,) = 0.
n—oo
By (5.20) and (iii) we have
inf M, 5(z,) > 0(5.21)
n
after passing to a subsequence if necessary. We now split the proof into two cases as follows.
First, consider the case when R;(z,) — 0. In this case we have by (i) and Lemma 5.1
R,(z,) — 0.(5.22)
We also have R;(z,) + Oby (5.21). It follows from (ii) that
lim p, 5(z,) = 0,(5.23)
n—-oo
after passing to a subsequence if necessary. Therefore we have R,(z,) - Oby Lemma 5.1. By the same
argument based on (iii) we have
lim p, 4(z,) = 0(5.24)
n—-oo
after passing to a subsequence if necessary and thus R,(z,) - 0, which is a contradiction to (5.22).
Next, consider the case when R;(z,) + 0. In this case note from (i)-(iii) and Lemma 5.1 that R;(z,) +
Ofor j = 1, 2,3, 4. Accordingly, we see from (i)-(iii) again that
P14(Zn) + p23(2n) + p24(2,) = 0,
after passing to a subsequence if necessary. This implies p; 3(z,) — 0, which is also a contradiction to (5.21).
The proof is complete.
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