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Abstract

Following the method of V. H Nguyen [34] we establish a smooth [**“-version of the Poincaré—
Sobolev inequalities on the hyperbolic spaces H3*€. Moreover we relate both the Poincaré (or Hardy)
inequality and the Sobolev inequality with the sharp constant on H®**€, The study is based on the
comparison of the L1*S-norm of gradient of the symmetric decreasing rearrangement of a function on both
the hyperbolic and the Euclidean spaces, and the sharp Sobolev inequalities on Euclidean spaces. We also
give the proof of the Poincaré-Gagliardo-Nirenberg and Poincaré-Morrey-Sobolev inequalities on the
hyperbolic spaces H*"¢. We discuss several other Sobolev inequalities on the hyperbolic spaces H?***
which generalize the inequalities due to [27] on H?.
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l. INTRODUCTION
Given € = 0, let H** denote the hyperbolic space of dimension (3 + €). We will use the Poincaré ball
model for the hyperbolic space H3*<, i.c.. a unit ball B**¢ with center at origin of R**< equipped with the

3+e
2
Yi*fdx?. The corresponding Riemannian volume element is dV = (1 . 2) dx

metric g(x) = = I:r oE

and for a measurable set E = H**, we denote by V(E) = f dl7. Our result states as follows.

Theorem 1.1 [34]. Let € = 1 and 2[3+ < 1+ € < 3 + €. Then for any u; € W**(H**%) it holds

1+e 2+e€
I%Z -G [ i
B

ate

(3+s)[l+s:- e
=53 4614614 [ Z by~ 2 av] (L.1)
1—|x)? 2

—
) V denotes the hyperbolic gradient, |Vguj|g = wlg["?g u;, Vguj] and S(3+€,1+¢€)1s

where V= (

the best constant in the L'**-Sobolev inequality on R3*¢ (see, e.g.. [1,30]). Furthermore, equality holds
true in (1.1) if and only if u; = 0.

The most interest of the inequality (1.1) is that it connects both the sharp Poincaré (or Hardy) inequality
and the sharp Sobolev inequality on the hyperbolic space H*¥<. Let € > 0, the sharp Poincaré inequality

asserts that
2+e€
o 2 sl 7= (755)
E3te 7 g 1+¢

1+¢)

2+e) (1FE) . . . - . -

The constant (—1+ ) is sharp and is never attained. This leaves a room for several improvements of the
3

(1+€)

f Z [ [edV, u € CP(BS).  (1.2)
Eate d
1
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inequality (1.2). Notice that the non achievement of sharp constant does not always imply improvement
(e.g.. Hardy operator on the Euclidean space R**¢, ¢ = 0). However, on the hyperbolic space, the operator

24 (1+€) . e—1 2463 (1F6) . . . .
=8 e mEte — (;) = div (l‘i‘g -|g Vg ) - (E) 1s suberitical, hence improvement is possible.
For examples, see [6-8] for the improvements of (1.2) by adding the remainder terms concerning to Hardy
weights, i.e., the inequalities of the form

1+e 2+e (1+e) 1+ - 1+€
J- Z |‘E’guj| dV—( ) [ Z [u;[**edV = [_l+E:]J‘ Z Wu;[**=dV,
Bate ~ g 1+e mate - ma+te i

for some constant € = 0 and the weight W satisfying some appropriate conditions. For the case € = 1, the
authors in [23] proved the following Poincaré-Sobolev inequalities on H3**¢ with € = 0

2 24+ € 2
f > v dV—!J‘ >l lav
Ea"‘? - g 4 33+E -
1 1
2
1+e&
> (1+¢€) f ) Z ltredv |, u; € g (E), (1.3)

Be+e &=
. J

where 2 < 14 ¢ = 2(13++€) and C is constant. The inequality (1.3) is equivalent to the Hardy-Sobolev-
€

Maz'ya inequality on the half spaces (see [26. Section 2.1.6]). Especially, in the case € = V5, we get

2+ ¢€)?
f > |vguj|2dv—!f > ylrav
B2+ n g 4 ma+e I

1+e
3+e

2(3+¢) .
= Ca+e) f . Z ;[ 1+e av C 1y € C°(HPT), (1.4)
E2+€ dem
. 7

where C(3,.y denotes the sharp constant for which (1.4) holds. It was shown by [32] that if € = 0 then
Clatey 1s attained. Using test function, they show that Cruyey < S(4 + €, 2) where 5(4 + €,2) denotes the
sharp constant in the I2-Sobolev inequality in R**<. More surprisingly, [5] proved that C; = 5(3,2) and C;
is not attained. The non achievement of C3 was also proved by [23] by a different method. See [21] for the
Hardy-Sobolev-Maz'ya inequalities of kind (1.4) for higher order derivatives. Therefore, the inequality (1.1)
can be seen as a L'*¢ analogue of the result of Benguria, Frank and Loss on the Hardy-Sobolev-Maz'ya
inequality on H?.

On the other hand, the inequality (1.1) can be seen as a concrete example on the hyperbolic space of the
AB program on the sharp Sobolev inequality in Riemannian manifolds [17]. Let (M, g) be a complete

Riemannian manifold of dimension € = 0. We denote by HY1+¢(M) the completion of Cg5° (M) under the
) 1/1+e

1+e 1+e r - .
norm || u; llgrate= (|| Vi ||LJ.+£tM:I +I IILL+GEM:] . We wonder to know that for € = 0, 1s there a

constant B such that
SGA+e1+20 1 D I ihran= O 1V 1,
7

J
1+e 1+€
+ E B |l uy ”Ll"'ZE{M] (fl+25,apr)
J

for any u; € H41*2¢(M)? In the case of complete compact Riemannian manifolds, it was proved by [19,
20], by [16] and by [2] that (11+E :l holds for (1 + €) = min{2,1 + 2€}. This solves a long standing

1+2¢,0pt
comjecture due to [1]. See the original article by [1] or to [18] or by [17] for a complete survey on the
compact Riemannian manifolds. In the case of complete non-compact Riemannian manifolds, there is
several results in which (Ill_:'feﬂpr) is valid. For example. [3] proved that (fll_:ffppt) holds for any € = 0
with B = 0 on the Cartan-Hadamard manifolds (i.e.. complete simply connected Riemannian manifold)
satisfying Cartan-Hadamard conjecture. In particular, (flli'é‘_‘__.opg) is valid on the hyperbolic spaces for any
€ = 0. Since the inequality (1.1) relates both the sharp Poincaré and sharp Sobolev inequalities, then the
constants in (1.1) are sharp and can not be improved. Hence, the (1.1) gives an example in which the sharp
second constant B can be explicitly computed. See [18, Theorem 7.7] for some other examples in the case

€ = 1. Note that. on the hyperbolic space II**<, the following inequality holds
2+e

2({4+e&) e 2
S(4 + €,2)2 f Z |, [ 25 av EZJ- Z |V, 2| av
H<+s 7 Hate 7 g

44+ e)2+e€
_¢f Z |T£J|2dv. (1_5)
4 Hate =
i
The constant (4 4+ €)(2 + €)/4 is sharp when € = 0. By the result of Benguria, Frank and Loss, this
constant is not sharp when € = 1. In this case, the sharp constant is € = —1, —5. By this observation, we

can not hope the valid of (1.1) for any € = 0. We will see below that (1.1) follows by a pointwise estimate
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2(4+€)

tor which the condition (3+ Vcl+e<dteis sharp. However, in the case € = 1, we have =3=>

. 2(4+
2. Hence, the condition 1 + € = % maybe is not optimal for the valid of (1.1). So, it is more interesting

if we can find the sharp py € [1,4 + €) such that (1.1) holds for (1 + €) € [po, 4 + €).
We explain briefly the method used in the proof of Theorem 1.1. Our proof lies heavily on the symmetric
non-increasing rearrangement arguments. For any function u; € W+ (H**€) we define a function u;

which is non-inereasing rearrangement function of u;. From this 1 we define two new functions (u j:}g on
# N . . 1+|x|
4+e ¥ R . _ - d4e . Y —
H**¢ and (u;)z on R**< by (uj)g(x) = U (V(Bg(ﬂ,p{.x.)))), x € B*"® where p(x) = In =) denotes the

geodesic distance from x to 0, and B, (0,1 + €) denotes the open geodesic ball center at 0 and radius € = 0

¢ . , .
on H**C, and (uj) (x) =y (G[4+E‘,|;\'|4+€),X € R*"° where g(4:¢) denotes the volume of unit ball on
¢ ) )
R**<, respectively. The functions (1) and (u;); has the same decreasing rearrangement function (which

is ), then [|(u .'}‘;” = ||{.“'-}Z||L1+s(1<.+s'] =l u; llpr+e(yete) for any € = 0. The key in our proofis

p1te (H r..+s':|

a result which compares [V, (1 )gﬂijrfs{ﬂﬁs) and [|V(w;)% ”Ll"'f(R‘“'E:l Indeed. we will show that
l+e 1+e 1+e
# N 3+ N8
PIRAD -1 vay =) Dl @y
i L;+E(H4+s) j LL+E(R¢+£) J LJ.+£(H4.+G']

Using the sharp Sobolev inequality on R**® and the Pélya-Szegd principle on H**S, we obtain the

inequality (1.1).
The approach to prove Theorem 1.1 above also yields the proofs for the following Poincaré-Gagliardo-

Nirenberg and Poincaré-Morrey-Sobolev inequalities on the hyperbolic space H**e,
Theorem 1.2 (see [34]). Let € = 0, 2{4_+E] =l+e<4+eand (1+€)€ (0 —] € # 0. Then for any

u; € Co° (H**¢), the following inequalities holds.
(i) If € = 0, then we have

| Z U lyeas vy S GN (A + €1+ 6,14 €)

3+ e (1+4¢)
R o (et I 1 eeparey | 1 1 Sreoer(arey,  (16)
1+e. j lplre(gete) 7l (=€)
J

. o (4+€)(e)
with (1 +€) = o o (9@
(11) If 0 < € < 1, then we have

Il Z U |l (e fgare) S GN(4+¢e1+e1—¢)

3+ e (1+e) - . .
Z ||V " _F{}I'H' I - (m) Il 'MJ- |IL1+E[E_:Ii_—e) | EI-J- ||L(L—,g)(;_g)[[_:l4_5] ¥ {1?)
j

[4+€)(+€)
(1—e2+€))((4+€)—(1—€)(3)
The constant G(4 + €,1 + €,1 — €) which appears in (1.6) and (1.7) denotes the sharp constant in the
Gagliardo-Nirenberg inequality on R**¢ (see, e.g., [13-15]).
Suppose that € = 0. Then for any function 1; € C3°(H**¢), it holds

1 3+e 1+e€
3+e—~ 1 3+e 2 . _ |3+E
I E u; 135°< b3tes,. E V(suppu;)2+e ([ﬂgzﬁ |%”J|g dv (3+€) L2+F|uj| dV) (1.8)

W he1e supp u; denotes the support of the function u;, and by, .5, is the sharp constant in the Morrey-
Sobolev iucqualiry on R2* (see. e.g., [31]).

Similar to (1.1), the inequalities (1.6), (1.7) and (1.8) relate both the sharp Poincaré inequality and the sharp
Gagliardo-Nirenberg and the sharp Morrey-Sobolev inequalities on the hyperbolic spaces H2¥¢, so they
can not be improved on the constants. The inequality (1.1) is a special case of (1.6). The case € = 1 is not
included in Theorems 1.1 and 1.2. In this situation, there are some Hardy-Moser-Trudinger type inequalities
(see. e.g., [22, 24, 25, 28, 29, 33]). See [9-12] for more information about the Gagliardo-Nirenberg
inequality in the compact Riemannian manifolds.

with (1+€) =

(3+€)
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Here, we recall some basic facts about the symmetric decreasing rearrangement of function on the
hyperbolic space H2*€ and prove an important result relating the symmetric decreasing rearrangement of
function both on hyperbolic space and Euclidean space. We devoted to prove Theorems 1.1 and 1.2. We
discuss some related Sobolev inequalities on hyperbolic space which generalize the inequalities due to [27]
on H? to higher dimension.

2. Symmetric Decreasing Rearrangements

It is now known that the symmetrization argument works well in the setting of the hyperbolic spaces H**®
(see, e.g.. [4]). We recall some facts about the rearrangement on the hyperbolic spaces. Let u;: H?** — R
be a function such that

Volg({x € H**<: |u;(x)| > 1+ €}) = f el ooie }Z dV < o, We = 0.
u‘r X [

For such a function 1, its distribution function, denoted by M is deimed by
iy, (1+€) = Vix e H**:|u;(x)| > 1+ €} e 2 0.
The function (0,0) 3 1+ €+ ptuj{:'l + €) is non-increasing and right-continuous. Then the decreasing

rearrangement function U of u; is defined by

U (1 +¢€) = sup {5 = 0: 41y, (1+¢e)>1+ E}
Note that the function (0,20) 31+ € — u(1+€) is non-increasing. We now define the symmetric
decreasing rearrangement function [_‘ILJ,-_} g of u; by
(W50 = U (v (B,(0.0(0)))), x € B2*e, (2.1)

We also define a function (u j:)f? on R**< by

(u)5(x) =y (Jiﬂf [x]?*€), x € R**", (2.2)
where 0, .y denotes the volume of unit ball on R2+E. Sinee u;, (u; ) g and (uj)e has the same non-increasing

rearrangement function (which is u;), then we have

J.. Z (b= [, 3" ¢(@);) e
= J‘RZHZ ¢((uj)§)dx =J; Z CD u}}‘{jl—ke))d(l +€), (2.3)
] j

for any inereasing function @: [0, ) — [0, e2) with ©(0) = 0. This equality is a consequence of layer cake
representation. Moreover, by Pdlya-Szegd principle, we have

3+e ) 3+e
[ Z |V, (u)g| dv EJ. Z |Vqu;|” av. (2.4)
EB2+E g E2+e Z g
We compare ||V, (1)} ||3+E

g LE+£(E{2+£:I aIld ||v(u )F "

By a straightforward computation, we have

2+e) For simplifying notation, we denote v; = u;.

J:a+s j

(1+e)(3+e)
1+e 2+e
() dx = (2 + €)oraee (1 + 3+E( ) d(l+e). 2.5
Jo 2 00201 = (@ 9™ [ W0 (2 o @9
Note that
plx)
VBOPM) = @+ [ (S + AL +6) = I @(p(1)
0
where
1+e
d(l+e)=(2+ E:)J. (sinh(1+ €))*sd(1 + €). (2.6)
0

Note that the function @:[0,0) — [0,0) is a diffeomorphism, strictly increasing with @(0) = 0 and
lim,_., ®(1 + ¢€) = oo. The gradient ofV(Bg(O, p{jx:))) is then given by

U,V (B (X0, p(1))) = (2 + ).y (s1nh p(x)) 14V (1),
Since |'\7"gp(x)| = 1 for x = 0, then we get

J Z v, (u)‘"'(,\)| “qv = f Z v (v (5,00, p{r))))‘ ((2 + €)(sinh(p(x)) +<)3*<dV
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= (2+ €024 J‘n Z |v:,. (V (35(0,1 + E)))lus ((2 + €)a g4 (sinh(1 + 5))l+£)3+€(5i1ﬂ](1 L etted(l +e)
° T

o a+
= (2+6)040)"" f Z |V} (L’ (B,0.1 + ej]))| " (sinh(1 + €)1 + €)oo (sinh(L + €))+d(L + €).
o =
]

Making the change of variable (1 +€) = V(Bg(ﬂ.l + E)) = 0Pl +e)or (1+6)= [ (:ﬁ ),
' (2+€)
we have d(1 +€) = (2 + €)0(2. (sinh(1 + eN*ed(1 +€) and

(3+e)(1+e)
E : 3te 3+e 1+e
f |'C"g(uj);|3+‘dv = ((2 + e)ams}) f z |v}(1 + e)l (siuhcb‘]‘( )) d(l1+e). (2.7)
EI+E 7 g o 7 O’{g+5}

We define the function ko, 5, on [0,2) by

3+e)(1+e)
k2+€.3+€(1 + E) = (sinhtb‘l(l + E))(-a"'f)':l"'fj — ('_]_ + E) Ite

We then obtain from (2.5) and (2.7) that
I+e av J‘ Z ‘v( )F‘B"‘Ed
= u; X
g RI+E 7 e

J|-32+E Z |?9(uj):
J

F+e [ . 34e 1+¢
+(2+oeen) f Z [V;(1+ 8| Korease([——) a1 +6).  (28)
0 & O2+e)

To proceed, we next find an estimate for kK3, 34 from below. In fact, we have the following results.
Lemma 2.1 (see [34]). It holds

2+€

Kprenre(l+€) = G%) (1+€)2*, e >0, (2.9)
forany e = 0ife = 0,and forany e = 1 if € = 0.
Proof. It 1s enough to prove that
(2+€)

Friense(l+€) = Rapenie(P(1+€)) - (m) (P(1+e)* =20 ez-1 (2.10)
forany € = 0 if € = 0, and forany € = 1 if € = 0.
If e = 0, we have ®(1 + €) = 2(cosh€), and

2+

= —Lm(l +€) =0
2(2+¢) =

@1+ €)? 2
Fazee(l1+€) = f—'— ®(1+€) —®(1+¢€)
forany e = —1ife = 0.
Suppose that € = 0. Differentiating the function F,, .5, . We get

Fier (18 = (24 smh(l + ) leosh(l + ) — (2 + &) (sinh(1 + e P Fee(l + E}_ﬂ'-!-_(:-‘e] -

- (%J o (2+e)(3+ e)(sink(l + entea(l 4 )i+

P P . . (2+e)
= (2+esimh(1 + E))2+E[ (sinh(1 4 D@ C+elcosn(] + €) —+(1 4+ &) 5 - @%) 1+ E)“‘)
= {2+ smh(l + E}JH*Ga_ﬂ_E[l + e
We continue differentiating the function G4, .-, . to obtain
Glrcanc(l+ €)= ((2+6)? = (3+e)(sinh(l + €)) 225 (cash(1 + €))% + (sink(1 + ey (+aiZ+e)
3 &) . s 1+¢
=2+ = (3+e(sinh(l + €))2 (1 + £) T (%) (1+e&)(3 +eysinh(1 + eny2tes(l + €)=

Replacing (cosh(1 + €))% by 1 + (sinh(1 + €))?, we simplify the expression of G5, ,,. as
Ghtensell + €)= (1+)(2+e)(sinh(1 + &)+ 4 (12 + €)2 — (3 + €))(sinh(1 + g))i#eF-4-s

—((2+€)* = (3 + ) (sinh(1 + &))? (1 + E)Lﬁi_'z - (%) (1+e)(3 + e)sinhil + ) ee(l + €)*

= (1+e)2+ eysinh(l + e))2t+e ((’siuh(l + gyyEEte (%) 1+ E)E)

. 2tat
+((2+ 6% — (3 +ey)(sinh(1 + E}}”e( (sinh(l + )@ 2379 _ 2] + £33 )

It 1s easy to see that
1+e

B(l+e)=(3+¢) f (sinh(1 + €))2*¢d(1 + €)

i}
1+e

<(3+ e)j (sinh(1 + €))2*¢cosh(1 + €)d(1 + €) = (sinh(1 + €))%, € = 0,
i}

and
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1+s

D(1+e)= (3+E}f (sinh(1 +€))2*%d(1 + €)

1+e

< (3+¢€) J- (sinh(1 + €))** cosh(1 + €)d(1 + €)
o

_ite inh(1+€))* =0
—2+E(31111{_ €))7, e= 0.

Plugging these previous estimates into the expression of Gg, . 5. ., we get that Gg, 5. .(1 + €) > 0 for any
€ = 0. This implies Gyycoie(1 +€) > Gai004.(0) = 0 for any € = 0, or equivalently Fi, ... (1+€) >
0 for any € = 0. Consequently, F3,.54.(1 + €) > F(0) = 0 for any € = 0. This completes our proof.

It is remarkable that the pointwise estimate (2.9) is sharp in (1 + €). Indeed, if ¢ = —1and 0 < € < 1 then
2(3+¢)

we next show that a reversed

a reversed estimate of (2.9) holds. Suppose that € = 0 and 1+ ¢ <

estimate of (2.9) holds for (1 + €) large enough. Indeed, suppose that € = 0, we have
1+e

. w32
d(14+e)=(4+ 5)23“"] (e(t+e) — g=(1+e)) +Ed(l +€)
0
3—-¢ - 2
_BFO27 miaasa (BT aee o(e=20+9)) )
3+e 1+e
as € — 00, Consequently
2 (+e)(3+e) .
) : ; - —€ \ 12
(I)(J_ + E)El_"'i.ﬁj _ (4 + E)Z 4+e e%‘ii‘_(l_'_s] 1_ (3 + E) 9_2(1+£} N O{.e_2(1+£:|:] i
3+¢ (4+¢) -
and
. gy (1+€) .
d(1+ E)1+E — (%) p(1+€)2(3+e) (1 - (3+ E:)ze—2(1+e] + O(e—zcne)))

as € — o0, Note that
{jSillh{j'l + E)){l+ej{3—ej — 2{1+E)(—3—E:I€{1+E:]2(3+E) (1 _ {1 + E)[jg + Ej}e_z[H’E:‘ T+ 0(6—2[1—53))
(sinh(1 + €))(1+9E+e) — p(1+e)(=3-) o (1+e)*(3+e) (l —(1+e)(3+e)e2*9) ¢ o(e‘z(l'fz']),
as € — 0. Therefore

- 1+e)(3+e) f
Furarsel+6) = (sinh(1 + )09+ —a(1 + &) Fe - (32°

(1+€)
) B(1+ eyt

Ad+e
f [1+e)(3+2)
: AN o] ey Lt (34
= D(1+e)(-3—€) g (14 (3+e)-2(1+€) (2(3 +e)— ([4' -ge-’)i ) € E‘I'1+E"leqf(ssl n 0(1)>

2(4+€)
we then have
[

(1+e)(3+¢)
(=

ase v oo Ifl+e< < 2,and Fyic1:.(1+€) < 0 for € = 0 large enough.

Suppose € = 0, we have

3 .
®(1+¢€)= g(ez{l‘f-’ —e2+e) —4(1 + E))

3 . :
= ge2{1+.L=) (1 —4(1+ E)e—Q[l—E_J 4 O((l + E:-)3—2(1+¢=]))1

as € — @, Hence

1+e
P(1+e)t" = 81+692‘1+">E (1 — 4(1 + €)%e7201%9) 4 (e 201+9)(1 4 E:)))’
and
2(1+€) ,
20%e)  (3\T 3 40z 8(1+e \
*dre s = (§) ¢ (1 _{'3—)8_2““’ +o((1+ 6)6‘2(“5])),

as € — oo, Evidently,
(sinh(1 + €))20+9) = 27204920+ (1 + o((1 + £)e~21+9)),

as € — co. Consequently, we get
2(1+€) .
2(1+e)*

1 A . . 3 3 P ) )
Fi:e(l+6) = Fe’z(e-’(“‘-’(l +e)| 4(1+e) —4ltE (ﬁ) (1+4+e)1* ™93 4o(1) ),

as € = o, Since € < 0, then we have € = 0 and hence F5,_.(1 + €) < 0 for € = 0 large enough.
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Combining (2.9) and (2.8) together, we arrive
P 3—e g13-€
Vo (u; dv = f Z V(u; dx
J-[Eahsz ‘ ‘g( f)glg RETE b | ( ‘JQ
J J

+(2+ eﬁ}“f Z v/ (1 + O 1+ e d(1 + 6. (2.11)

Making the chancre of fu11ct1on wi(l+e)=v(1+e)(1+ E)a ¢ or equivalently v;(1+€) =w;(1+

€)(1 + €) =-¢ Differentiating the function v;, we have

vi(l+e)=wj(1+e)(1+ E)S—if —3 i ij(l +e)(1+ E)_ﬁ_l
We can readily check thatif a — b < 0,b = 0 and € = 0 then
|f1 _ EJ|2+E = |a|2+e + |b|2—E _ (2 + E)Gbl+€
Since v < 0, applying the previous inequality we get
J'_wz [yt + (1 ervdri 4oy = |'wz 1% 1L+ il 6 + o
—| Z wjct + ) et +eyeedrl 2 ¢ D+

here we use integration by parts. Plugging this esnmare mnto (2.11) we ger

".133+EZ |‘G’ (“) ‘ av >fa+ Z ‘\? -+€ i

{2 + E)Z_E = 2+ Z+s e
+W£ Zu.ﬂ AL+ 6 +(2+€) foz

Since ¥; = U; is non-increasing rearrangement function of (1 )G, then

1
f Z v, d(1 + €) = f Z |w)s [ d (2.13)

Plugging (2.13) into (2.12), we obtain the main result as follows,
Theorem 2.2 (see [34]). Lete = 0ife =1land 2 + € = 2{3 < if € = 0. It holds

fone 22 [ v - fWZ e

av
zf Z IV (uy)E]* . (2.14)
|E3+F

Theorem 2.2 was proved in [29] in the case € = 1 as a key to establish several improved Moser-Trudinger
type inequalities on the hyperbolic space.

3. Proof of Theorems 1.1 and 1.2

We provide the proof of Theorem 1.1 and Theorem 1.2. Qur proof uses Theorem 2.2 above and the known
inequalities on the Euclidean spaces such as the sharp Sobolev, Gagliardo-Nirenberg and Morrey-Sobolev
inequalities. We recall them here. The sharp Sobolev inequality on the Euclidean space was independently
proved by [1, 30] and has the form

(L+ et d(l+e). (2.12)

vl + €)1+ e):+s)

S(1+26,1+e) 1l Z Ul aee (1”2‘?'_" Z Vi llpse(gasee), U € CE(RY+2), (3.1)
fore > 0,(1+¢) w and the sharp constant S(1 + 2¢,1 + €) is given by
1 -1
1+2e

T(1 + 2¢)

S(1426,14+6€) =[(142e)?

r (11_:—2:) (2{ L+e)— 1-:_2:) O1+26)

where ['(x) = [ :D (1+€)*Le= 194 (1 + €),x > 0 denotes the usual Gamma function. The family of

(e}
extremal functions is determined uniquely by the function 1;(x) = (1 + |x|i:) e up to a translation,
dilatation and multiplying by constant.
Let € >0 and (1 —€) € (0 s 2€] € = 0. The sharp Gagliardo-Nirenberg inequalities in R¥2¢ was
established by [14, 15] and has the forms:
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(i) fore > 0,
I Z Uy | arer? gavaey = GN(1+26,1+€,1+¢)

1 - ™
I Z V’L{; ||Lf+Es{Rl+2£']|| Uy ||L:E_1+E:I:E)+L{Rl+26‘:|-' U € CSD(.]P@HEE)» (3-2)

(1+26)(e)
(1+e)((1+2e)—((1+e12-))(e))

with (1+¢€) = the sharp constant GN(1 + 26,1 + €,1 + €) is given by

Ate
vy T+e

+ l
._ri.L—s((1+e;.e -0 +e:',]r|:.’:1+26)1+€ +1) )
with g =(1+e€)e+ 1,6 =(1+2e)(1+¢e)— (1+€)e?+ 1, and an extremal functions is given the
1

foe+1 '1“‘{‘ (1+eie+1 yite & )J-(l( [(‘ elet m]rl

N1+ 261 +e148)=(———=) 2
1+ enw/ Il+2e:{('.—e)s—s)}l’,] (a1

1+€, —7
function 14;(x) = (1 + |’f|T) "
(i1) fore < 1,
I z 1 ||L(1+g)(s)+L{Rl+zg]‘_i GN(1+26,1+€1+€)

znv*unlffewnun 2 rea WECO (R, (3.3)

l| |:l E||:Rl2||

(1+2e)(—€)

with (1+¢€) = ((1+e)2—e)((1+2e)—(1+e)e)

the sharp constant GN(1 + 2¢,1 + €, 1 + €) is given by

Lae
ey v -..' £ & +2¢ Y T
N _|1_ —ifl+e) l=+1| (eI aetl) i (4 + )T | Nietre—aeae —-;+ ”'{_9_“' |
NG+ T \ dres+iy) |\ T
l+en S\l +2ex l+ee+ 1) 4 / | 14 3E +1] — _E] + |{ +126) _}

with ((1+¢€)e+1)=(1+ E){E) +1,6 =(1+ 26) 1+€e)—((1+e)e+1)(e) > 0 and an exnemal

functions is given the function u;(x) = (1 - |*c| € ) , where a, = max{a, 0} denotes the positive part of
+

a number a.
See [13] for a completely different proof of the sharp Sobolev inequality (3.1) and the sharp Gagliardo-
Nirenberg inequality (3.2) and (3.3) by using the mass transportation method.
Finally, we recall the sharp Morrey-Sobolev inequality on R**“¢. Given (1 + €) > (1 + 2¢), then for any
function u; € Cg°(R'*29), the following inequality holds

—€
I Z U ||Loo([.31.+ze)‘_:: bl+zt—,1_fz Vol{jsupp uj)(l"'z'f.]‘(l—f.:' II V‘ILJ,- ||LJ_+E(RJ.+ZE)J (3.4)
here Vol denotes the Lebesgue measure of any measurable subset of R'*?¢, the sharp constant by 5., i
given by
1 €
- Y5 1926(_1)ite
bl—ZE.1+E Eﬂ'{l_'_z;( 1.)1+€’

e
and an extremal function is given by u;(x) = (1 - |J:|?) . For more about this inequality. see [31].
+

Proof of Theorem 1.1 (see [34]). Suppose u; is a function on W**<(H**%). Let us define two new

functions {'u-); and (u-)j= by (2.1) and (2.2) 1‘cspectively Theorem 2.2 1mplies

+€ ' Z+e . f
Z 17,50 —(ZH Z 1y sy = [, 7%

L2+E{HL+"E) i L2+E{Rl+2-5:|

2(3+€]
forany € = 0ife = 1, and forany 2 + € = ———if € = 0. Note that ||(ILJ)-9“LZ+E{|]-|]3+E:| =l t; Il 2+(ggase).

2+e

»

Hence, applying Pélya-Szegé prineiple (2.4) and equality (2.3), we get

+€

24 24e
Z 1l ~(30) D N 1B HZ (y Jg (35)
L2+E(——3+EJ ' L2+E(22+£)
Suppose that € = 0 and —— 2c4+€] < 2+ € <4 + €. Using the sharp Sobolev inequality (3.1) for (u;)§ and
using the equality ||(?,LJ)E,,||L(2JrFJ (5++6) =l U Il (21e(me+e), We obtain the desired inequality (1.1).
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Suppose u; € Wh2*<(H**) such that the equality in (1.1) holds for u;. Let v; = u; the decreasing

rearrangement function of U; on [0, 20), and define (1) and (1;)Z by (2.1) and (2.2) respectively. Since

the equality in (1.1) holds for u;, we must have ||V, ”L”G(I{"”] = |V (u;)G

. 1 wil™ - Z 202y = 2 IRy

+5EH¢+£)
From the proof of Theorem 2.2, we see that the second condition implies

IS e

Thus, we have v;(1 + €) = ¢(1 + €) =2#¢ for some constant ¢ € R. However, f 2 1+ e)¥ed(1+
€) < oo which fomes ¢ = 0. This finishes our proof of Theorem 1.1.

Proof of Theorem 1.2 (see [34]). The proof of Theorem 1.2 is similar with the one of Theorem 1.1. Suppose
ﬁ <2(1+€)<4+¢e By (3.5), we can apply the sharp Gagliardo-Nirenberg

mequalities (3.2) 'uld (3.3) for function (1) to derive the desired inequalities (1.6) and (1.7) as done for
the inequality (1.1), respectively.

Suppose that € = 0. We note that (3.5) still holds under this condition. We now can apply the sharp Morrey-
Sobolev inequality (3.4) for (1) to yield the inequality (1.8) with remark that [|(u;) ]l =l

LHE(EHHE) and

(vj{j-l +e)(1+ Ej)ﬁ)

(L4 €)*<d(1+¢€) = 0.

that € = 0 and

LDO(BZ+E::'
U | oo(g=+e) and Vol(supp(u;)%) = V(supp u;).
We conclude by a remark in the case € — 17 of the inequality (1.6). Taking the limit as done m [15], we
obtain the following Poincaré-Sobolev logarithmic inequality in H*® which is an extension of the optimal
Fuclidean L2(**9)_.Sobolev logarithmic inequality [14. 15] to the hyperbolic spaces. Suppose u; €
WL2O+€) (H2+2) with || Uy ||L2:_1+£:-{|H]2+5)= 1, 1t holds

J‘ Z |uj|2(1+€)ln(lujlz[l—e])dv

Ez+e

_ 2+ 2a+e) 1+ 209 \

=21+ ( e E’f Z (lV 4l (2-1-5) [ v (36)

forany € = 0 ’mdM = 2(1+¢) < 4+ € with the constant L, . (14 15 given by
2(1+€)
4+ € d+e
2(1+€) (1+26\%% r(5—+1)
Lyterpire = 21 e ( - ) n

1+ 2¢
T({4+ )2(1+ )-I— l)
4. Other Sobolev Inequalities on the Hyperbolic Spaces
We establish several Sobolev inequalities on the hyperbolic spaces H**¢. These inequalities generalize the
results of [27] on H? to higher dimensional spaces. The main results read as follows.
Theorem 4.1 (see [34]). Let 0 < € < . Then for any function u; € W'**(H**¢), the following
inequalities holds.
(1) If € = 0 then

2+€

1+€
2+€
(1+e) U Z |1ej|dv) +5(2 + € 1) U Z |uj|mdl/)
Ba+€ & Ea+e ’

= ngmz |vguj|gdv) +E. (4.1)

+2¢ €

” asz9are) \E
+5(1+ 26,1+ )t Z [ e dV
Eltz€e -

(i1) If € = 0 then

U Z I |1+de)
1 + E Bltze
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1+2¢

14e 1+¢
g([ Z |Vguj|g dv) . (42)
|El+2£ -

(111) If 0 < € < oo then

1+€
sup |w;(x)| = C(1+ 26,1 +¢€) (j Z lvg“;|1+EdV) , (43)
|El+2£

]BJ.+ZF
with
1 ( ) r)\
C(1+261+¢€) = (22(1+26)0420) € 73

r(3)

Furthermore, the equality holds in (4.3) if u; (x) = v; (V(BS(O, P (3)))) with
- . . 14e —2(1+€)
vi(l+e)= cf sinh @~ d(1+¢€). (4.4)
1+e O(142¢)

Obviously. (a + b)**€ < a®*9 + p+9) forany 0 < € < 1and @, b = 0. As a consequence, the inequality
(4.2) 1s weaker than the inequality (1.1). However.the inequality (4.2) is valid for any € = 0 and € = 0.
Proof. The part (i) follows from part (ii) by letting € | 0. We next prove part (i1). Let u; € WhI*=(H1*+2),
we define two new functions (u;)§ and (1;)§ by (2.1) and (2.2) respectively. Denote v; = u; and recall the
funetion @ from (2.6). By (2.7), we have
" " - 1+4¢ (1+e1(2e)
f Z Vo |- av = ((1+26)001520)) Ej z |vj(1 + )" sinh - n( )) d(l+e)
Bieze ’ g £ ’

Ti142¢)

14e

1ye [® ) 1 (L+2e)(2e)\ 1426
= ((1+ 26)00220)) z @ + el smhqa J( d(l+€)
o 14+2&)

Tl1426)

1te
1te 1 +e (14 T\ .
= {(1 + ZE)G(L+ZEJJ j Z |?—° 1+ 5)| k1+2£1+25 ) + ( ) d(l1+¢€)

Ol1+z€)

Fryioe)

e
14e [ , 1re 26 €71 4\ MEE 14\ 5
= ((1+26)301420)) _L z [vj(1+e)| ((1 < 25) (6.-1“5. + d(l +¢),

here we use Lemma 2.1 to bound Ky, 4. 1,2, from below. It is easy to see that for 0 < € < 1, it holds
(a+ )™= sup (1 —e)a*** + (e)~"b'*). (4.5)

O=<le<<1
Consequently, forany 0 < € < 1, we get

J’ z bt av z:l—s.'ﬂ?&[ze]lo-sz |v'(1+e~|l".1+s‘!-n-zcl+s.—(s.'ﬂ’1’=’r([1—2e]:(., Jf Z p 1+ s.| |1+E) o a(1+s

= ;1-5.'—|’1'-’—'2‘,L ,j z [5y(1 + €[ dCL +€) + ) ‘—l—rz L[ b,

= (1— et le{mn ________ I 2e L 21[1. M

here we use the Hardy mequality in [0, OO) f01 the first mcquahty. and the sharp Sobolev inequality for the
second inequality. Taking the supremum over 0 < e <1 and using again (4.5) and the fact ||
Uy Dpeuvs) = NG H areanaey a0 N1 Drer (isae)= NSl symiveey with (1 +€)" =

1+2e)(1+e) .
¢, we obtain
€

LACHAY ey =
[N ZRARED)

which nnphcs (4.2) by the Poly’t -Szegd principle on H*2E,
We next prove part (iii). Denote

2e
1+
l(1+¢e)= [sinh db‘l( £ )] , €= -1,

J(1+2¢)

1+e
1+2e T+zie

€
1+2 P 1+2
( ) ” 'l‘J.' ||L1+5€(H1+'zs\l+ 5(1 + 26. 1+ E)_L+Ze || h'.}- || '_1_5:5‘.“.5‘
! L €

1+e

(3L+2£J

2E
where @ is defined by (2.6). It is easy to check that [{(1 +¢) ~ (1 + ¢€)r#2zeas € = Oand [(1 +¢) ~ (1 +
€) as € — oo,
Consequently, we get
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o 1+e
J‘ [(1+¢€) €d(l+e)<oo
0
Moreover. making the change (1+€) = 0(1220)®(1 — €) with d(1+ €) = (1 + 2€)0(142.(sinh(1 —
€))%, we have

(1+&)(28)

d(l+e)=(1+ 25)%“5;.[ (sinh(1 - €)= d(1 —¢)
[+

o & oo 1
[ 1+ ey tdl+e :[ [sin11CD‘L[a+E)
] 0

(1+2e)
. eM(—1)I(1)
=(1+ BEJGKL—:azEW

Using the identity I'(x)T (.1: + é) = 2172%1(2x), we get

x- 1+ 2T (5)T(2)
[ 1a+o T aa+e = 1+ 200000277
Q

Denote v; = u;,

vi(l+e)= J- Z vi(l1+e)d(l+e) = J‘ Z v (1+e)l(1+e)l(l+e)td(l+e).

1+ ™ 1+e

we have lim_.. 2, v;(1 + €) = 0, and hence

Thank to Hélder inequalitly. we get

1

sup [uy(x)| = Vj(0) < U Z il + e Il + erredcl + E}) (J Kl+e)edl+ Ej)
Vo S o

-
T+e

weHivze

1

& —_

1 14 ATES . sase (U500, ¢ . e
ZW(L I(l+e = d<.1+E.>’) (‘[(1—25.'5:.4&],'” J; Z i1+ &) "l + ey d[1+e)]

=C(1+2e1+¢) 2 ||v(uj);||u,‘mm].
here the second equality comes from (2.7) and (4.6). This proves (4.3).
To check the sharpness of C(1 + 2¢,1 + €), we see that if 1;(x) = v; (V(Bg({],p{:x)))) with v; defined
by (4.4). then u; = v;. Hence sup,cgi+z¢|1;(x)| = v;(0). Moreover, for such a choice of function v}, we

have equality in the Hélder inequality above. This proves the sharpness of €(1 + 2¢, 1 + €) and the equality

holds for this function U
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