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ABSTRACT: The general second-order elliptic eigenvalue problem is of great significance and is closely
related to various fields such as fluid mechanics, quantum mechanics, and structural engineering analysis.
Classical finite element methods have been successfully applied to solve such problems, but in some cases,
particularly when dealing with complex boundary conditions and non-homogeneous media, the efficiency and
accuracy of traditional methods may not meet the requirements. To improve both the solution accuracy, the
mixed finite element method has been proposed and has achieved significant results in solving second order
eigenvalue problems. The mixed finite element method introduces auxiliary variables (which generally also
have practical physical significance), allowing for a reduction in the order of high-order differential equations,
thereby relaxing the smoothness requirements of the finite element space. This article investigates the mixed
finite element method for a general second-order elliptic eigenvalue problem and provides a-priori error
estimates.
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. INTRODUCTION

The second-order eigenvalue problem is widely applied in various fields such as vibration analysis,
material mechanics, acoustics, and quantum mechanics. In the classical finite element method, eigenvalue
problems are typically solved by discretizing the differential operators being approximated. However, these
methods often rely on the direct solution of higher-order differential equations, making the treatment of
boundary conditions, material inhomogeneity, and complex geometries relatively challenging. Especially for
high-frequency problems with irregular boundaries, traditional methods may struggle to meet the demands of
both computational efficiency and accuracy.

As an advanced branch of the finite element method, the mixed finite element method was initially
established by Babuska and Brezzi in the early 1970s, who developed the general theory of the method [1, 2]. In
the early 1980s, Falk and Osborn proposed an improved version of the method [3]. [4,5,6,7]provides extensive
research on mixed problems, presenting numerous mixed finite element formulations, and further investigates
the theoretical development and practical applications of the mixed finite element method.

There are several works for second order elliptic eigenvalue problems by the mixed formulation and
their numerical methods such as Babuska and Osborn [8,9], Mercier, Osborn, Rappaz, and Raviart [11], etc.
Based on the general theory of compact operators [10], Osborn [12], Mercier, Osborn, Rappaz, and Raviart [11]
give abstract analysis for the eigenpair approximations by mixed/hybrid finite element methods. [13]discusses
the L*(Q2) norm and L™ norm estimates of eigenvalues and eigenfunctions for a more general class of eigenvalue

problems. [14] propose a method to improve the convergence rate of the lowest order Raviart—Thomas mixed
finite element approximations for the second order elliptic eigenvalue problem. [15] proposes a non-standard
mixed finite element method for the Dirichlet boundary value problem of second-order elliptic equations.

This paper draws on the ideas from the aforementioned literature to study the a priori error estimation
of the mixed finite element method combined with the quadratic finite element method for solving the general
second-order elliptic eigenvalue problem. The mixed finite element method, combined with the quadratic
method, is an effective numerical approach for solving second-order elliptic eigenvalue problems. By enhancing
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the accuracy and stability of the solution, it can be widely applied to elliptic equation problems with complex
boundaries and physical properties, particularly in cases involving high gradients and curvatures, where it
demonstrates its advantages. This method has significant practical value in engineering mechanics, physics, and
other disciplines that require the solution of partial differential equations.

In the entire paper, denotes a general constant that is independent of the mesh size but sometimes
depend on the eigenvalues of the problem (1).

Il. BASIC THEORETICAL PREPARATION
Let L(Q) be a standard Lebesgue space, where 1<q<o,Qc R?* The corresponding norm is

expressed by 0[], @ In this paper, the norm of L"(Q) is represented by [-[], .We also use H®(Q2) to express

the standard Hilbert Sobolev space of real functions defined at Q — R?* with index s> 0and the corresponding
norm and semi-norm are U-[} ,and |-|, , .Let 2 be the bounded open polygon region of R? ,and let 6Q represent
its boundary. In this paper, we are concerned with the following second order elliptic eigenvalue problem:
{—V (K(x,y) Vp)=4p, inQ, @
p=0, on 0Q,
where K = (a;),,, is a symmetric positive definite matrix with a; e W"*(Q) for 1<i, j <2, K™ =(a;),,, is also

a symmetric positive definite matrix, Q = R*is a bounded domain with Lipschitz boundary 6Q , V and
V - denote the gradient and divergence operators.

I1l.  MIXEDFINITEELEMENT METHOD
We define a new vector-valued function p = KVp.

Then (1) can be transformed into the following equivalent formulation

K'n-vp=0, inQ,

-V-u=A1p, o0onoQ, 2

p=0, on oQ.
Next, define the spaces

W=1*(Q),G=L(Q),H=[L(QF,
V =H(div,Q) = {n e[ Q] : V-ne X (Q)},

equipped with the norm

Du[ﬁ(div,m:(ﬂuﬂf +DV'”Q§) .

Then, the weak form for the problem (1) can be defined as follows:
Find (1,p, p) e RxVxW , (n, p) = (0,0), such that

{a(u,q)) -b(e,p)=0, VeeV,
b(n,v) = A(p,v), Vv eW,
where a(-,-), b(-,-) are bilinear forms defined by

a(m)=[ p-Kodx, ble, p)=-[ dive-pdx, (pv)= pvdx.
Clearly, the bilinear forms a(,-) is symmetric and the bilinear forms defined above have the following
characteristics:

®)

lauw| ™ CyTpiInt,, (4)
la(m, @)~ C,0p 0o, ®)
[b(e, p)| "~ C,0eL,0pL, . (6)

where C, (i = 0,1, 2) represents a constant independent of h .
For the eigenvalue 1, there exists the following Rayleigh quotient expression
5 —a(nm) +2b(u p)
(p. p)
Form [9], we know eigenvalue problem (3) has an eigenvalue sequence {/11.} :

0<A <A <<A < limi =oo,

k—o0
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and the associated eigenfunctions
(P (g, P2 (s B+
where (p;, p;)=3;.
Theorem 1. Let (4, p) be an eigenpair of equation (1), p=KVp, then (4,p, p) satisfies equation (3);
if (1,p, p) satisfies equation (3), then (4, p) is an eigenpair of equation (1), and p=KVp.

Proof. From the derivation above, the first part of the theorem has been established. Now we will prove the
second part of the theorem.

Let (4,n, p) satisfy equation (3), and consider the auxiliary problem

{—V(K(x, y) Vp)=4p, inQ, @
p=0, on oQ.
Let = KV}, then the mixed variational form of (7) is:
Find (1,1, p) e RxV xW , such that
{a(ﬁ.q)) -b(p,p)=0, VeeV, ®
b(i,v) = A(p,v), Vv eW.
From the subtraction of (3) and (8), we get: find (n—f, p— p) € VxW , such that
{a(u—ﬁ,tp)—b(tp, p-p) =0, VoeV, ©
b(n-fi,v) =0, vveW.

Take form (9), let g =p—fi,v=p—p, then
{a(u—ﬁ,u—ﬁ)—b(u—ﬁ, p-p)=0
b(p—p, p—p)=0
Add the above two equations, and we get a(p—fi,p—ft) =0, this illustrates p=1fi.
Substitute p = jtinto the first equation of (9) , and we get b(e, p—p) =0, i.e J'Q(p —P)-divedx=0,Vo e V.
Take o satisfied Aw=p—p,and let¢ =Vw, then by divo = p— p, pushed p=p.
This proves (4, p) is an eigenpair of equation (1), andp=KVp.
We complete the proof.
Now, let’s define the mixed finite element approximations of the problem (3). Let 3, be a partition of

Q into finite elements(triangles),which is regular and has a mesh size h .Associated with the partition 5, ,we
define the finite dimensional spaces W, and V, (see[4]), where for any «k € T, , P, (i)(n > 0) denotes the spaces

of polynomial of degree not greater than non « .
Define

Vi :{qh eVNC’(Q)?:q, | .eP,(x) Ve Sh} ,
for each e 3, , and the barycentric coordinates 4 .1,4,0n «, define

B=(span{A4 A4, ik e 5y, j=123})’,
and
V,=V-®B.
Apparently, we have Vy c V, c V.
Afterward, define
W, ={v, € Hy(Q) NC*(Q):V, | e P,(x), Vk € T, } .
Apparently, we have W, cW .

With the discrete spaces defined above, the mixed finite element approximation of (3) is given by:
Find (4., p,) € RxV, xW,, (n,, p,) = (0,0) , such that
{a(uh 9)-b(e, p,)=0, VeeV,

b(llh V) = ;ih(ph V), wweW,. (10)

For the eigenvalue 4, , there exists the following Rayleigh quotient expression
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_ —a(w,, 1) +2b(w,, py)
SR TN

Form [9] the eigenvalue problem (10) has eigenvalues

Ogﬂmh S"'ﬂk,h S"'SlN,hl

and the corresponding eigenfunctions
(ul,h' pl,h)’(uz,h' pZ,h)""(”k,h' pk,h)"'(uN,h! pN,h) )
1<i, j<N,N=dimW, .
For any f € L*(Q), consider the boundary value problem corresponding to (3) and its mixed finite element
approximation: find (6,u) € VxW, (6,u) = (0,0) , such that
a(c,9)-b(p,u)=0, VeeV,
{b(c,v):(f,v), YveW.
find (6,,u,) € V, xW,, (s, u,) = (0,0), such that
{a(chltp)—b(tpyuh) =0, VgeV,,
b(e,,v) =(f,v), wweW,.

where (pi,h1 pj,h) =0

ij?

(11

(12)

V. OPERATOR FORM AND ITS PROPERTIES
Forany f eL?*(Q), assume that (11) has a unique solution (e,u) , and since V, c V,W, cW , itis
known that (12) has a unique solution (s, ,u, ) .Thus, a linear bounded operator can be defined
T:G—->WcG,Tf =u. T,:G->W, cGT,f =u,.
S:G—>VcH,Sf =e. S,:G—>V, cH,S, f =0,
Thus, the eigenvalue problems (3) and (10) have equivalent operator forms, respectively.
{/ﬂp =p
(13)
S(Ap)=n
{/IhTh Pn = Py
Sy (4 py) =1,
Therefore, solving for the eigenpair of (3) for (4,pn, p) can be reduced to solving for the eigenpair of the

(14)

operator T for ((t=A4"),p) and p=S(Ap); similarly, solving for the eigenpair of (10) for (4, ,p,, p,) can be
reduced to solving for the eigenpair of the operator T, for ((t, =4,7), p,) and u, =S, (4, p,) -

For the linear bounded operators T and S defined in above, for any f € L*(Q) , the following relations

hold:
{a(Sf ,0)—b(e,Tf)=0, VeeV, (15)
b(Sf,v) =(f,v), weW.
For this elliptic problem, the following regularity estimate holds
OTf O, <COf 0.

Where% <, <1, depends on the shape of the domain.

For the discrete version of the linear bounded operators T, and S, defined in above, for any f e L*(Q),
the following relations hold:
{a(Shf,q))—b((p,Th f)=0, VoeV,, (16)
b(s, f,v)=(f,v), vveW.
Lemma 1. (Lemma 1 in [13]) T and T, are self-adjoint operators.
Proof. For any g € L*(Q), lete =Sg,u =Tg , similarly, we have

a(Sg,9)-b(e,Tg) =0, VeeV, an
b(Sg,v) =(g,v), v eW.

By taking ¢ = Sg,v =Tg in (15), we get
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{a(Sf,Sg)—b(Sg.Tf) =0 (18)
b(Sf,Tg) = (f,Tg)
By taking ¢ = Sf,v=Tf in (17), we get
{a(Sg,Sf)—b(Sf,Tg) =0 (19)
b(Sg,Tf) =(g,Tf)

From the symmetry of a(;,-), (18) and (19) , we can obtain
Thus, T is self-adjoint; similarly, it can be proven that T, is self-adjoint.

V. APRIORI ERRORESTIMATE
5.1 A priori error estimate for eigenfunctions
Lemma 2. For any ¢, € z,, there exists a constant « independent of h, such that the following inequality holds:

a(e,,9,) %o Do, [f,, Vo, €Z,, (20)
where Z, ={¢, €V, :b(e,,v,) =0,V eW, }
Proof. The property (20) is obvious.

Lemma 3. (Lemma 2.27 in [4]) For any @ € V and v € H;(Q) , both

(dive,v) = (@, VV), (21)
where (-,-) represents the inner product of L*()°.
Proof. The property (21) can be proven using the divergence theorem.

Corollary 1. Forany uc H*(Q) , we have

lu—pul”™ h'|ul,,1<t<2, (22)
where p, : H*(Q) > W, is the L*-projection operator.
Proof. see [4] .

Let Q,:V — V. be the L* -projection, such that for any ¢ € V , it holds that

(9-Q.9,9,)=0,Vo, thL, (23)
then
Ue-QoL)" hkl(l’lk! (24)
where ¢ e[H*(Q)]*,0<k<2.

3
Define the operator r, 1V —V,, such that forany ¢ €V, itholds that e | =Q,e| +2a;44LA44;,Vke T,
j=1

where Q, is defined by (23), and «a; € R?(j =1,2,3) is an undetermined constant vector.
Assume that there exists an operator r, : V — V, , such that for any ¢ €V , it holds that
b(e—r,0,v,) =0,V eW,, (25)

3
for any v, eW,, since Vv, |_is a first-degree polynomial vector, without loss of generality, let Vv, | =284,
i=1

where £ (i =1,2,3) is a constant vector. Then, by Lemma 3, we have
b(e—r.9,v,) =—(div(e - 1,9),v,)
=(¢-1,9,VV,)
ZhIK(‘P —1,@)VV,dx

Kel

5 54 [ 4(0-ne)x

KkeJyi=1

To make equation (25) hold, it is sufficient to J A(p—-re)dx=0,i=123VkeJ,.

From the definition of r, , it is enough to choose «;, such that
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i:la; [ AdoAaddidx = [ 4, (0-Que)dx,i =123, (26)

upon calculation, the determinant of the coefficient matrix of the system (26) is non-zero, which implies that the
system (26) has a unique solution «; (j =1,2,3) , ensuring that r, satisfies equation (25).

Lemma 4. Existence of the operator r, : V — V, , such that for any ¢ €V , it holds that
b(e—r,v,) =0y, eW,,
when ¢ [H*(Q))?,0<k <2 ,we have
D(P_rh(PQ),QA h* lo], - (27)

Proof. When solving for «;(j =1,2,3) using the Grammer rule, from Section 1.4 of [4], specifically equations
(1.4.9), (1.4.32), and Lemma 1.20-Lemma 1.22, we have

Ua; [T h’lD(p—Qh(pQ),K,j:l,Z,S. (28)
From the definition of r, ,(28), Hilder inequality , we have

3
[(P_rh(pEO,KA [(p_Qh(P EO,K +jZ::1Eaj [[212’2131] EO,K

) [ (P - Qh(p EO,K +h_1 E (p - Qh(p IjO,K I:rnes(K):lll2
"L Q- th) EO,K
From (24) we can obtain

12
U(P_rh(PLlJ,Q:(K;U(P_rh(PL&K) "Ue-Qel " h lol,

where ¢ e[H*(Q))?,0<k <2.

Theorem 2. Assume that there exists an operator r, : V — V, , such that for any ¢ €V, it holds that
ble—re.v,) =0,Vv, eW,,
moreover, (o,u) € VxW is the solution to problem (11), and (s,,u,) € V, xW, is the solution to problem (12).
Then the following error estimate holds:
Oo-o,[," De—rol} +|u—v, |, vV, eW, "H (Q), (29)
Ou-u, " ojff(mﬁ[b(x“ —hhig,Uu—Vv,)+a(6—o,,hk, —L,) (30)
+b(e -0y, Yy —1,)], YV, 7, €W,

Where for any d e L*(Q) , the function pairs are defined in (A,,Y,) € Vx[H:(Q) nH""(Q)] and satisfies

a(;"d ’q)) - b((l), yd) = 0, V(P S V, (31)
b(h,,v) =(d,V), Vv eW.
and we know a priori estimate:
kg O, +0ys " DA (32)

Where% <r <2, depends on the shape of the domain.

Proof. From equations (11) and (12), by subtracting the corresponding terms, we obtain the error equation
a(c—o,,9)-bu-u,,9)=0, VoeV,,
{b(v,c—ch):O, v eW,.

From the error equation (33), b(e¢—r,0,v,) =0, it follows that for any v, e W, , we have
b(he-o,,v,)=b(r6-06+06-6,,V,)

(33)

=b(r,6-o0,v,)+b(c—0,,v,)
=0

Thus
Lo—o,cZ,.

By combining inequality (20) and the error equation (33), we have
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allno—o, EOZA a(r6—o,,16—-0,)
=a(r6—0,16—6,)+a(c—o,,L6—oc,)
=a(re6-o,6—-0,)+b(U—-u,,re6—-o,)
=a(re6-o,r6-06,)+b(r,6—6,u-u,)+b(c—0o,,u-u,)
=a(r6-0,1,6-0,)+b(r,6—06,u-v, +v, —U,)+b(6—0c,,u—-Vv, +v, —U,)
=a(r6-0,1,6-0,)+b(r,6-0o,u-v,)+b(r,6-o,v, —u,)+b(6-06,,u-v,)+b(6-0,,v, —U,)
=1,
Also, since the operator r, satisfies that for any @ € V,v, eW, ,b(¢—r,¢,v,) =0 holds, we obtain
b(ro—o,v,-u,)=0.
Next, from the error equation (33), we obtain
b(c-o,,v,—u,)=0.
Thus, from the above two expressions, Lemma 3, and the Hdlder inequality, we have
I, =a(r6-0,,6—6,)+b(r6—6,u-v,)+b(c—0c,,u-V,)
=a(ro6—o,16—06,)+b(r6—0c,,u-Vv,)
=a(r6-0,16—-06,)+(r6-0,V(Uu-v,))
"Ore-oljlre—o, +0no—0, [OV(U-V,)[
Therefore, we have
Ire—o,0," 0re—ol, +0V(U-Vv,)0}, vV, eW, "H (Q) .
Using the triangle inequality and the above conclusions, we obtain
Uo-o,,lo-roe+r0—0,0
"Uo-reol, +0ne-0, [}
"Oo-rol, +0V(Uu-v,)G
le-rol, +|u—v, |, v, eW, "H;(Q)
Thus, we obtain (29).
By combining inequality (31) and the error equation (33), for any v, €W, , we have

(d’u_uh) :b(;"d’u_uh)
=b(h, —n A, +rh,,u—u,)
=b(n, —nA,,u—u,)+b(rA,,u—-u,)
=b(h, —Ay,u-Vv, +v, —U,)+a(6—0,,LL,)
=b(h, - Ay,u-v,)+a(6—o,, LA,)+b(h, -1 Ay, v, —U,)
=1,
Furthermore, since the operator r, satisfies that for any @ € V,v, €W, , b(e¢—r,,v,) =0 holds, we obtain
b(h, —rAy. v, —U,)=0.
For any 7, €W, , by combining the above expressions and (31), we get
I,=b(hy —,Ay,u—-v,)+a(c—0,,rA,)
=b(hy - Ay, u—-v,)+a(c—o,, Lk —A;)+a(c—0,,Ay)
=b(hy - Ay, u—v,)+a(c—0,, LAy —A;)+b(6—-0,,Y,)
=b(rg ks, u-V)+a(o—o,, [k —hy)+b(6 -0y, Y, —1,)+b(6 —0,,7,)
Then, from the error equation (33), we obtain b(6 -0, ,7,) =0. So we have
(d:u_uh) :b(;"d'u_uh)
=b(h, —rhg,u—-Vv,)+a(e—o,, Kk, —h;)+b(e -0y, Y, —17,)
Substituting the above results into the following norm expression,
Ju—u, (= sup @u-u) g Bl u-th)
oxde2() LA L} orde2)  UdL
we can obtain
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. 1
Uu—u, [}~ sup —u)[b(kd —rA, u—Vv,)+a(e—o,,nA, —A Hb(o—0,,y, —7,)]. YV, 77, €W, ,

o+det2(@)
we obtain equation (30).

Theorem 3.Suppos (o,u) € [H" (Q)]* x (H" () " H;(Q)) is the solution of problem (11),and (s, ,u, ) €V, xW,
is the solution of problem (12), then the following error estimate holds:
h* Ue—e, [, +0u—u, 0" h*" Oul],, . (34)
Proof. From(29),(27) and (22), we can give the estimate for /6 —o, L} as
Oo—-o,0, " Do—rol, +|u—pul,

" h el +h"uly,,

=h"|Kvul|, +h" Jul,,

* h'Oul,, .
Where p, : H*(©) ->W, is the L*-projection operator.

Next, we estimate the three terms on the right-hand side of the inequality in (30).
Here, (A4, Y,) s the solution to the auxiliary problem (31) introduced in Theorem 2.

From (21),(22),(27),(32) and Hilder inequality, we have
b(hy — Ay, u—pu) =—(div(hy —r,A ), u—pu)
=(hy — LAy, V(U—p,U))
"Ohg - G lu—pul;
" ho Ok O T [ul,
* hetToun, Oa,
~ heTOul,, 0dL .
From (27),(32),(35) and Hdlder inequality, we have
a(c—-o,, LAy —%;) " Uo—o, ORA, — A, L
~ h'Cul],, -h® 02, ELG 37)
* he Cul,, 0d .
From (21),(32),(35) and Hdlder inequality, we have
ble—6,.Ys — pnYs) =—(div(e —6,), s — 0, Ys)
=(6-6,,V(Ys = PYs))
"le—0, Ll Ys =P Y b

(35)

(36)

A pr K 38
h DUEiH 'ho|yd |1+rU ( )
* h"Ou Ehr h° O Yu [:Lrg
* ho Oul,0dE, .
Thus, substituting (36),(37) and (38) into (30) from Theorem 2, we can obtain
Cu—-u, ;" sup L[b(kd —Tky,U—p,U)
oxde2@d [
+a(o -0, LAy —y) +b(6 -6, Y, — p,Y,)] (39)

~ h* Oug,, .
Finally combining (35) and (39), we can get the desired result (34).

Theorem 4. For the previously defined T and T, , we have UT -T, [;—0,as2—0.
Proof. Let Tf =u,T, f =u, , then we have
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OTf -T, 1 - Cu—u, 0§

OT-T, k= su
o 0¢feLE(Q) CfL oxfe2@ L TL
hro”o Ou o h"o”o 0f
* sup 7 uh, sup LR ER e —0,(h—0).
oxfe2) LU TL o+fel) U TL

We complete the proof.

Corollary 2. Assume that u e H*(QQ) , the following error estimate holds:
U6 -6, Lyve” hUUL (40)
Proof.
Le—6, Lo =0 Ir%“"‘ Irllc_"h Ui (aiv.)

" hiel, +h*0lje—0,[}

=hlel, +h*[l;6-6+06-0,[}

* hiel, +h*h?Uel, +h*Uo—-0,[}

" hiel,

=hOKvVul,

* hiul.
Where I, is the linear finite element interpolation.

5.2 A priori error estimate for eigenvalues
Let (A,pn, p) be an eigenpair of (3), and (4,,n,, p,) be an eigenpair of (10); (4,,m,,, p,) approximates (A,p, p).
Let M, be the space spanned by the eigenfunctions{uj}corresponding to the eigenvalue A of (3).
Lemma 5. (Lemma 2 in [13]) Suppose the multiplicity of the eigenvalue A is m, then the following estimate
holds:

=l efls=sob [, +ls-sob o, JT =T, I -Tom [} @

Proof. Since the multiplicity of the eigenvalues of a self-adjoint operator is equal to the dimension of the
eigenspace, let u,,u,,---u,, be an orthonormal basis of M, .
By Theorem 3 of [9] and the steepness & =1o0f the self-adjoint operator, we have the following estimate.

’ C{Zm]((T ~Tu )T =T, [ } (42)
i,j=1 GG

2

G-oW

G—->H G-V |

‘ Attt

Lh

Forany f,g e L*(Q), let us consider |(T -T,)g, f|.
By the two equations of (15), we obtain the following
(f,v)=-a(Sf,e)+b(e,Tf) +b(Sf,v), V(p,v) e VXW .
Forg e L*(Q), let¢ =(S-S,)g,v=(T -T,)g, then
(f.(T-T,)9) =-a(Sf,(S-S,)9) +b((S-S,)g9,Tf) +b(Sf, (T -T,)g) , (43)
replacing g € L?(Q) for f from (15), we have

{aﬁgw)—M¢J©)=Q VoeV, 44)
b(Sg,v) =(g,v), wweW.
From (16), we have
{a(Shg,(p)—b(wlTthO, VoeV,, (45)
b(S,9,v) =(g,v), Vv eW.
By subtracting (44) and (45), we have
{a((S—Sh)glw)—b(tp,(T -T.)9)=0
-b((S-S,)9.v) =0
Adding the two above equations yields the following.
a((S-S,)9.9)—b(e.(T -T,)9) -b((S-S;)g,v) =0. (46)
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Since a(,-) is symmetric, adding (43) and (46) gives the result

(f,(T-T,)9) =-a((S-S)9,9—Sf) +b((S—-S;)g, Tf V) +b(Sf —,(T -T,)9) .
From equations (4) to (6), forany ¢ €V, ,veW, , we have

(.0 -T)9)" CS=8,)0], fo~St], +C.I(S-S)al, Iv-Trl, o
+C, o =St [T =T 9, -
Taking ¢ =S, f,v=T,f in (47), we get
(.M =T9)l" Cls-S)gll, S-S fll, (48)
+C, S-Sl [T -T) ],
+C S-S f, I =T,
In (48), replacing u; for g and u; for f , we have
|(T —Tu ’uj) "G "(S_Sh) IM}» (Z;%H +2C, ”(S_Sh) |M}- GV "(T -T) |MA ||GHW ’ (49)

Substituting (49) into (42), we arrive at (41).

The mixed discretised source problem is well-posed and has a unique solution when h is small enough.
Based on (34) and (40), we can obtain the following a priori error estimate.
Forany f e L*(Q2), the following hold:

[TF =T, ], ~ her T qﬁ,%«gz. (50)

Sf—S. f| ~ hOTFO, ,S<r<2. (51)
h 0 Q-H’ 2

SE—S f| - h2OTIO, t<r<2. (52)
h \Vi Di 2

If f €M, then Tf =4 f , and we can obtain the following estimate:
[T =T, |~ 0o i M, e H* (@),
|5=S)
IS=S I, [, ~ b* if M, = H(@).

Lemma 6. Let (4, ,m,, p,) be a mixed finite element eigenpair of (10), then there exists an eigenpair (4, p, p)
of (3), such that the following a priori error estimate holds:

M, C HE(Q),

he lu—p, [, +[p=pyf, = h*" (53)
|A—2,| < h?®n (54)
I, —nf, ~ b2 (55)

VI. NUMERICAL RESULTS
In this section, we report some numerical experiments to demonstrate the effectiveness of our approach.
Considering the problem (1), our program is compiled under the iFEM package. Consider the following three
test domains: the L-shaped domain €, =[-11]x[-L1]\[-10]x[0,1] , the square domain Qg with vertices at
(0,1), (0,0), (1,0), (1,1), and the crack structure domain Qg =(-11)*\{0<x<1y=0}.
Since the exact eigenvalues are unknown, we take the reference eigenvalue 4 =9.6397238440219 in
the L-shaped domain, the reference eigenvalue A, =13.6079200746419 in the S-shaped domain, and the

reference eigenvalue A, =15.1958966562930 in the crack structure domain € .

Table 1: The eigenvalue numerical solution results for Q, .

Domai h dof ﬂl Error rate
n
1/4 867 9.60951249620301 0.03021134781889( 1.496692724851000
1/8 3459 9.62901800530627 0.010705838715630 1.395693349101040
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Q | V6 13327 9.63565496166262 0.004068882359279 1.352817216478830
1/32 | 55299 9.63813076773640 0.001593076285500 1.338811829426640
1/64 22%18 9.63909402749373 0.000629816528170 1.334796392731570
1’32 88373 9.63947415450950 0.000249689512399
Table 2: The eigenvalue numerical solution results for €.
Domai h dof /11 Error rate
1/4 | 1155 12.9623099078139 0.6456101668280 0.9669064906662
o 1/8 | 4611 13.2776246907373 0.3302953839046 0.9616941545662
s 1é1 18435 13.4383287169528 0.1695913576891 0.9704453816743
1£3 73731 13.5213693819604 0.0865506926815 0.9851167695416
126 29‘5‘91 13.5641959774398 0.0437240972021
Table 3: The eigenvalue numerical solution results for Qg .
Doma h dof /11 Error rate
14 | 1155 14.6945067366663 0.5013899197267 1.0468984857407
Q 178 | ae11 14.9532201401681 0.2426765162249 1.0162037899259
SL
1é1 18435 15.0759135976490 0.1199830587440 1.0141303628434
1£3 73731 15.1364898411833 0.0594068152097 1.0296934701136
14’16 29‘5‘91 15.1667983542083 0.0290983021847
VII. CONCLUSION

The general second-order elliptic eigenvalue problem has wide applications in practical problems. This

paper presents a mixed finite element method for solving the general second-order eigenvalue problem. To
derive the a priori error estimate, the key is to prove that the discrete operator T, converges to the Dirichlet

operator T in the sense of the L*(Q)norm, alsol.T —T, L, ,—> 0 .Numerical experiments were conducted on

three test domains: Q, , Q; and Qg .The numerical results show that our method can achieve optimal

convergence rates for the eigenvalues and obtain optimal error estimates for the eigenfunctions. The numerical
experiments demonstrate the effectiveness of the algorithm.
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