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ABSTRACT: The general second-order elliptic eigenvalue problem is of great significance and is closely 

related to various fields such as fluid mechanics, quantum mechanics, and structural engineering analysis. 

Classical finite element methods have been successfully applied to solve such problems, but in some cases, 

particularly when dealing with complex boundary conditions and non-homogeneous media, the efficiency and 

accuracy of traditional methods may not meet the requirements. To improve both the solution accuracy, the 

mixed finite element method has been proposed and has achieved significant results in solving second order 

eigenvalue problems. The mixed finite element method introduces auxiliary variables (which generally also 

have practical physical significance), allowing for a reduction in the order of high-order differential equations, 

thereby relaxing the smoothness requirements of the finite element space. This article investigates the mixed 

finite element method for a general second-order elliptic eigenvalue problem and provides a-priori error 

estimates. 

 

KEYWORDS: Second-Order eigenvalue problems, Mixed finite element method, A-priori error.  

 

Received 09 Mar., 2025; Revised 21 Mar., 2025; Accepted 23 Mar., 2025 © The author(s) 2025. 

Published with open access at www.questjournas.org 

 

I. INTRODUCTION 
The second-order eigenvalue problem is widely applied in various fields such as vibration analysis, 

material mechanics, acoustics, and quantum mechanics. In the classical finite element method, eigenvalue 

problems are typically solved by discretizing the differential operators being approximated. However, these 

methods often rely on the direct solution of higher-order differential equations, making the treatment of 

boundary conditions, material inhomogeneity, and complex geometries relatively challenging. Especially for 

high-frequency problems with irregular boundaries, traditional methods may struggle to meet the demands of 

both computational efficiency and accuracy. 

As an advanced branch of the finite element method, the mixed finite element method was initially 

established by Babuška and Brezzi in the early 1970s, who developed the general theory of the method [1, 2]. In 

the early 1980s, Falk and Osborn proposed an improved version of the method [3]. [4,5,6,7]provides extensive 

research on mixed problems, presenting numerous mixed finite element formulations, and further investigates 

the theoretical development and practical applications of the mixed finite element method. 

There are several works for second order elliptic eigenvalue problems by the mixed formulation and 

their numerical methods such as Babuška and Osborn [8,9], Mercier, Osborn, Rappaz, and Raviart [11], etc. 

Based on the general theory of compact operators [10], Osborn [12], Mercier, Osborn, Rappaz, and Raviart [11] 

give abstract analysis for the eigenpair approximations by mixed/hybrid finite element methods. [13]discusses 

the
2 ( )L  norm and L

norm estimates of eigenvalues and eigenfunctions for a more general class of eigenvalue 

problems. [14] propose a method to improve the convergence rate of the lowest order Raviart–Thomas mixed 

finite element approximations for the second order elliptic eigenvalue problem. [15] proposes a non-standard 

mixed finite element method for the Dirichlet boundary value problem of second-order elliptic equations.   

This paper draws on the ideas from the aforementioned literature to study the a priori error estimation 

of the mixed finite element method combined with the quadratic finite element method for solving the general 

second-order elliptic eigenvalue problem. The mixed finite element method, combined with the quadratic 

method, is an effective numerical approach for solving second-order elliptic eigenvalue problems. By enhancing 

http://www.questjournals.org/
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the accuracy and stability of the solution, it can be widely applied to elliptic equation problems with complex 

boundaries and physical properties, particularly in cases involving high gradients and curvatures, where it 

demonstrates its advantages. This method has significant practical value in engineering mechanics, physics, and 

other disciplines that require the solution of partial differential equations.                                                                                                                                                                                                                                   

In the entire paper, denotes a general constant that is independent of the mesh size but sometimes 

depend on the eigenvalues of the problem (1). 

 

II. BASIC THEORETICAL PREPARATION  

 Let ( )qL be a standard Lebesgue space, where 
21 ,   q R ,The corresponding norm is 

expressed by 
( )

 qL
. In this paper, the norm of ( )qL  is represented by 

 .We also use ( )sH   to express 

the standard Hilbert Sobolev space of real functions defined at 2R  with index 0s  and the corresponding 

norm and semi-norm are ,s  and ,s    .Let be the bounded open polygon region of 2R ,and let   represent 

its boundary. In this paper, we are concerned with the following second order elliptic eigenvalue problem: 

 
( ) ,     in ,

0,                            on ,





  

 

K( , ) =x y p p

p
 (1) 

where 2 2( )ijK a  is a symmetric positive definite matrix with
1, ( )ija W    for 1 , 2i j  ,

1

2 2( )ijK a

 is also 

a symmetric positive definite matrix,
2R is a bounded domain with Lipschitz boundary  ,  and 

denote the gradient and divergence operators. 

 

III. MIXED FINITE ELEMENT METHOD                                                                                                             
We define a new vector-valued function  K pμ . 

Then (1) can be transformed into the following equivalent formulation 

 

1 0,    in ,

,       on ,

0,                 on .








  

  

 

K p

p

p

μ

μ  (2) 

Next, define the spaces 
2 ( ) W L ,

2 ( ) G L ,
2 2[ ( )]L H , 

 2 2 2( , ) [ ( )] : ( )       H div L LV μ μ , 

equipped with the norm 

0( , )

2 2 2

0( )   H divμ μ μ . 

Then, the weak form for the problem (1) can be defined as follows: 

Find ( , , )   p R Wμ V , ( , ) (0,0)pμ , such that   

 
( , ) ( , ) 0,     ,

( , ) ( , ),           ,                

 



 

  




a b p

b v p v v W

μ φ φ φ V

μ
 (3) 

where ( , )a   , ( , )b    are bilinear forms defined by 
1( , ) 


 a K dxμ φ μ φ ,   ( , )


  b p div pdxφ φ ,   ( , )


 p v pvdx . 

Clearly, the bilinear forms ( , )a   is symmetric and the bilinear forms defined above have the following 

characteristics: 

 0( , )a C
H H

μ μ μ μˆ , (4)                                                                                                                      
 1( , )a C

H H
μ φ μ φˆ , (5) 

 2b( ) Wp C p
V

φ φˆ , (6) 
where ( 0,1,2)iC i  represents a constant independent of h . 
For the eigenvalue  , there exists the following Rayleigh quotient expression  

( , ) 2 ( , )

( , )


 


a b p

p p

μ μ μ
. 

Form [9], we know eigenvalue problem (3) has an eigenvalue sequence j : 

1 20 , limk k
k

   


       , 
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and the associated eigenfunctions 

1 1 2 2( , ),( , ), ( , )k kp p pμ μ μ , 

where ( , ) i j ijp p . 

Theorem 1. Let ( , ) p  be an eigenpair of equation (1),  K pμ , then ( , , ) pμ satisfies equation (3);  

if ( , , ) pμ satisfies equation (3), then ( , ) p is an eigenpair of equation (1), and  K pμ . 

Proof. From the derivation above, the first part of the theorem has been established. Now we will prove the 

second part of the theorem. 

Let ( , , ) pμ satisfy equation (3), and consider the auxiliary problem 

 
( ) ,   in ,

0,                           on .





  

 

K( , ) =x y p p

p
 (7) 

Let  K pμ , then the mixed variational form of (7) is： 
Find ( , , )   p R Wμ V , such that 

 
( , ) ( , ) 0,    ,

( , ) ( , ),          .               





   

  

a b p

b v p v v W

μ φ φ φ V

μ
 (8) 

From the subtraction of (3) and (8), we get: find ( , )   p p Wμ μ V , such that 

 
( , ) ( , ) 0,    ,

( , ) 0,                          .               





     

   

a b p p

b v v W

μ μ φ φ φ V

μ μ
 (9) 

Take form (9), let  φ μ μ ,  v p p , then 

( , ) ( , ) 0

( , ) 0

  



  

  

a b p p

b p p

μ μ μ μ μ μ

μ μ
 

Add the above two equations, and we get ( , ) 0  a μ μ μ μ , this illustrates μ μ . 

Substitute μ μ into the first equation of (9) , and we get ( ) 0,  b p pφ , i.e ( ) 0,


     p p div dxφ φ V . 

Take satisfied   p p , and let φ , then by  div p pφ , pushed p p . 

This proves ( , ) p  is an eigenpair of equation (1), and  K pμ . 

We complete the proof. 

Now, let’s define the mixed finite element approximations of the problem (3). Let
h be a partition of 

  into finite elements(triangles),which is regular and has a mesh size h .Associated with the partition
h ,we 

define the finite dimensional spaces 
hW and

hV (see[4]), where for any  h
, ( 0)( ) n nP denotes the spaces 

of polynomial of degree not greater than n on  . 

Define 

 0 2 2

1( ) : ,( )         h

L

h h hq C qV V P , 

for each  h , and the barycentric coordinates 
1 2 3   on  , define 

  2

1 2 3( : , 1,2,3 )     hjB span j , 

and 

 L

h h B V V . 
Apparently, we have

L

h h V V V . 

Afterward, define 

 1 0

0 2( ) ( ) : ( ),          hh h hW v H C v P . 

Apparently, we have hW W . 

With the discrete spaces defined above, the mixed finite element approximation of (3) is given by: 

Find ( , , )   h h h h hp R Wμ V , ( , ) (0,0)h hpμ , such that  

 
( , ) ( , ) 0,    ,

( , ) ( , ),         .               





   

  

h h h

h h h h

a b p

b v p v v W

μ φ φ φ V

μ
 (10) 

For the eigenvalue h , there exists the following Rayleigh quotient expression 
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( , ) 2 ( , )

( , )


 
 h h h h

h

h h

a b p

p p

μ μ μ
. 

Form [9] the eigenvalue problem (10) has eigenvalues 

1, , ,0 h k h N h      , 

and the corresponding eigenfunctions 

1, 1, 2, 2, , , , ,( , ),( , ), ( , ) ( , )h h h h k h k h N h N hp p p pμ μ μ μ , 

where , ,( , ) ,1 , , dim   i h j h ij hp p i j N N W . 

For any
2 ( )f L  , consider the boundary value problem corresponding to (3) and its mixed finite element 

approximation: find ( , ) ,( , ) (0,0)u W u  σ V σ , such that 

 
( , ) ( , ) 0,     ,

( , ) ( , ),             .               





   

  

a b u

b v f v v W

σ φ φ φ V

σ
 (11) 

find ( , ) ,( , ) (0,0)h h h h h hu W u  σ V σ , such that 
( , ) ( , ) 0,    ,

( , ) ( , ),              .               





   

  

h h h

h h

a b u

b v f v v W

σ φ φ φ V

σ
 (12) 

 
IV. OPERATOR FORM AND ITS PROPERTIES                                                                                                

For any 
2 ( )f L  , assume that (11) has a unique solution ( , )uσ , and since ,h hW W V V , it is 

known that (12) has a unique solution ( , )h huσ .Thus, a linear bounded operator can be defined  

: , .  T G W G Tf u               : , .  h h h hT G W G T f u  

.: , fG   S V H S σ               , .: h h hh fG   S V H S σ  

Thus, the eigenvalue problems (3) and (10) have equivalent operator forms, respectively. 

 
( )











Tp p

pS μ
 (13)  

 
( )













h h h h

h h h h

T p p

pS μ
 (14) 

Therefore, solving for the eigenpair of (3) for ( , , ) pμ  can be reduced to solving for the eigenpair of the 

operatorT for 
1(( ), )  p  and ( ) pμ S ; similarly, solving for the eigenpair of (10) for ( , , )h h hpμ  can be 

reduced to solving for the eigenpair of the operator hT for 
1(( ), )  h h hp  and ( )h h h hpμ S . 

For the linear bounded operators T and S defined in above, for any
2 ( ) f L , the following relations 

hold: 

 
( , ) ( , ) 0,     ,

( , ) ( , ),               .               





   

  

a f b Tf

b f v f v v W

S φ φ φ V

S
 (15) 

For this elliptic problem, the following regularity estimate holds 

01 0 rTf C f . 

Where 0

1
1

2
 r , depends on the shape of the domain. 

For the discrete version of the linear bounded operators 
hT  and 

hS defined in above, for any
2 ( ) f L , 

the following relations hold: 

 
( , ) ( , ) 0,   

( , ) ( , ),             

,

.  

 



 

 






h h h

h

a f b T f

b f v f v Wv

S φ φ φ V

S
 (16) 

Lemma 1. (Lemma 1 in [13]) T and hT are self-adjoint operators. 

Proof. For any
2 ( ) g L , let , g u Tgσ S , similarly, we have 

 
( , ) ( , ) 0,     ,

( , ) ( , ),                .               





   

  

a g b Tg

b g v g v v W

S φ φ φ V

S
 (17) 

By taking , g v Tgφ S in (15), we get 
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( , ) ( , ) 0

( , ) ( , )





 



a f g b g Tf

b f Tg f Tg

S S S

S
 (18) 

By taking , f v Tfφ S in (17), we get 

 
( , ) ( , ) 0

( , ) ( , )





 



a g f b f Tg

b g Tf g Tf

S S S

S
 (19) 

From the symmetry of ( , )a   , (18) and (19) , we can obtain 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) .    G Gf Tg b f Tg a g f a f g b g Tf g TfS S S S S S  

Thus, T is self-adjoint; similarly, it can be proven that
hT  is self-adjoint. 

 
V. A PRIORI ERROR ESTIMATE  

5.1 A priori error estimate for eigenfunctions         

Lemma 2. For any 
h hzφ , there exists a constant independent of h , such that the following inequality holds: 

 2( , ) ,h h h h ha Z  
H

φ φ φ φ‰ , (20) 
where  : ( , ) 0,h h h h h h hZ b v v W    φ V φ  

Proof.  The property (20) is obvious. 

 

Lemma 3. (Lemma 2.27 in [4]) For any φ V and
1

0 ( )v H  , both 
 (div , ) ( , )v v  φ φ , (21) 
where ( , )   represents the inner product of 

2 2( )L  . 

Proof.  The property (21) can be proven using the divergence theorem. 

 

Corollary 1. For any 
3 ( )u H , we have  

 1 1 2| | | | ,1   h

t

tu u h tuˆ , (22) 
where  3:h hH W    is the 

2L -projection operator. 

Proof. see [4] . 

 

Let :  L

h hQ V V  be the
2L -projection, such that for any φ V , it holds that  

 ( ) 0,,    L

hh hhQφ φ φ φ V , (23) 
then 

 0 | | k

k

hQ hφ φ φˆ , (24) 

where 2( )] ,0 2[   kH kφ . 

Define the operator :h hr V V , such that for any φ V , it holds that 
3

1 2 3
1

| | ,      


   h h j j h
j

r Qφ φ , 

where
hQ is defined by (23), and 

2 ( 1,2,3)j R j    is an undetermined constant vector. 

Assume that there exists an operator :h hr V V , such that for any φ V , it holds that 

 ( , ) 0,h h hhb vr v W   φ φ , (25) 

for any 
h hv W , since | hv is a first-degree polynomial vector, without loss of generality, let 

1

3

|  


  h i i
i

v , 

where ( 1,2,3)i i   is a constant vector. Then, by Lemma 3, we have 

3

1

( , ) (div( ), )

( , )

( ) d

( )d




 



 

   

  

   

   





h

h

h h h h

h h

h h

i i h
i

b r v r v

r v

r v x

r x

φ φ φ φ

φ φ

φ φ

φ φ

 

To make equation (25) hold, it is sufficient to ( )d 0, 1,2,3, 


    i h hr x iφ φ . 

From the definition of 
hr , it is enough to choose j , such that  
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1 2 3

1

3

d ( )d , 1,2,3      
 

    j j i i h
j

x Q x iφ φ , (26) 

upon calculation, the determinant of the coefficient matrix of the system (26) is non-zero, which implies that the 

system (26) has a unique solution ( 1,2,3)j j  , ensuring that 
hr satisfies equation (25). 

 

Lemma 4. Existence of the operator :h hr V V , such that for any φ V , it holds that 

( , ) 0,h h hhb vr v W   φ φ , 

when 
2( )] ,0 2[   kH kφ ,we have 

 
0,Ω | | k

h kr hφ φ φˆ . (27) 
Proof.  When solving for ( 1,2,3)j j   using the Grammer rule, from Section 1.4 of [4], specifically equations 

(1.4.9), (1.4.32), and Lemma 1.20–Lemma 1.22, we have 

 1

0, 1,2,3., 

 j hh Q jφ φˆ  (28)  
From the definition of 

hr ,(28),  inequality , we have 

0, 0, 1 2 3 0,
1

,

3

11

0, 0,

0

/2[mes( )]

      




 



 

   

  



h h j j
j

h h

h

r Q

Q h Q

Q

φ φ φ φ

φ φ φ φ

φ φ

ˆ

              ˆ

              ˆ

 

From (24) we can obtain 
1/2

2

0,Ω 0, 0,Ω | |





 
     

 h

k

kh h hr r Q hφ φ φ φ φ φ φˆ ˆ , 

where
2[ (Ω)] ,0 2  kH kφ . 

 
Theorem 2. Assume that there exists an operator :h hr V V , such that for any φ V , it holds that 

( , ) 0,h h hhb vr v W   φ φ , 

moreover, ( , )u W σ V  is the solution to problem (11), and ( , )h h h hu W σ V  is the solution to problem (12). 

Then the following error estimate holds: 

 0 00 1

1| | , ( ,)      h h h h hr u v W Hvσ σ σ σˆ  (29) 

 2
0

0 (Ω) 0

1
sup [ ( ,

.

) ( , )

( , )], , 

 

     

   

h d h d h h h d d
d L

h d h h h h

u u b r u v a r
d

b y v W

λ λ σ σ λ λ

σ σ

ˆ
 (30) 

Where for any 
2 ( )d L  , the function pairs are defined in 

1 1

0( , ) [ (Ω) (Ω)]  d d

ry H Hλ V  and satisfies  

 
, ,   

,             

( ) ( , ) 0 ,

( , ) ( , ) . 

   


  

d d

d

a

v v

b y

b d v W

λ φ φ φ V

λ
 (31) 

and we know a priori estimate: 

 
0 01 0r rd dy dλ ˆ . (32) 

Where
1

2
2
 r , depends on the shape of the domain.  

Proof.  From equations (11) and (12), by subtracting the corresponding terms, we obtain the error equation 

 
,  

,     .         

( , ) ( , )

(        

0 ,

, )    0

h h h

h h

a b u u

b v Wv

     


   

σ σ φ φ φ V

σ σ
 (33) 

From the error equation (33), ( , ) 0hhb r v φ φ , it follows that for any h hv W , we have  

( , ) ( , )

( , ) ( , )

0

h hh

hh h

h h h

h

b r b rv v

vb vr b

    

   



σ σ σ σ σ σ

σ σ σ σ  

Thus 

h h hr Z σ σ . 

By combining inequality (20) and the error equation (33), we have 
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2

0 ( , )

( , ) ( , )

( , ) ( , )

( , ) ( ) ( )

( , )

,

, ,

,( ) ( )

(

,

   

     

     

        

        

 

  

h h h h h h

h h h h h h

h h h h h h

h h h h h h h

h h h h h h h h h h h

h h

r a r r

a r r a r

a r r b u u r

a r r b r u u b u u

a r r b r u v v u b u v v u

a r r

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ

ˆ

1

) ( ) ,( ) )( ,(, , )        



h h h h h h h h h h hb r u v b r v u b u v v

I

b uσ σ σ σ σ σ σ σ σ

 

Also, since the operator 
hr  satisfies that for any , h hv W φ V , ( , ) 0hhb r v φ φ  holds, we obtain 

( 0, ) h h hb r v uσ σ . 

Next, from the error equation (33), we obtain 

0( , )h h hb v u σ σ . 

Thus, from the above two expressions, Lemma 3, and the  inequality, we have 

0

1

0 0 0

, , )

,

, ( )

( , ) ( ) (

( , ) ( )

( , ) ( )

( )

       

   





     







   

h h h h h h h

h h h h h h

h h h h h h

h h h h h h

a r r b r u v b u v

a r r b r u v

I

a r r r u v

r r r u v

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σˆ

 

Therefore, we have 

0

1

00 0 )( ) , (       h h h h h hr r u v v W Hσ σ σ σˆ . 

Using the triangle inequality and the above conclusions, we obtain 

0

1

0

0 0

0

0 0

0 1

(

)| (| ,

)

  

  



 

 

 







  

h h h h

h h h

h h

h h h h

r

r r

r

r

H

u v

r u v v W

σ σ σ σ σ σ

σ σ σ σ

σ σ

σ σ

ˆ

ˆ
 

Thus, we obtain (29). 

By combining inequality (31) and the error equation (33), for any 
h hv W , we have 

2

( , ( , )

( , )

( , ) ( , )

( , ) ( , )

( , ) ( , ) )

)

( ,

h d h

d h d h d h

d h d h h d h

d h d h h h h h d

d h d h h h d d h d h h

d u u b u u

b r r u u

b r u u b r u u

b r u v v u a r

b r u v a r b r v u

I

 

  

    

      

       







λ

λ λ λ

λ λ λ

λ λ σ σ λ

λ λ σ σ λ λ λ

 

Furthermore, since the operator hr  satisfies that for any , h hv W φ V , ( , ) 0hhb r v φ φ  holds, we obtain 

( , ) 0d h d h hb r v u  λ λ . 

For any h hW  , by combining the above expressions and (31), we get 

2 ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) 

    

      

     





 





      

d h d h h h d

d h d h h h d d h d

d h d h h h d d h d

d h d h h h d d h d h h h

I b r u v a r

b r u v a r a

b r u v a r b y

b r u v a r b y b

λ λ σ σ λ

λ λ σ σ λ λ σ σ λ

λ λ σ σ λ λ σ σ

λ λ σ σ λ λ σ σ σ σ

 

Then, from the error equation (33), we obtain ( , ) 0hhb  σ σ . So we have 

( , ) ( , )

( , ) ( , ) ( , )

  

       

h d h

d h d h h h d h d hd

d u u b u u

b r u v a r b y

λ

λ λ σ σ λ λ σ σ
 

Substituting the above results into the following norm expression, 

2 20 ( ) 0 ( )

( , ) ( , )
sup sup

     

 
  

G G

h d h

h G
d L d L

d u u b u u
u u

d d

λ
. 

we can obtain 
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2
0

0 (Ω) 0

1
sup [ ( , ) ( , ( , )], , ,)  

 

          h d h d h h h d d h d h h h h
d L

u u b r u v a r b y v W
d

λ λ σ σ λ λ σ σˆ  

we obtain equation (30). 

 

Theorem 3.Suppos
2 11

0( , ) [ (Ω)] ( (Ω) (Ω))  r ru H H Hσ is the solution of problem (11),and ( , )h h h hu W σ V  

is the solution of problem (12), then the following error estimate holds: 

 00

0 0 1



  
r

h h r

r r
h u u h uσ σ ˆ . (34) 

Proof.  From(29),(27) and (22), we can give the estimate for 
0 hσ σ  as 

 

0

1

1

1

0 1| |

| | | |

.

| | | |

r r

h

r r

r r

h

r r

r

r

hr u u

h h u

h K u h u

h u















 







σ σ σ σ

σ

ˆ

ˆ

ˆ

 (35) 

Where  3: h hH W  is the 
2L -projection operator. 

Next, we estimate the three terms on the right-hand side of the inequality in (30). 

Here, ( , )d dyλ is the solution to the auxiliary problem (31) introduced in Theorem 2.  

From (21),(22),(27),(32) and inequality, we have 

 
0

0

0

0

0

0

1

1

0

1

1

.
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r r

d

r
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b r u u r u u

r u u

r u u

h u
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u

h

h d

 



















    

   

 

λ λ λ λ
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λ λ

λ

λ

ˆ

ˆ

ˆ
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 (36) 

From (27),(32),(35) and  inequality, we have 
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ˆ
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From (21),(32),(35) and  inequality, we have 
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 (38) 

Thus, substituting (36),(37) and (38) into (30) from Theorem 2, we can obtain 

 
0

2
0

0 ( )

1

Ω 0

1
sup [ ( , )

(

.

, ) ( , )]
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d

r

h h d

u u b r u u
d
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λ λ

σ σ λ λ σ σ

ˆ

ˆ

 (39) 

Finally combining (35) and (39), we can get the desired result (34). 

 

Theorem 4. For the previously defined T and hT , we have 0h GT T  , as 0h  . 

Proof. Let , h hTf u T f u  , then we have 
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0 0 0 0
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We complete the proof. 

 

Corollary 2. Assume that 
3 ( ) u H , the following error estimate holds: 

 ( , ) 3 H divh uhσ σ ˆ  (40) 
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Where
1

hI  is the linear finite element interpolation. 

 

5.2 A priori error estimate for eigenvalues 

Let ( , , ) pμ  be an eigenpair of (3), and ( , , )h h hpμ  be an eigenpair of (10); ( , , )h h hpμ approximates ( , , ) pμ . 

Let M be the space spanned by the eigenfunctions{ }ju corresponding to the eigenvalue  of (3). 

Lemma 5. (Lemma 2 in [13]) Suppose the multiplicity of the eigenvalue   is m, then the following estimate 

holds: 

  
2 2

, ( ) ( ) ( ) (| | | |)
G G

l h h M h M h M h M
G G G W

C T T T T
   

 
  

       
H V

S S S Sˆ  (41) 

Proof. Since the multiplicity of the eigenvalues of a self-adjoint operator is equal to the dimension of the 

eigenspace, let 
1 2, , mu u u  be an orthonormal basis of M . 

By Theorem 3 of [9] and the steepness 1  of the self-adjoint operator, we have the following estimate.  

 
,

2
1 1

, 1

) ( ) |
l h

G G

m

h i j h M

i j

C T T u u T T


 


 



 
       

 
ˆ . (42) 

For any
2, ( )f g L  , let us consider ( ) , hT T g f . 

By the two equations of (15), we obtain the following 

( , ) ( , ) ( , ) ( , ), ( , )      f v a f b Tf b f v v WS φ φ S φ V . 

For
2 ( )g L  , let ( )  h gφ S S , ( )hv T T g  , then 

 ( ,( ) ) ( ,( ) ) (( ) , ) ( ,( ) )       h h h hf T T g a f g b g Tf b f T T gS S S S S S , (43) 
replacing 

2 ( )g L   for f from (15), we have 

 
( , ) ( , ) 0,   

( , ) ( , ),          

,

.   

 




 

 

a g b Tg

b g v g v v W

S φ φ φ V

S
 (44) 

From (16), we have   

 
( , ) ( , ) 0,   

( , ) ( , ),             

,

.  

 



 

 






h h h

h

a g b T g

b g v g v Wv

S φ φ φ V

S
 (45) 

By subtracting (44) and (45), we have 

(( ) , ) ( , ( ) ) 0

(( ) , ) 0





   

  

h h

h

a g b T T g

b g v

S S φ φ

S S
 

Adding the two above equations yields the following. 

 (( ) , ) ( ,( ) ) (( ) , ) 0     h h ha g b T T g b g vS S φ φ S S . (46) 
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Since ( , )a    is symmetric, adding (43) and (46) gives the result 

( ,( ) ) (( ) , ) (( ) , ) ( ,( ) )          h h h hf T T g a g f b g Tf v b f T T gS S φ S S S S φ . 

From equations (4) to (6), for any 
hφ V ,

hv W , we have 

 1 2

2 .

( , ( ) ) ( ) ( )

( ) )

Wh h h

h W

f T T g C g f C g v Tf

C f T T g

     

  

H H V

V

S S φ S S S

φ S

ˆ
 (47) 

Taking , h hf v T fφ S  in (47), we get 
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2

2
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h h

f T T g C g f

C g T T f
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H H

V

V

S S S S

S S

S S

ˆ  (48) 

In (48), replacing 
iu for g and ju for f , we have 

 
2

1 2( ) , ) ( ) ( ) (2 )| | |
G W

h i j h M h M h M
G G

T T u u C C T T
    

   
H V

S S S Sˆ . (49) 

Substituting (49) into (42), we arrive at (41). 

The mixed discretised source problem is well-posed and has a unique solution when h is small enough. 

Based on (34) and (40), we can obtain the following a priori error estimate.  

For any
2 ( ) f L , the following hold: 
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2
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If f M , then 
1 lTf f , and we can obtain the following estimate: 
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r r
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 rM H  

0
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 r

h M hS S ˆ  if 1 ( ).

 rM H  

2 ,( ) |


 h M h
V

S S ˆ  if 3( ).  M H  

Lemma 6. Let ( , , )h h hpμ  be a mixed finite element eigenpair of (10), then there exists an eigenpair ( , , ) pμ  

of (3), such that the following a priori error estimate holds: 

 0 0

0 0


  

r rr

h hh p p hμ μ ˆ  (53) 

 02( )  
 h

r r
h  (54) 

 2h h
V

μ μ ˆ  (55) 
 

VI. NUMERICAL RESULTS 
In this section, we report some numerical experiments to demonstrate the effectiveness of our approach. 

Considering the problem (1), our program is compiled under the iFEM package. Consider the following three 

test domains: the L-shaped domain [ 1,1] [ 1,1] \[ 1,0] [0,1]L       , the square domain S with vertices at 

(0,1), (0,0), (1,0), (1,1), and the crack structure domain 2( 1,1) \{0 1, 0}SL x y      . 

Since the exact eigenvalues are unknown, we take the reference eigenvalue 1 9.6397238440219   in 

the L-shaped domain, the reference eigenvalue 2 13.6079200746419   in the S-shaped domain, and the 

reference eigenvalue 3 15.1958966562930   in the crack structure domain SL . 

 

Table 1: The eigenvalue numerical solution results for L . 
Domai

n 
h  dof 

1  Error rate 

 
 

1/4 867 9.60951249620301  
 

0.030211347818890  
 

1.496692724851000  
 

1/8 3459 9.62901800530627  0.010705838715630  1.395693349101040  
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L  1/16 13827

7 
9.63565496166262  0.004068882359279  1.352817216478830  

1/32 55299 9.63813076773640  0.001593076285500  1.338811829426640  

1/64 22118

7 
9.63909402749373  0.000629816528170  1.334796392731570  

1/12

8 

88473

9 
9.63947415450950  0.000249689512399  

 

 

Table 2: The eigenvalue numerical solution results for 
S . 

Domai

n 
h  dof 

1  Error rate 

 
 

S  

1/4 1155 12.9623099078139  
 

0.6456101668280 
 

0.9669064906662  
 

1/8 4611 13.2776246907373  0.3302953839046  0.9616941545662  

1/1
6 

18435 13.4383287169528  0.1695913576891  0.9704453816743 

1/3

2 
73731 13.5213693819604  0.0865506926815 0.9851167695416  

1/6

4 

29491

5 
13.5641959774398  0.0437240972021   

 

Table 3: The eigenvalue numerical solution results for SL . 

Doma

in 
h  dof 

1  Error rate 

 
 

SL  

1/4 1155 14.6945067366663  
 

0.5013899197267 
 

1.0468984857407 
  

1/8 4611 14.9532201401681 0.2426765162249  1.0162037899259 
 

1/1

6 
18435 15.0759135976490  0.1199830587440  1.0141303628434 

 

1/3
2 

73731 15.1364898411833  0.0594068152097 1.0296934701136 
 

1/6

4 

29491

5 
15.1667983542083 0.0290983021847   

 

VII. CONCLUSION  
The general second-order elliptic eigenvalue problem has wide applications in practical problems. This 

paper presents a mixed finite element method for solving the general second-order eigenvalue problem. To 

derive the a priori error estimate, the key is to prove that the discrete operator hT converges to the Dirichlet 

operator T in the sense of the 2L （ ）norm, also 0 0hT T  ， .Numerical experiments were conducted on 

three test domains: 
L ,

S and 
SL .The numerical results show that our method can achieve optimal 

convergence rates for the eigenvalues and obtain optimal error estimates for the eigenfunctions. The numerical 

experiments demonstrate the effectiveness of the algorithm. 
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