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ABSTRACT: The widespread application of artificial intelligence technology has made the
protection of deep learning models a core demand in the industry. Existing model watermarking
schemes typlcally mvolve modifving the model itself to embed watermark information. While
this approach can protect the model’s copyright, current research on the interpretability of deep
learning models is still limited, making it unclear what impact the modifications to the model wall
have. This paper proposes an integrity verification method for deep learning models based on
multi-objective adversarial examples. The basic idea of this method 1s to utilize the characteristic
of adversarial examples being close to the decision boundary. By adding controllable perturbations
to adwversarial examples, watermark samples are generated. The watermark samples generated
by this method can accurately capture slight changes in the decision boundary. Unlike other
similar methods, the adversarial examples used in this method are targeted adversarial examples,
which allow for specific protection based on the key targets provided by the user. Specifically,
multiple adversarial examples are generated in different directions using the key target as the
initial objective, followed by perturbation, such that the generated watermark samples linearly
cover the decision boundary of the key target. When the model 15 tampered with and the decision
boundary changes, the watermark samples will also change, thereby achieving the verification of
model integrity. The above scheme does not modify the model tself, but instead adds watermarks
based on the characteristics of adwversarial examples. This approach maximizes the preservation of
the model's integrity and effectively avolds the risks associated with potential functionality loss
causad by watermark embedding,
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1 Introduction

1.1 Research Background and Significance

With the development of technology, modern society has entered the intelligent era. The
development and popularization of the internet have led to an explosive growth of informa-
tion, which is vast in quantity and diverse in types. Processing this information requires a
large amount of human resources and relevant technologies. Efficiently processing this infor-
mation is particularly erucial for the high-quality development of modern society. In 2008,
Hinton et al. [1] introduced the concept of " deep learning”, which attracted widespread at-
tention in the academic community. This technology is built upon neural network technology
and has achieved significant brealtthroughs in fundamental fields such as computer vision
and natural language processing. In recent yvears, with a dramatic increase in computing
power, continuous optimization of algorithm models, and a growing number of professionals

in the field, the application scope of deep learning technology is gradually expanding.

DOI: 10.35629/0743-11041835 www.questjournals.org 18 | Page


http://www.questjournals.org/

Research on Integrity Verification Methods for Deep..

In recent years, the field of deep learning model security research has hegun to explore
new defense mechanisms, with digital watermarking-based solutions (i.e., "deep learning
model watermarking” [2]) gradually becoming an important technological approach. The
vulnerability watermarking technical route focuses on the integrity verification of digital
carriers, which not only needs to identify whether there 1= any integrity damage to the da-
ta but also, in some advanced algorithms, can locate tampered area coordinates through
feature comparizson. This watermark protection approach has provided ideas for deep learn-
ing model watermarking. As deep learning models are widely applied in critical fields, the
challenge of effectively building a watermarking technology system that balances hoth ro-
bustness and vulnerability has become a key hottleneck in securing model deployment. This
involves theoretical hreakthroughs at the algorithmic level and requires practical selutions
to the compatibility issues between model integrity and model watermarking.

Deep neural networks (DN} are computational frameworks built on input-output map-
pings, where the parameter matrices form the core of the model. This structure differs fun-
damentally from conventional digital media. When traditional watermarking technigues are
mechanically applied to neural networks for protection, they can easily lead to performance
degradation and security vulnerabilities, creating a chain reaction of issues.In the case of
traditional digital media, such as images, their pixel arrays exhibit spatial continmity, and
small disturbances to local parameters typically do not significantly alter human visual per-
ception. In contrast, the network structure of deep learning is highly heterogeneous, with
typical features such as convolutional kernels for feature extraction and the distribution pat-

tern of fully connected parameters. The parameters of these nonlinear computational units

lack intuitive semantic interpretation, and their functional value entirely depends on the
output responses of input data after hierarchical transformations. This disparity makes the
direct transfer of traditional watermarking schemes face dual challenges: they could either
destroy the relationships between network parameters or fail to effectively conceal informa-
tion in the complex parameter space. Therefore, developing new watermarking technologies
that adapt to the unique characteristics of neural networks has hecome an inevitable choice.
These technologies need to protect intellectual property without compromising the model’s
effectiveness and security.

Existing research on maodel integrity protection is still limited. and due to the poar
interpretability of neural network models, current theoretical knowledge cannot prove that
modifications to model parameters have controllable effects on model performance. Tradi-
tional watermarking methods, to some extent, can lead to a decline in model performance,
thus triggering unforeseen risks. Additionally, during model dissemination and use, there is

also the risk of malicious tampering.
1.2 Research Status at Home and Abroad

1.2.1 History and Current Status of Adversarial Example Techniques

According to the level of knowledge the attacker has about the model, adversarial at-
tacks are mainly divided into white-box attacks and black-box attacks. In a white-box attack
scenario, the attacker has full access to the target model’s architecture, training data, and
weight parameters. In a black-hox attack scenario, the attacker can only access the model’s
input-output interface, with no knowledge of the internal architecture, training parameters,

or other critical information.
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When considering the attacker’s intent, their attacks can be further categorized into
untargeted attacks and targeted attacks. The former aims to induce arbitrary miselassifica-
tion, while the latter seeks to precisely mislead input samples into a predetermined target
class. From the perspective of attack strategy, adversarial sample generation methods can
be divided into single-step attacks and multi-step attacks. Single-step attacks generate ad-
versarial samples through a one-time perturbation, whereas multi-step attacks require an
iterative optimization process. Although multi-step attacks demand a longer computational
cyele, the adversarial perturbations they produce typically achieve a higher attack success
rate.

Given that most popular datasets commonly use the JPG format, Dzingaite et al. [3]
explored the use of JPEG compression techniques to reduce the possibility of adversarial per-
turbations. Building on this, Das et al. [4] deepened the research by using ensemble methods

to flter out high-frequency signals in adversarial samples, and this approach was proven to

be effective against typical attacks like FGSM and DeepFool. However, experimental anal-
vsis by Xu et al. [5] showed that this method is effective for certain types of adversarial
samples, but it may damage the inherent features of the image and reduce normal classifica-
tion accuracy. The coneave-point defense algorithm developed by Luo et al. [6] is based on
the assumption that classifiers are robust to scale and translation transformations, but this
theory has not been fully validated in complex attack scenarios. Xie et al. [7] attempted
to reduce the deception of adversarial samples by employving preprocessing techniques like
random scaling and cropping. Gu et al. [8] drew on the idea of compressed autoencoders
to develop Deep Compression Networks (DCN), aimed at enhancing the defense capabilities
against adversarial samples. The regularized input gradient method proposed by Ross et
al. [9] effectively strengthens the model’s resistance to interference by constraining nput
variables that affect the model” s output. However, while this approach shows significant
results when combined with adversarial training, it incurs greater computational costs,

The outstanding performance of deep learning techniques and their wide applications
have made adversarial sample research a growing focal point. The concept initially origi-
nated in the field of image classification, and with the spiral evolution of attack and defense
technologies, its research scope has expanded from basic classification tasks to broader com-
puter vision areas, such as facial recognition [10]. text detection [11], and wvisual tracking
[12].

The attack and defense process of adversarial sample techniques, along with the unique
dynamic triggering mechanism of adversarial samples and their precise characterization of
the model’s decision houndary, provide new insights for addressing the challenges of tradi-
tional deep learning watermarking techniques in copyright protection and model integrity

verification.
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1.2.2 The Evolution of Digital Watermarking Technology in Model Protection

Traditional digital watermarking techniques embed information through the spatial do-
main (e.g., LSB) or transform domain (e.g., DCT, DWT), but they face the contradiction
between robustness and imperceptibility. With the development of deep learning, water-
marking technology has shifted towards embedding in model parameters and dynamic fea-
tures. In 2017, Uchida et al. [13] introduced a pioneering copyright protection strategy for
deep neural networks. They trained the model by introducing an additional regularization
loss funetion, achieving the dual goals of optimizing model performance and embedding wa-
termark information simultaneously during the model training phase. The loss function L(#)

is defined as follows:

L(#) = Lo(#) + AL (8) (1.1)

Where, # represents the weights of the target model, Lo(#) represents the loss function
of the target model's original task, and L., (#) is the regularization term for embedding the
watermark, with A representing the weight of this loss function.The constraint term L., (#)
constructs a statistical bias-guided model through the parameters 0, encouraging the model
to spontaneously form speecific distribution characteristics during the training process. These
characteristics are then used to carry the watermark information to be embedded. During
the embedding process, given a weight vector # € BM with M elements and a projection ma-
trix X € RT*X used for watermark embedding, the watermark is embedded and extracted
by projecting # using X and designing a symbol funetion for the embedding and extraction
of the watermark information. The extraction method of the 7 — th watermark hit &; is as

follows:

by=s (Z J{ijﬁi) : (1.2)

Where s(-)is the sign function with a threshold of 0:

1. x =0,
= - 1.3
() { 0, else, 1-3)

This process can be viewed as a binary classification problem of a single-layer perceptron
with no bias parameters. Therefore, Uchida et al. used binary cross-entropy to define the

loss function of the watermark embedding regularization term:

L. (9) =—_.ZI:.5;i log (yi)—l-(l—bj)log (l—yi). (1.4)
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where
yi=o Z.ﬂrijm1 . (1.5)

o represents the Sigmoid funetion.

Deep learning networks exhibit highly non-convex loss surface characteristics under
over-parameterized designs, with many local minima in their parameter space that have ap-
proximately equivalent performance. Therefore, based on the redundant characteristics of
the parameter space, the model parameters can he converged to a specific local minimum
region by introducing regularization constraints, such that watermark information can he
embedded in this region while maintaining the hasic functionality of the model. The model
holder can embed watermark information into the model by jointly training the main task

loss function and the watermark embedding loss funetion. When verification is needed, the

model’ s copyright can be assessed by caleulating the deviation between the watermark
extraction accuracy and the preset threshold. This method demonstrates the possibility of
successfully embedding watermarks while maintaining certain model performance, showeas-
ing the potential of watermarking technology in deep neural networks.

Although this is the first attempt to embed watermarks in deep neural networks, it
marks a significant progress in the field of deep learning network security. However, this
method is not without limitations. For example, the watermark capacity is limited by the
model size, specifically the number of weights, which restricts the amount of information
that can be embedded. Moreover, the method has poor resistance to watermark covering
attacks. Due to the limited number of networl layers, attackers may carryv out covering
attacks on each layer, thereby disrupting the original watermark information. Additionally,
embedding watermarks in this regularization way may interfere with the normal training
process of the network, especially when training complex models like Generative Adversarial
Networks (GAN].

To address the shorteomings of existing technologies, Rouhani et al.[14] made a ground
breaking improvement to the watermark embedding approach. Compared to Uchida ef al.
strategy of embedding the watermark in the static weights of the model, this approach
chooses to encode the watermark into the probahility density function of the network lay-
ers. By utilizing the dynamie statistical properties of deep neural netwarks to generate the
watermark, the watermark signal is only activated when specific trigger data is input. This
dynamic feature not only enhances the watermark’ s concealment and adaptability but al-
so slgnificantly improves its resistance to covering attacks. However, due to the nature of
the intermediate layer activation maps approximating a Gaussian mixture distribution, this
method can only embed the watermark in a single selected layer, leading to a hottleneck in

the amount of information that can be embedded.
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Merrer et al.[16], based on the characteristic that adversarial examples induce models
to output a specific class with high probability, used the adversarial perturhations to gen-
erate specific samples as the trigger signals for ownership identification. Speecifically, they
injected adversarial examples into the original data set through a mixed training method
during the training process and re-labeled the adversarial samples with standard clazs labels.
The model trained in this way is essentially a fine-tuned version of the decision boundary
of the original model. When adversarial examples are used as the trigger set to test the
model, the watermarked model is able to output the correct class, while the original model
cannot. Furthermore, Zhang et al.[17] embedded watermarks by modifying the true class
labels of selected training data images and then fed the designed trigger images and their
corresponding output lahels into the model for training to achieve watermark embedding.

In addition, they further proposed three different trigger image generation methods based

on Adi et al. approach, including: emhbedding specific additional information into randomly
selected training images, selecting other data set images unrelated to the target model” s
classifieation, and nusing randem noise images.

Jia et al [18] identified the independence between the watermark task and the model’s
original task, which led to the insufficient effectiveness of existing watermark methods in
defending against model extraction attacks. Specifically, when processing traditional wa-
termark tasks and watermark verification tasks, the model formed independent parameter
activation paths, meaning the model independently handled these two tasks. This separa-
tion of decision paths resulted in the watermark information not heing deeply integrated
into the model's core representation svstem, making the watermark susceptible to being
remcved by model fine-tuning and pruning attacks. To address this issue, they proposed
the Entangled Watermark Embedding (EWE) method. This method constructs a trigger
sample set through adversarial perturbations and injects it into the training data set, there-
by integrating watermark information with the original data. During model training, a soft
nearest-neighhor loss 1s introduced to create a cross-task representation entanglement con-
straint, forcing the two types of data to form a non-linear entangled state in the feature
space, thereby inducing the model to activate overlapping neurons when handling different
tasks. This approach effectively defends against model extraction attacks.

Szyller et al.[19] also diseovered this issue and proposed DAWN (Dynamic Adversari-
al Watermarking of Networks) to address the shortcomings of traditional watermark meth-
ods in defending against model extraction attacks. Unlike the aforementioned approach,
Szyller et al. did not interfere with the normal training process of the model, but instead
made special designs to the model” s output. By adding controllable perturbations to the
model’s predicted outputs, the image output prohabilities are hiazed toward a pre-set in-

correct class, and these incorrect outputs are set as the watermark information. When a
model attacker queries the model and uses the model’s returned results for model extraction,

the watermark’s incorrect classification pattern will reproduce the watermark information
into the suspicious model’s parameter space. The model owner can use this information to

determine the model’s copyright.
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1.2.3 The current shortecomings in the research of deep learning model watermark-

ing technology are as follows

(1) Due to the poor interpretability of deep learning model parameters, adding water-
marks to the model may alter some model parameters, resulting in a loss of model function-
ality.

(3} i ] C 0 0 0

(2} Current research mainly focuses on protecting the copyright of models, with less

attention given to research on protecting the integrity of models.

1.3 The main research content of this paper

In response to the aforementioned shortcomings in deep learning model research, this
paper mainly studies integrity verification based on adversarial examples.

Although adversarial examples pose a certain threat to the security of models, this paper
approaches the positive attributes of adversarial examples and explores their use in protect-
ing model copyright. Traditional model protection schemes, to some extent, may affect the
model, and existing literature rarely provides solutions that focus on targeted protection
of specific ohjectives. From the perspective of minimizing the impact on the model, this
paper investigates watermarking methods that do not modify the model itzelf and focuses
on targeted protection for specific key target categories.

The main contributions of this paper are as follows: A deep learning network integrity
verification method based on multi-target adversarial examples is proposed. This approach
uses only the model’s output as the model watermark and detects changes in the model’s
decision boundary by ohserving variations in the output, thereby determining whether the
model has been modified. The method also allows for targeted protection of specific key
target categories and can embed user-specific personal information into the watermark. Ex-
periments show that this method can still detect changes in the model’s decision boundary

and verify the integrity of the model under relatively low attack intensities.

2 Related Theories and Technologies

This chapter will introduce some of the basic concepts and knowledge invelved in this
paper. Since the protection of deep learning models in this paper mainly revolves arcund
adversarial examples, the main content of this chapter first introduces deep learning net-

works and common network models, followed hy the basic concepts and tyvpes of adversarial

examples, and finally covers some common attack methods targeting model watermarking.

2.1 Research Backeround and Significance

During the training process of deep neural networks, the weight matrices are dynamical-
ly optimized and adjusted through the gradient descent algorithm. The network structure
has the following core features: Its multi-laver architecture progressivelv extracts features
and abstracts data by stacking hidden layers. The nonlinear activation functions introduced
at each layer overcome the representation limitations of linear models, significantly enhane-
ing the model’s fitting ability. The massive parameter scale hrought by the deep structure
requires that the training process be supported hyv sufficient data and computational re-

sources., Unlike traditional feature engineering methods, this network has the ability to
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antonomously extract effective features from raw data, greatly reducing the need for manual
intervention. The gradient descent-based optimization mechanism iteratively updates the
parameters, driving the loss function to converge towards a minimum. This architecture
demonstrates exceptional performance in fields such as computer vision and semantic un-
derstanding, especially excelling in generalization when handling high-dimensional complex

data.

2.1.1 Convolutional Neural Network (CNN)

The design concept of Convelutional Neural Networks (NN is inspired by research
on biclogical visual mechanisms, particularly influenced by Hubel and Wiesel studies on
the hierarchical responze mechanisms of the visual cortex. Compared to traditional neural
networks, CNN feature a unique three-dimensional structure for neurons, which includes
width, height, and channel depth. This design not only preserves the spatial hierarchical
features of image data but also aligns with the working mechanism of hiological visual
receptive fields. In practice, each neuron is only connected to a local region of the input,
and through this local connectivity strategy, C NN significantly reduce the parameter scale

while maintaining excellent feature representation capabilities.

2.1.2 Commeon Deep Learning Model

(1)AlexNet(2012)

As a landmark model in the resurgence of deep learning, its five-layer convolution-
al and three-layer fully connected architecture achieved a breakthrough aceuracy in the
ImageN et competition for the first time. The use of the RelLll activation function to re-
place the traditional Sigmoid, combined with Dropout regularization and overlapping pool-

ing strategies, effectively alleviated the issues of vanishing gradients and over fitting. The
dual GPIU parallel training design laid the foundation for subsequent large-scale models.

(2)VGGN et(2014)

By stacking consecutive 3@3 small convelutional kernels to build a 16 — 19 layer deep
network, it demonstrated the importance of receptive field equivalence and depth for feature
representation. The unified convolution design simplified the selection of hyper parameters,
but the high number of parameters led to a surge in computational cost. Its modular design
concept inspired the structure of subsequent networlks.

(3)GoogLeNet(2014)

The introduction of Ineeption modules enables multi-scale feature fusion, while 1@1
convolutional kernels are emploved for dimensionality reduction and eross-channel feature
interaction. Replacing fully connected lavers with global average pooling significantly re-
duces the number of parameters. By stacking 9 Inception modules, a 22-layer network

is constructed, achieving —for the first time on I'mageNet —a Top-5 error rate below 7%.

(4)ResNet(2015)

The residual learning framework addresses the degradation problem in deep networks
via skip connections, enabling the successful training of ultra-deep models with up to 152
layers. Its bottleneck structure (a 1@13@31G1 convolutional block) optimizes the trade-
off hetween computational efficiency and feature representation capacity. This architecture
reduced the error rate to 3.57% on ImageNet classification, establishing itself as a founda-
tional design for subsequent models.

(5)DenseNet(2017)
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The dense connectivity mechanism enables each layer to receive feature inputs from all
preceding layers, enhancing gradient How and feature reuse. Through a composite function
(BN — Relll — C'onv) and a growth rate parameter to regulate the number of feature maps,
this architecture reduces parameters by over 50% compared to HesVet, demonstrating su-
perior performance in tasks like medical image segmentation. (6)M obile N et(2017)

Depthwise separable convelution decomposes standard convolution into depthwise con-
wvolution ({per-channel] and pointwise convolution (1€1), reducing computational cost by
8 — 0@, With width multiplier and resclution multiplier enabling fexible accuracy-speed
trade-offs, it has hecome the go-to architecture for mobile deployment, achieving 120+ F PS

on platforms like the Snapdragon 235.

2.2 Introduction to Adversarial Examples

Adversarial examples refer to specially crafted samples that induce deep learning models
to make incorrect predictions by introducing subtle. human-imperceptible perturbations to
original inputs. The generation of adwversarial examples can be formally expressed az a
constrained optimization problem.

Given a classification model fi(x) — vy, with parameters #, the adversarial attack aims
to find a perturbation & that satisfies the following conditions: ||n||, < £,st

maximize L fo(z +n). y*)
maximize L(fa(z +n).y") (2.1)

Here, Li-) denotes the loss function, y* represents the attack target, and the p — norm
constraint guarantees the perturbation remains controlled. According to the dimension of
information available to the attacker, the classification syvstem can be primarily categorized

as follows.

2.2.1 White-Box Attacks vs. Black-Box Attacks

White-box attacks assume the attacker has complete knowledge of both the model
architecture V. L and gradient information 7, where perturbation generation relies on explicit
modeling of the decision boundary. Tvpical methods construct linear approximations based

on frst-order Taylor expansions:
o Vol (fo(x) ., y), (2.2)

The optimal perturbation can be approximated through iterative projected gradient descent,
and this process can be viewed as a path integral of the loss function surface in the input
space.

Black-hox attacks rely solely on the model’s input-output responses fy(x), where the

target function’s gradient can be estimated via finite difference methods:

V.L =~ lz Lz tow)— L) (2.3)

£ o
i=1

Here, #; represents a random perturbation vector and o denotes the step size. In scenarios
where only predicted labels (without probability scores) are available, approaches like binary
search or random wall can be employed to approximate the decision boundary. For example,
boundary attacks generate adversarial examples through the following iterative process: 1.
Maove from the current adversarial sample x_ dv towards the original sample x; 2. Search for

the minimum perturbation point along the movement path that satisfies fa(x') # fo(x).
2.2.2 Targeted Attacks vs. Untargeted Attacks

Targeted attacks force the model to misclassify input samples into a specified target class
while satisfying the perturbation constraint ||n||p < . This can be achieved by formulating
an optimization problem that minimizes the loss for the target class, with some methods

employing a dual optimization ohjective:
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min imize ||7,|| + A - max (D. log fa(x + njy — log fo (= + r;)yc) . (2.4)

by using Lagrange multipliers A, the perturbation magnitude is balanced with the confidence
of the target class.

The untargeted attack only requires the model’s output te deviate from the original
correct class y, without specifving the misclassified target class. Its optimal solution often

projects along the direction of the loss function gradient. i.e.:

I}a:_,:__ vr‘['(fﬂ(r)-y) (25:]

VoL (folz), ),

2.3 Common Attack Methods Against Deep Learning Model Wa-
termarking

The security of watermarking techniques must withstand various targeted attacks. At-
tackers employ strategies such as model structure modification, parameter perturbation, ar
input interference to attempt to remove watermark identifiers or disrupt verification mecha-
nisms. Below, typical methods are elaborated from the dimensions of attack implementation
paths and damage targets.

(1)M odel Pruning Attack

Model pruning disrupts the physical carrier of the watermark by removing redundant
parameters in the model. Structured pruning focuses on deleting neurons or channels with
low importance, potentially directly eliminating specific weight distributions that the wa-
termark encoding depends on. Unstructured pruning randomly removes scattered. small
parameters, causing fragmentation and loss of watermark information during the sparsifica-
tion process. Such attacks pose a significant threat to white-box watermarks that rely on
specific patterns in the parameter space, especially when the watermark embedding is not
coupled with the model’s critical funetional path.

(2)M odelFine — Tuning Attack

Model fine-tuning optimizes a pre-trained model locally with a small amount of data,
which may overwrite watermark-related feature representations. The fine-tuning process
causes the model’s feature representations to shift towards the new task’'s data distribution,
weakening the activation conditions of the watermark trigger. Attackers can further isolate
watermark-related parameters from the new task’s optimization direction by limiting the
numher of fine-tuning layers or introdueing regularization constraints, therehy accelerating
the degradation of the watermark features.

(31 Distillation Attack

Using the teacher-student model framework, knowledge from a watermarked model is
transferred to a clean student maodel, filtering out watermark information through softened
output distributions or feature matching loss. The temperature scaling mechanizm reduces
the discriminative power of output logits, causing the watermark trigger patterns to he s-
moothly diluted in the probahility space. Feature distillation, on the other hand. strips away
watermark-related anomalous feature responses by mimicking intermediate layer represen-
tations. Such attacks are highly destructive to black-hox watermarks that rely on output
layer statistical properties.

(W atermarkOverwriting Attack

Attackers overlay a new watermark onto a model that already contains an embedded
watermark, triggering conflicts over copyright ownership. Orthogonal projection methods
achieve parallel embedding of watermarks by constructing multiple independent subspaces,
but multiple projections may lead to non-orthogonal interference among the subspace basis

vectors., Parameter modulation-based watermarks cause information confusion due to the

DOI: 10.35629/0743-11041835 www.questjournals.org 27 | Page



Research on Integrity Verification Methods for Deep..

dyvnamic overriding of weight values.

i(5)EvasionAttack

For the trigger verification mechanism of hlack-hox watermarks, adversarial sample gen-
eration techniques are used to perturb the input data. The adversarial perturbations crafted
by attackers canse the trigger samples to deviate from the preset activation region in the
feature space while maintaining the model’s prediction performance on normal samples. Gra-
dient masking methods further hide the gradient propagation path of the trigger, increasing
the difficulty of reverse engineering the watermark detection.

(6)M odel Stealing Attack

By querying the original model to construct a proxy training dataset, attackers can train
surrogate models that maintain similar decision boundaries but possess parameter distribu-
tions unrelated to the watermark encoding. This tvpe of attack poses a significant threat
to white-box watermarking schemes that rely on internal parameter characteristics, as the

implementation pathway of surrogate models fundamentally differs from the original maodel.

3 Integrity Verification of Deep Learning Models Based on Multi-Objective
Adversarial Examples

3.1 Model Integrity Verification Framework

Since users of the model only have usage rights and cannot access the model’s specific
information, integrity verification of the model can only be performed by examining the

output behavior.

3.1.1 Model Watermark Sample Generation Methods

In the integrity verification framework of black-hox models, the core of the watermark
generation strategy lies in accurately capturing the geometric topological features of the
classifier. This chapter nses multiple sets of adversarial examples that are closely aligned

with the decision boundary to describe the model’s decision boundary.

Start with an image sample I from a target class k that is vulnerable to attacks, and
set multiple attack targets to generate high-quality adversarial examples xq,y0.70. The

generation process is shown in Figure 1.

Figure 1: Initial Adversarial Sample Generation Diagram
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After ohtaining the initial sample &, perturbations are added to generate a perturhation
J\r
set 5 = {:IIU + dg;} ., within the s—neighborhood, whered ~ U (—z, u‘:ld. The partition
=1

funetion is defined as:
A={z e 5|f(x)=k} .B={z € 5|f (=) #k}. (3.1)
Construct a binary set distance matrix D € RI4IH21 where the elements are:
Dy = lai = bi||z, ai € A, b € B, (3.2)
Determine key sample pairs through dual-set nearest neighbor search:
(a*, b*)Satisfy : argmin|a; — b|z. (3.3)

If a*, b* satisfy |

b* —a*|| < #, where # is the parameter controlling the maximum distance,
then the midpoint x; of a* and b* is included in the watermark sample set K.The sample

selection method is shown in Figure 1.

Adversarial Example Category x, Regions.

Key Protected Category-K Regions.

Figure 2: Schematic Diagram of the Iterative Process

Since the processing methods for yo and zq are identical to those for xq in Algorithm 1,

only the handling procedure for xp is demonstrated in the pseudocode.

3.1.2 Model Watermarking Design and Certification Methods

In specific application scenarios where model users have no access to the model’s internal
structural parameters or training process details, and lack prior judgment criteria for assess-
ing functional integrity, the verification approach must rely solely on ohservable outputs.
Conventional classification models typically provide two output formats: class probability
distributions and discrete elass lahels. To ensure eross-model applicahility of the verification

method, this study constrains the model output to the discrete class label format. Under
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this constraint, the verification process can only proceed by observing the model’s output
class labels in response to input samples.

The model holder has complete access to the model parameters and training details,
allowing them to construct a dedicated sequence set M based on the target model K param-
eters and structural features. The model’s output labels are encoded to generate a digital
watermark identifier kps. This watermark mechanism allows two implementation paths: one
can either construct an irreversibly hashed sequence with a pseudo-random distribution, or
embed authentication elements via a pre-shared protocol, such as using the identity key of
an authorized user as the initial seed for generating the watermark. This bidirectional design
ensures the watermark’s non-forgeability while providing sclutions for different application
scenarios.

After agreeing on the watermark information and the key protected class with the model

user, watermark samples are generated using a sample generation algorithm based on the
given watermark sequence. Assuming the watermark information is Ky, we set to generate
n adversarial samples of different classes, dividing the watermark information into n parts
IR, Kty .. K, }. and then use the improved watermark sample generation algorithm
for each piece of watermark information. The algorithm is shown as Algorithm 2.

Based on different adversarial samples, algorithm 3.2 is repeatedly used to generate n
groups of watermark samples, which are then combined to form the final watermark sample
set . The watermark sample set K and the watermark information Ky are securely pack-
aged and sent to the model user for verification. The user will input the received watermark
sample set ' into model Mto obtain the model output Kj;, and then compare each Kj;

with Kar. If K}y # K ar, then the model is considered incomplete.

4 Algorithm

Algorithml : RandomizedWatermarkSampleGeneration

Input: An image sample [ belonging to class k, the model M to be protected,
and the maximum number of iterations i,,,,:
Output: Watermark sample seti(
1 Initialization: Perturbation range ¢ = 1.0, maxinmm distance # = (.2,

constraint condition 4 = 1:4 = 1, and initial normal vector n, = 01

2 Use the fast boundary attack method to obtain the initial adversarial sample xg;

3 for i € [1,4,,..] do

4 Add a random perturbation & SL}Ch that & ~ U (—e_-'..-’_v")d, Generate a
perturbation setS = {;rg + 51-,}]? that satisfies the partition funetion (3.1)
and is approximately in the di;ec‘t-iou of the normal vector n;:

5 Determine the nearest neighbor sample pair (a*, b*) that satisfies the formula
(3.3) through nearest neighbor search;

6 if ||b* —a’|| < ¢ then

7 Add the midpoint x; of a* and & to the watermark sample set K:

8 end

return K

The output sequence generated hy this algorithm on the model can he divided into two
categories: samples belonging to class k are encoded as 1, while those not belonging to class
k are encoded as 0. Since the algorithm imposes no restrictions on the output categories,

the result is an unordered set of binary codes, ensuring its security.
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Algorithm?2: WatermarkSequence — BasedSampleGenerationAlgorithm

Input: An image sample I belonging to class &, the model M to be protected,
Watermark information K,
Output: WatermarkSampleSet
1 Initialization: Perturbation range £ = 1.0, maximum distance & = 0.2,
constraint condition ~ = 1;¢ = 1, and initial normal vector ny = 0,

and maximum bit length of watermark information M;

2 Use the fast boundary attack method to obtain the initial adversarial sample zq;

3 while(1) do

4 Add a random perturbation & such that 4 ~ [J (—e-:.;—“:ldk Generate a
perturbation setS = {;rc. + 5,;}1:\ . that satisfies the partition funetion (3.1)
and is approximately in the di:ect-ion of the normal veetor #;;

5 Determine the nearest neighbor sample pair (a?,b%) that satisfies the formula
(3.3) through nearest neighbor search;

6 if ||B* —al|| < @ then

7 if The midpoint x; of a* and & belongs to a class that satisfies the watermark

information K, then

8 Add z; to the watermark sample set K

9 i=j+1

10 if 7 = M, satisfies the maximum watermark bit break

11 end

12 end

13 end

14 i=i+1

14 Generate a normal vector 7; that is approximately in that is approximately
in the direction of the line connecting v = (b* — a*) / ||b* — a*||a’ and a® with

13 end

return K,

5 Experimental Results
To verify the feasibility of the proposed solution in this chapter and its sensitivity to
common attacks, this subsection mainly presents experiments from the following aspects:

experimental setup, experimental results, and simulated attacks.

3.1 Experimental Setup
The data set used in this experiment is the publicly available Ox ford — ITIT Fe data
set, which contains 37 pet categories (covering different breeds of cats and dogs). Classifi-
cation training was performed on this dataset using three common classification networlss:
ResNetil, AlexNet, andGoogLeNet. All experiments were conducted on an NVIDIAGe ForeeGT X 105077
using Ma#lab20206.

3.2 Experimental Result

This section assumes that the model owner and the user have already agreed on the wa-
termark information Ay and the key protected target categories § and k. In the experiment,
ResNetso is used as an example. Based on the target categories j and k, one initial image
I, and I, of categories j and & are selected, respectively. Then, using the Fast Gradient Sign
Method (F'GSM ), three adversarial samples are generated for each image I, and [;. The

original images are shown in Figure 3.
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Figure 3: Original Sample Image
Generate watermark samples according to Algorithm 2, as shown in Figured. According
to the encoding method provided in Section3.1, the watermark information obtained by en-
coding the two sets of watermark samples in Figure 4 is: [01011, 10010, 11001,00110,11011, 10010]
[01011,10010,11001,00110, 11011, 10010]. The model user only needs to input the generated
watermark samples into the model and check the output to verify the integrity.

3.3 Model Integrity Detection Experiment under Simulated Attacks

This section will perform model fine-tuning, model pruning, and distillation attacks on

key protected classes for the models used in the abave experiments. The attacks are required
to ensure that the decline in model classification performance does not exceed 10% of the
original performance. Additionally, the model integrity will be validated according to the

model verification method provided in Section3.1.

Figure 4: Watermark sample image
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3.3.1 Model Fine-tuning

The model fine-tuning in this experiment follows the method outlined below: Images
of cats and dogs, different from those in the dataset and test set, are searched online and
gradually added to the training set in increasing amounts to retrain the network. After

training, the original test set is used to evaluate the model’s performance, and the model’s

performance degradation rate is checked, ensuring that the performance degradation does

not exceed 10%.

Table 1 Model Integrity Verification under Model Fine-tuning
Model category  Model depth  Model Performance Degradation  Hate (%)

r<1l 1<xr<3 <x<h bz T<xz<9 9<z
AlexNet 8 % i W i i 4
GoogLeNet 22 * i W v v v
ResNets0 50 ¥ v W Vi v i

3.3.2 Model Pruning

The model pruning in this experiment follows the method outlined helow: The pruning
rate is gradually inereased, and the classification accuracy of the model is obhserved, ensuring

that the performance degradation does not exceed 10%.

Table 2 Model Integrity Verification under Model Pruning

Model category  Model depth  Model Performance Degradation  Hate (%)

r<1l 1<zx<3 <x<h h<z<T T<xz<9 9<zx
AlexNet 8 Vv v v v v v
GoogleNet 22 b b v v v v
ResNet50 50 x v v v v v

3.3.3 Data Poisoning Attack

The data poisoning attack in this experiment is carried out as follows: First, half of the
kev protected classes 7 and k from the original training set are selected to form a new image
set. Then, a certain numher of images nunrelated to classes § and k are added to the image
set of class j and Fin increasing order, and combined with the newly formed image set to
create a new training set. The new training set is then used to train a tampered model on
the pre-trained model. The tampered model is tested on the test set of the original model,

ensuring that the model performance degradation does not exceed 10%.

Tahble 3 Model Integrity Verification under Data Poisoning Attack
Model category  Model depth  Model Performance Degradation  Rate (%)

=1 1<zxz<3 <x =25 <=7 T<zx=<9 09<zx
AlexNet 8 v Vv v v v v
GoogleNet 22 = x W v v Vv
ResNet50 50 x x s v v Vv

From the experimental results in Tablesl, 2,and3, it can be concluded that when the model

performance degradation rate is no less than 5%, the watermark samples provided in the
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experiment can successfully detect the three attack methods mentioned. However, when the
model performance degradation rate is less than or equal to 5%. the watermark samples
vield better results for models with lower network depth. This is because simpler models
tend to have their decision boundaries easily altered when tampered with, allowing them
to be captured by fragile samples. On the other hand, models with higher depth have high
module redundancy. For instance, in the case of the ResNet50 network, the strong feature
abstraction ability of deep layvers makes the poisoning effects more subtle, resulting in the

watermark samples failing to detect the attaclk.
3.3 Comparison with Related Literature

In order to fully demonstrate the superiority of this approach, this section will compare
it with existing solutions, as shown in Tabled. Through comparison, it can be observed that
these solutions all have good fidelity. The methods proposed by Wang[10], Rouhani[14],
and Adi[15] use watermarks to protect the intellectual property of neural network models.
Their watermarking methods are robust but not sensitive to changes in the model, making
them unsuitable for model integrity verification. Guan|[20] proposed using fragile samples
for model integrity verification. Although the impact is minimal, their method still involves
some modifications to the model itself. The watermarking approach in this chapter can nat
only add watermark verification for model integrity without modifving the model itself, but
also provide targeted protection for key abjectives.

Table 4 Comparison of Different Methods
Watermark Embedding Methods Fidelity  Fragility Robustness Stealthiness

Our method vy W W b
Wang W b¢ Vv i
Rouhani Vv b * v
Adi V x V v
Guan N W x v

Watermark Embedding Methods Model Integrity  Critical Target Protection

Our methad Vv W

Wang x =

Rouhani * *

Adi * *

Guan * b
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