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ABSTRACT: In this paper, we consider the Collatz sequence, i.e., the discrete 3n+1 or the (3n+1)/2 sequence, 

where it is known that the presence of at least one cycle is guaranteed, given by (1421) and (121), 

respectively.   

The above sequence is noted to lack parity invariance, and the new related sequence has no saturation point.  
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I. INTRODUCTION  
In a recent work discussing the differences between left and right [1], specifically regarding parity 

invariance in quantum mechanics, a parity transformation P - a change in the sign of the coordinates - was 

revisited in connection with significant results from the past, not only in Statistical Mechanics but also in Weak 

Interaction (for example, the decay of a meson into three pions). According to Bietenholz [1], the P 

transformation under consideration here represents a discrete model in the field of dynamical systems, 

particularly one that complements the well-known dynamical system described by the Collatz Sequence, namely 

the 3n+1 or (3n+1)/2 sequences. We will apply a P transformation to the sequence defined for positive integers 

n.  

Several researchers recently introduced and studied the newly related model that emerged [2, 3, 4]. 

We then consider the sequence above, where n is now a negative integer. Furthermore, after a brief computation 

of the orbits [5], we demonstrate that in the new model, namely that of the sequence [(3n-1)/2, n/2], the 

saturation point disappears. 

The chalice and orbits are also given up to n = 60, and the decay into the three cycles of the new 

sequence is illustrated. 

II. DISAPPEARENCE OF A PARITY SYMMETRY 
 The (3n+1) sequence (the first of the above forms of the Collatz sequence for positive integers n) is 

given as: 

                                                        

(3n+1) = f(n),                                                                                                                                                         (1) 

(n/2) = g(n) with n>0. 

 

Notice that f and g are functions of the first degree. 

http://www.questjournals.org/


Collatz Sequence: Negative Parity Invariance, Saturation Point, and Cycles 

DOI: 10.35629/0743-11043641                                       www.questjournals.org                                      37 | Page 

 

The P transformation is obtained employing the sign = (from the right to the left and vice versa), and we obtain: 

-f(n) =  -3n-1  ≠   f(-n)                                                                                                                                            (2) 

-g(n)=g(-n) =  -(n/2) 

 

Thus, with -n =m, now a positive integer m, we obtain: 

h(m) = 3m-1                                                                                                                                                           (3) 

g(m) = m/2 

Thus, we do not obtain the same sequence by the P transformation above. In the same way, if we define P(x) = -

x, for all real x, then P(3n+1))=-3n-1, and P applied to the Formulas (1) for negative n, i.e., -n=m>0 gives: 

 

P(3n+1) = -3n-1=3m-1=h(m) 

P(n/2) = P(g(n))=m/2=g(m), m>0                                                                                                                          (4) 

                              

As noted above, the model of Eq. (1), for negative values of n, transforms into the model defined by 

Equations 3 and 4, where m is now positive, and there is a parity symmetry breaking [1, 6, 7, 8]. We note that 

model (1) has at least one cycle, but for the newly proposed model (3), the existence of at least three cycles 

[2,10] is given here (in the (3n-1)/2 formulation) by:          

                                                            

C1: 11                    of length 1 

C2:  57105     of length 3 

C3: 172537558241619113668 3417 of length 11. 

 

As for model (1), it may be conjectured that there are only the 3 cycles above, the inverse orbits of 

which are given below with the corresponding chalices [9]. See also Appendix 1 for the length l(n) of the orbits 

up to n=60 for the (3n-1)/2 sequence, Appendix 2 for the chalice C1 of the (3n-1)/2, and Appendix 3 concerning 

the calculation of the growing constant c~4/3 of the same chalice C1 in Figure 1. 

 

III. ABSENCE OF A SATURATION POINT IN THE NEW SEQUENCE 
In the Appendices, we give the orbits with their length l(n) up to n=60, and we note that, as in others 

models -analogous to the original (3n+1)/2  [10], the saturation point introduced recently [5, 9], is absent, i.e. 

l(n)  n “always” (in the interval we have considered: the length l(n) of a trajectory starting at n, i.e., l(n) is 

defined to be the number of steps to reach one of the numbers of the three cycles  C1, C2, C3). 

As an example l(87)=28 (reaching 1, in C1), l(28)=2, reaching 7 in C2 and l(55)=0, on C3. Of course, 

this takes into account the known stronger conjecture concerning model (1). For instance, l(n)<41.67·log(n), for 

model (3), taking into account the numerical results given in [10], we suspect that l(n)c·log(n) with c< 41.67.... 

of the model (1) [9,10, 11]. As for the model (3n+1)/2, our conjecture for the new model (3n-1)/2 is that on the 

three chalices of height k there are totally present the first natural integers <= to k (notice that l(n)=n only for 

n=3 in the orbits given in the Appendix1), and for c=41.67... → k> 226. 

IV. A SIMILARITY IN THE TWO DYNAMICAL SYSTEMS 
The set of odd numbers having l(n)=1, i.e., d1(p) in the (3n+1)/2 model is given by the solution of 

(3d1(p)+1)/2k = 1 where, for a cascade of even numbers, the solution is given by:         

k=2 → d1(k) = 1 

k=4 → d1(k) = 5 

k=6 → d1(k) = 21 

k=8 → d1(k) = 85 

 

We note the recursive relation: d1(k)= 4·d1(k-2)+1, k=4, 6, ... 

Similarly, for the (3n-1)/2 model, where now we have three cycles C1, C2, C3, containing resp. one odd (1), two 

odd (5, 7) and seven odd (17, 25, 37, 55, 41, 61, 91), we have a similar recursive relation for the three cycles. 

For example: 

C1:   d1(k) = 4·d1(k-2)-1         

(-1 instead of +1), k=3, 5,...1, 1·4-1=3, 3·4-1 =11, 11·4-1=43 (See the chalice for C1 on the figure 1). 
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C2:  d1(k) = 4·d1(k-2)-1, k=3,5,7,....  5, 5·4-1=19, 19·4-1=75, 75·4-1=299 which all fall in the next odd, i.e.,7 of 

C2·d1(k) = 4·d1(k-2)-1, k=4,6,8,... 7, 7·4-1=27, 27·4-1=107, 107·4-1=427,...which all fall in the first odd, for 

example,  5  of C2. 

C3: d1(k) =4·d1(k-2) -1, 17,17·4-1=67, 67·4-1=267, ..    k==3, 5, 7.. which all fall in the next odd of C3, i.e., 25 

and so on for all the other six odd numbers of C3, i.e. set d1 of 25 falls in 37, that of 37 falls in 55, etc. 

These computations demonstrate the similarity of the recursive equations, with every odd number in 

one of the three cycles behaving like the number 1 in C1. A broader relationship between two consecutive sets of 

odd numbers (d1 and d2), which represent related cascades of even numbers, is expressed by the solution of the 

equations: 

(k)  k=1, 2, 3…                                                                                                                             (5) 

We obtain: 

           k=1        d1 = 1 + 22·p                d2 = 1+ 6·p       p=0,1,2,3.... 

           k=2        d1 =  7+ 23·p                d2=  5+6·p        p=0,1,2,3... 

           k=3:       d1  = 3+  24·p                d2 = 1+6·p        p=0,.... 

           k=4:       d1 =27+ 25·p                d2 =  5+6·p        p=0,...  

           k=5:       d1 =11+ 26·p                d2  =  1+6·p        p=0,. 

           k=6        d1 =107+27·p               d2=  5+6·p         p=0,. 

           k=7        d1 =43 + 28·p               d2=  1+6·p         p=0,.              

           k=8        d1 =427+29·p               d2=  5+6·p         p=0,... 

           k=9:       d1=171+ 210·p              d2 = 1+6·p         p=0,.. 

           k=10:     d1=1707+ 211·p            d2=  5+6·p         p=0 

           k=11:     d1= 683+ 212·p             d2= 1+6·p          p=0 

           k=12:     d1= 6827+213·p            d2= 5+6·p          p=0 

                          

We note now that the coefficient of p in d1 is 2k +1 and more than this, that two emerging “invariant” 

sets given by 1+6·p (for k odd, 1 modulo 6) and 5+6·p ( for k even, 5 modulo 6) which, after additional 

applications of the rule ((3n-1))/2 and n/2), converge to the 3 “eigensets”, i.e., to the three cycles C1, C2, C3  

given above. and illustrated below without the cascades of the even up to 17 (the smallest integer in C3). 

                →   1,         5,         7,           11,          13,            17,             

                       1,         7,         5,            1,           19,            25,......        

                       1,         5,         7,            1,            7,             37,...           

                       1.         7,         5,            1,            5,             55,... 

                       1,         5,         7,            1,            7,             41,... 

                       1,         7,         5,            1.            5,             61,,         

                       1,         5,         7,            1,            7,             91,.. 

                       1          7,         5,            1,            5,             17,.. 

thus: 

                      C1         C2            C2            C1           C2             C3 

                       

Matrix representation of the three cycles in the (3n-1)/2. 

Notice that the above “matrix”, (for n up to  87  =7+ 8·p, p=10, we have for k=2: ((3·87-1) /22) = 65= 

5+6·p for p=10)   and since l(87) = 27, falls in  C1, the matrix has the first line ending in 65 (22 numbers) and 

height 13  i.e. (65, 97, 145, 217, 325, 487, 365, 547, 205, 307, 115, 43, 1). 

Finally, it is noticed that the cycle of the smallest length that appears is C1 of length 1 (11) as 

illustrated below with the chalice, where the growth constant is calculated to be c=(4/3=1.33...) as for the 

(3n+1)/2 sequence [9].  

The computations indicate that regarding (3n+1)/2, the sequence of (3n-1)/2 is described by a Fibonacci 

sequence given by: 
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With the characteristic equation: 

 

The solutions are: 

 

To the best of our knowledge, the content of this work is new or has not been given along the above lines. 

 

V. CONCLUSION  
We have applied the P transformation to the ((3n+1)/2, n/2) discrete dynamical model and discovered 

it. Then, we investigated some properties of the new model ((3n-1)/2, n/2) (n>0), specifically its structure and 

orbits. We have confirmed the disappearance of the saturation point for a numerical experiment up to n=60. 

The growing constant of the chalice is estimated (as in a similar model) to be c4/3. Finally, the 

sequence is well approximated (as other sequences) by a Fibonacci one, given by: 

 . 
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Appendix 1 

 

The next Table 1 collects the orbits from n=1 to n=60 in the ((3n-1)/2). 

  

 

n l(n) Cycle n l(n) Cycle 

1 0 C1 31 5 C3 

2 1 C1 32 5 C1 

3 3 C1 33 8 C3 

4 2 C1 34 0 C3 

5 0 C2 35 7 C2 

6 4 C1 36 7 C2 

7 0 C2 37 0 C3 

8 3 C1 38 4 C2 

9 5 C2 39 11 C1 

10 1 C2 40 3 C2 

11 5 C1 41 1 C3 

12 5 C1 42 6 C3 

13 4 C2 43 7 C1 

14 1 C2 44 7 C1 

15 8 C1 45 5 C3 

16 4 C1 46 3 C3 

17 0 C3 47 6 C3 

18 6 C2 48 6 C1 

19 3 C2 49 6 C3 

20 2 C2 50 1 C3 

21 5 C3 51 6 C2 

22 6 C1 52 6 C2 

23 2 C3 53 12 C1 

24 6 C1 54 5 C2 

25 0 C3 55 3 C3 

26 6 C2 56 3 C2 

27 4 C2 57 20 C1 

28 2 C2 58 10 C1 

29 9 C1 59 9 C1 

30 9 C1 60 10 C1 

  

Table 1.       

 

 

Appendix 2 

 

Figure 1 reproduces the chalice C1 of the sequence. In this case, the sequence up to k= 11 highlights that the 

constant: 

 

 
 

approaches the value:  

 

 
As sequence [10]: 
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Figure 1. Chalice of C1. 

 

Appendix 3  

 

Observing Figure 1, we determine the following Table 2, with the calculation of the growing constant c=4/3 

=1.3333.... 

  

k nk nk 

11 14 56 

10 10 42 

9 8 32 

8 6 24 

7 5 18 

6 3 13 

5 3 10 

4 2 7 

3 2 5 

2 1 3 

1 1 2 

0 1 1 

Table 2 

 

For example, observing Table 2, if we consider the level k=11 and k=10, we have:  

For k=11:nk=56. For k= 10: nk=42.  

 

Their ratio is   which is the constant c. 

 


