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Abstract 
The With the widespread application of artificial intelligence technology,copyright protection for deep learning 

models has become a core industry requirement. To addressthe issue that existing model watermarking schemes 

require structural modifications to modelswhich may incur potential performance risks, this paper proposes a 

non-intrusive copyrightprotection method based on adversarial examples. The method leverages the 

characterizationcapability of adversarial examples regarding model decision boundaries, constructing a 

sequenceof adversarial samples covering multi-class decision boundaries through targeted adversarial 

generation algorithms as watermark carriers, while encoding copyright information into the 

sequencegeneration process. Watermark embedding requires no modification of model parameters 

orarchitecture, only requiring pre-storage of the adversarial sample set and corresponding outputs 

asauthentication credentials with authoritative institutions. During copyright verification, 

ownershipconfirmation can be achieved by comparing the matching degree between the suspected 

model’sresponse to watermark samples and the authentication credentials. Experiments demonstrate thatthis 

method achieves considerable copyright verification success rates while preserving originalmodel performance, 

with adversarial watermark samples showing robustness against commonwatermark removal attacks. This 

research provides a secure and interpretable novel solution fordeep learning model protection. 
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I. Introduction 

1.1 Research Background and Significance 

The In the era of artificial intelligence, the information explosion has created an urgent demand for 

efficient processing technologies. In 2006,Hinton et al. [1] introduced theconcept of “deep learning”, which 

attracted widespread attention in academia. Today, ithas demonstrated cross-domain innovation value in fields 

such as medical diagnosis (disease prediction), financial risk control (decision optimization), and intelligent 

transportation(autonomous driving), emerging as a key technology driving industrial advancement andsocietal 

development. 

In recent years, the field of deep learning model security has begun exploring novel defense 

mechanisms, among which digital watermarking-based solutions (referred to as “deeplearning model 

watermarking” [2]) have emerged as a significant technical approach. Digitalwatermarking constitutes a security 

technique that embeds specific identification informationinto the underlying features of digital carriers (e.g., 

images, videos, audio) while preservingtheir core functional attributes, thereby achieving information 

concealment.From a technical implementation perspective, digital watermarking primarily manifests in two 

categories:robust watermarks and fragile watermarks. The core functionality of robust watermarks liesin 

enabling copyright traceability, with their technical characteristic being the capacity toensure that embedded 

watermark identifiers withstand typical interference operations suchas rewriting attacks and data compression, 

maintaining recognizability even in adversarialenvironments. 

http://www.questjournals.org/
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While research in deep learning model watermarking continues to advance with significant achievements, its 

practical applications remain primarily focused on model copyrightprotection. Current mainstream techniques 

can be categorized into two approaches basedon the accessible model information during protection: 

(1) White-box watermarking: Requires complete access to the model’s internal parameters(including 

network architecture and weight matrices) for verification. 

(2) Black-box watermarking: Relies solely on input-output characteristics through model API interactions, 

employing specially constructed test samples to capture the model’sresponse patterns to specific inputs. 

These two methodologies cater to distinct application scenarios and verification requirements. White-box 

verification demands full access privileges to the model’s core parameters,whereas black-box implementation 

depends on analyzing input-output behavior via API interfaces. 

1.2 Research Status at Home and Abroad 

1.2.1 History and Current Status of Adversarial Example Techniques 

According to the level of knowledge the attacker has about the model, adversarial attacks are mainly 

divided into white-box attacks and black-box attacks. In a white-box attackscenario, the attacker has full access 

to the target model’s architecture, training data, andweight parameters. In a black-box attack scenario, the 

attacker can only access the model’sinput-output interface, with no knowledge of the internal architecture, 

training parameters,or other critical information. 

In white-box attack scenarios, attackers possess complete access to the model’s architecture and 

parameters, granting them significant advantages in generating adversarial samples. Gradient-based methods, as 

mainstream techniques, are highly favored byresearchers due to their exceptional computational efficiency. A 

typical example is theFast Gradient Sign Method(FGSM)proposed by Goodfellow et al.[3], which 

generatesadversarial samples through a single forward propagation pass. However, constrained by itsglobal 

perturbation strategy, this method tends to produce adversarial samples with relatively high visual distortion. 

Building upon the FGSM framework, Dong et al.[4] incorporated the momentum concept to develop MI-

FGSM (Momentum Iterative Fast Gradient Sign Method). Thisapproach not only stabilizes the update direction 

but also effectively guides the loss function towards superior solution spaces, overcoming local optima 

constraints. Consequently,the generated adversarial samples demonstrate enhanced attack potency and superior 

crossmodel transferability.Xie et al.[5] proposed DI-FGSM (Diverse InputFGSM), whose coreupdate mechanism 

resembles the Basic Iterative Method (BIM)while maintaining highcompatibility with other attack techniques. 

This method ensures broad applicability anddelivers strong attack performance in both white-box and black-box 

scenarios.Lin et al.[6]integrated the Nesterov Accelerated Gradient algorithm [7] with iterative FGSM to create 

NI-FGSM,significantly accelerating the attack convergence process. Reference[8]employed gradient information 

from previous iterations to refine current gradients, thereby improving sample transferability and effectively 

avoiding local optima during gradientsearch.Wang et al.[9] accounted for inter-regional gradient correlations in 

images by accumulating gradient momentum across both temporal and spatial domains. Phan et 

al.[10]leveraged Class Activation M aps (CAM)to identify image regions critical for model decisions, an 

approach that simultaneously accelerates adversarial sample generation and enhances their transfer 

characteristics. 

The adversarial dynamics of adversarial example techniques-characterized by theirdynamic triggering 

mechanisms and precise characterization of model decision boundaries) offer novel solutions to address the 

limitations of traditional deep learning watermarking incopyright protection and model integrity verification. 

1.2.2 The Evolution of Digital Watermarking Technology in Model Protection 

Traditional digital watermarking techniques embed information through spatial domains(e.g,LSB) or 

transform domains (DCT, DWT), but face the inherent contradiction betweenrobustness and imperceptibility. 

With the advancement of deep learning, watermarking technology has shifted toward embedding information in 

model parameters and dynamic features. 

In 2017, Uchidaetal. proposed a groundbreaking copyright protection strategy for deepneural networks. 

They introduced an additional regularization loss function during modeltraining, establishing a comprehensive 

loss function framework that simultaneously achievesdual objectives: optimizing model performance and 

embedding watermark information during the training phase. 

In subsequent research,Wangetal.[11] made a groundbreaking departure from traditional loss functions 

by constructing a GAN − like adversarial learning framework. Thisapproach maintains high similarity between 

the weight distribution of watermarked modelsand original models, thereby enhancing watermark stealth. Their 

innovative adoption of a deep neural network as the watermark decoder significantly increases the information 
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capacity of watermarks, resulting in a novel solution that combines both anti-detection andanti-removal 

properties. 

In black-box watermarking scenarios, the crucial step involves constructing a trigger setto train the 

neural network. This trigger set consists of specific input samples and theircorresponding predefined labels. 

After training, when these trigger samples are fed intothe network, it should output the predetermined 

labels)knowledge exclusively held by themodel owner. To prove ownership, the holder can demonstrate the 

input-output correspondence using these triggers without accessing any internal model information, 

maintainingthe neural network as a complete “black box” throughout verification.Capitalizing on theunique 

advantages of trigger-based watermarking, researchers have developed various triggerconstruction methods. 

Adietal.[12] pioneered the integration of model backdoors with watermarking mechanisms. Their approach 

resembles data poisoning: during training, an imageset statistically independent of the original data distribution 

serves as trigger signals, withthese samples forcibly mapped to random class labels. While normal models 

struggle to establish stable correlations between triggers and assigned labels, watermarked models outputthe 

predefined labels with high probability, thereby verifying ownership. UnlikeUchidaetal.conventional weight-

modification approach, this scheme activates watermarks by establishingspecific input-output mappings. 

1.3 Research The main research content of this paper 

While adversarial examples inherently pose security risks to models, this work explores their beneficial potential 

by investigating their use in model copyright protection-specifically, embedding watermarks without 

compromising model functionality.The keycontributions of this study are: 

(1) Adversarial sequence-based copyright protection: We propose a novel method that utilizes targeted 

adversarial examples with large perturbation steps and low decision-boundarysensitivity. 

(2) Attack Resilience: The solution maintains high stability against common threats likemodel fine-tuning 

and parameter tampering, enabling reliable black-box copyright verification. 

(3) Empirical Robustness: Experiments demonstrate the method's effectiveness in preserving watermark 

integrity under various attack scenarios while successfully verifying ownership. 

 

II. Related Theories and Technologies 

2.1 Introduction to Deep Neural Network 

Deep Neural Networks (DNN), also referred to as Deep Learning Networks, represent a class of artificial neural 

network architectures characterized by multiple neural network layers (commonly called hidden layers). These 

adjacent hidden layers establish cascaded connections through weight matrices, where the output from 

preceding layers serves as the input source for subsequent layers. 

2.1.1 Convolutional Neural Network 

Convolutional ~Neural~ Network (CNN), as a representative algorithm of deep learning, combine the 

advantages of convolutional operations and deep architectures, belonging to the category of feedforward neural 

networks.  

The artificial neurons in CNN can respond to units within their local neighborhood, making them highly 

effective in processing large-scale images. Compared to traditional fully connected neural networks, CNN 

leverage spatial locality and translation invariance, significantly reducing the number of model parameters while 

greatly improving the speed and efficiency of image processing. This characteristic allows CNN to directly 

process raw image data without complex preprocessing. A typical CNN primarily consists of the following 

layers: input layer, convolutional layer, activation layer, pooling layer, and fully connected layer.Here is an 

introduction to the main structures: 

(1) Input Layer 

The input layer receives raw image data, typically represented as a three-dimensional tensor(height × width × 

number of channels). For RGB images, the number of channels is 3, with each channel corresponding to a pixel 

brightness matrix, where values range from [0, 255]. Mathematically, it can be expressed as: 

H W CI=R ,
(0-1) 

where H is the height, W is the width, and C is the number of channels. 

(2) Convolutional Layer 

As the core component of a convolutional neural network, the convolutional layer operates based on the 

biologically inspired mechanisms of local receptive fields and weight sharing. It performs spatial feature 
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extraction through two-dimensional discrete convolution operations. Mathematically, this operation can be 

defined as a weighted summation process between the input feature map I and the convolution kernel K: 

     
k k

m,n
i -k j -k

I K I m - i,n - j K i, j ,
 

   (0-2) 

as the kernel slides over the input data, the pixel values in the local region are linearly combined with the kernel 

parameters to generate a feature map. This process preserves the spatial locality of the input data while 

significantly reducing the number of parameters through weight sharing. For example, a 3×3 convolution kernel 

shares the same 9 parameters across all positions within the same channel, leading to a parameter reduction of 

several orders of magnitude compared to the fully connected layer's global connectivity pattern. 

 The convolutional layer core functionality lies in its multi-level feature abstraction capability. Shallow 

convolutional kernels typically capture low-level features such as edges and textures, while deeper layers 

progressively extract semantic information. The zero-padding strategy (e.g., padding=1) in the design maintains 

spatial dimensional consistency between input and output, preventing edge information loss. The parameter 

scale calculation must account for the input channel count C, output channel count G, and convolutional kernel 

size K, expressed by the formula: 

in out out+ .Params=K K C C C  (0-3) 

Variants of convolutional layers have significantly expanded their application boundaries. Dilated convolutions 

introduce dilation rates to enlarge receptive fields, making them suitable for tasks requiring long-range 

dependency modeling; depth wise separable convolutions decouple spatial and channel-wise convolutions, 

dramatically reducing computational complexity; grouped convolutions improve computational efficiency 

through parallel channel-wise processing. While preserving the core operational logic, these variants optimize 

computational pathways and feature interaction modes for specific task requirements. The prevailing design 

paradigm employs stacked small-sized convolutional kernels (et al. 3×3), where multi-layer stacking achieves 

receptive fields equivalent to larger kernels while enhancing nonlinear expressive capabilities. The dynamic 

adjustment of convolutional kernel parameters relies on backpropagation algorithms combined with gradient 

descent optimization strategies, enabling the network to adaptively learn discriminative features from data. 

(3) Activation Layer 

The activation layer enhances the model's representational power beyond linear models through nonlinear 

mapping mechanisms. Its core value lies in overcoming the limitations of linear operations-if the network 

consisted solely of linear transformations, multi-layer stacking would degenerate into a single linear 

transformation, incapable of approximating complex functional relationships. The introduction of activation 

function  f   enables neural networks to construct nonlinear decision boundaries through hierarchical stacking, 

thereby achieving effective modeling of high-dimensional data. The operation of the activation layer can be 

described as: 

 y = f z ,  where  i iz = w x+b. (0-4) 

This process transforms the linearly weighted sum z from the preceding layer into a nonlinear response y. 

Taking the ReLU(Rectified~ Linear~ Unit) function as an example, its expression is: 

  = max(0 )f z ,z , This piecewise-linear design maintains computational efficiency while achieving implicit 

feature selection by suppressing negative inputs, significantly enhancing the network's sparse representation 

capability. Compared to traditional Sigmoid functions, which suffer from gradient saturation issues, ReLU 

maintains a constant gradient of 1 in the positive region. This property effectively mitigates the vanishing 

gradient problem during the training of deep networks. 

The functional diversity of activation layers is reflected in the design characteristics of different functions. The 

Sigmoid function    1 1 - zf z = +e  constrains outputs to the (0, 1) interval, making it suitable for 

probability mapping scenarios; the Tanh function      - z - zz zf z = e - e e +e  features zero-centered 

symmetric distribution, accelerating gradient descent convergence; while LeakyReLU addresses neuron "death" 

issues by introducing a small negative slope (e.g., 0.01). In deep network architectures, the cascading effect of 

activation layers creates compound nonlinear mappings. The choice of activation function at each layer 

essentially establishes distinct feature space transformation rules-shallow layers tend to extract local detail 

features, while deeper layers progressively combine these into global semantic representations. This mechanism 

of hierarchical nonlinear stacking enables neural networks to approximate continuous functions of arbitrary 
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complexity, satisfying the theoretical requirements of the Universal Approximation Theorem. Notably, the 

differentiability of activation functions serves as a fundamental condition for their widespread adoption, 

ensuring gradients can propagate layer-by-layer through backpropagation via the chain rule. 

(4) Pooling layer 

Pooling layers in convolutional neural networks serve the dual purpose of feature dimensionality reduction and 

spatial information compression. Typically inserted between successive convolutional operations, they perform 

nonlinear downsampling on feature maps through local receptive fields. The Max Pooling operation extracts the 

maximum value from a window region  : 

1 1

0 0
max max

h wk - k

i,j i s+p, j s+q
p q

y = x ,


 
 

(0-5) 

this operation preserves salient texture features while suppressing background noise. Average Pooling achieves 

smoothing by computing regional means: 

1 1

0 0

1 h wk k

i, j i s+p, j s+q

p qh w

y x ,
k k

 

 

 




 (0-6) 

this variant is particularly suited for scenarios requiring global information aggregation. 

He configuration of the pooling window size k k and sliding stride s determines the feature map downscaling 

ratio 1
H- k

s

 
 

 
, where H represents the input height. When s = k , non-overlapping sampling is achieved. 

This design was widely adopted in early architectures like LeNet-5. By setting s < k , adjacent windows share 

overlapping regions. The coverage ratio 1 s k    directly affects information retention. Employs multi-scale 

windows  1 1 2 2k k ,k k ,   to generate hierarchical feature vectors:
1 1
; ;k kf f f    . This approach 

demonstrates strong robustness to scale variations in object detection tasks. The pooling operation introduces 

translation invariance through a downsampling factor d, ensuring that a small displacement   of the input X 

satisfies    P X P X+D . Modern networks typically control the number of deep pooling layers pL  to be

3pL  , and instead, use dilated convolutions with a dilation rate R to achieve controllable downsampling. 

Adaptive pooling dynamically calculates the output size 0 0h  to satisfy equation: 

0

2
1

H p- k
h ,

s

 
  
 

(0-7) 

addressing the issue of input resolution differences. Unspooling operations in decoder networks utilize pooling 

position indices to reconstruct feature maps: 

   
0

i, j
p,q

y , if p,q = I i, j ,
x

, otherwise,


 


(0-8) 

this provides a spatial information recovery mechanism for generative adversarial networks. 

(5) Fully Connected Layers 

The fully connected (FC) layer achieves high-level semantic modeling through global feature integration. 

Mathematically, it can be described as a combination of linear mapping and nonlinear activation in feature space: 

given an input feature vector 𝑥 ∈ ℝ𝑑, the output 𝑦 ∈ ℝ𝑚 satisfies: 

 z =Wx+b,y z , (0-9) 

where 𝑊 ∈ ℝ𝑚×𝑑 is the weight matrix, 𝑏 ∈ ℝ𝑚 is the bias vector,     is the nonlinear activation function. In 

CNN, the FC layer typically serves as the final classifier. It flattens the 2D feature maps 𝑋 ∈ ℝ𝐻× 𝑊×𝐶−1
 

extracted by convolutional layers into a vector 𝑥 ∈ ℝ𝐻× 𝑊×𝐶 , then performs class probability mapping. 

2.2 Common attack methods against watermarking in deep learning models 

The security of watermarking technology needs to withstand various targeted attacks. Attackers attempt to 

eliminate the watermark or block the verification mechanism through strategies such as modifying the model 
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structure, perturbing parameters, or interfering with inputs. The following explains typical methods from the 

perspectives of attack implementation paths and destruction targets. 

(1) Model Fine-tuning Attacks 

Attack principle: Continues training the watermarked model with new data to overwrite dilute the watermark. 

Variants: 1.Transfer learning-based fine-tuning; 2.Layer-wise selective fine-tuning; 3.Adversarial fine-tuning 

with perturbed data. 

(2) Model Pruning Attacks 

Attack principle: Removes redundant neurons/channels containing watermark signals 

\indent Effectiveness: 1.Weight pruning can eliminate 60-80\% watermarks; 

2.Channel pruning shows 85-95\% removal rate.\\ 

Advanced methods:1.Lottery ticket hypothesis-based pruning; 2.Adaptive magnitude pruning: 1.Transfer 

learning-based fine-tuning. 

(3) Model Distillation Attacks 

Attack principle: Transfers knowledge to new compact models excluding watermarks 

Implementation forms: 1.Conventional knowledge distillation; 

2.Adversarial example-enhanced distillation; 3.Multi-teacher distillation. 

Success rate: >90\% watermark removal in most cases. 

(4) Parameter Manipulation Attacks 

Includes: 1.Weight quantization (8-bit quantization removes 40-60\% watermarks); 2.Weight 

shuffling/permutation; 3.Low-rank decomposition. 

Characteristics: Maintains model functionality while erasing watermarks. 

(5) Model Inversion Attacks 

1.Reconstructs training data to extract and remove embedded watermarks; 2.Works particularly well against 

backdoor-based watermarks. 

(6)Adversarial Attacks 

Generates specific inputs to: 1.Activate false watermark signals; 2.Suppress genuine watermark responses; 

3.Cause watermark misidentification. 

Defensive Considerations: 1.Current watermarking schemes can resist 1-2 attack types simultaneously; 2.Multi-

component watermarks combining different embedding strategies show better robustness; 3.Dynamic 

watermarks with verification protocols are more resilient than static ones. 

 

III. Adversarial Example-based Copyright Protection Methods for Deep Learning Models 

This chapter addresses the limitations of traditional digital watermarking techniques that rely on modifying 

model parameters and structures, proposing an adversarial watermark generation framework based on fast 

boundary attack. The method employs dynamic step size adjustment and momentum search strategies to ensure 

the effectiveness of adversarial examples while allowing controlled step sizes as needed, thereby generating 

adversarial samples with enhanced robustness. Furthermore, by establishing a mapping relationship between 

watermark bits and output distributions, the framework achieves watermark embedding without requiring any 

modifications to the network parameters or architecture. 

3.1 Adversarial Sample-Based Watermarking Framework for Deep Learning Models 

He framework workflow is illustrated in Figure 1, which consists of the following key components. 
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3.1.1 Basic Principles of Adversarial Sample Watermarking 

The classification behavior of deep neural networks is determined by the topological structure of their decision 

boundaries. The generation of adversarial samples is essentially an exploration of the local geometric properties 

of this boundary. In classification models, the decision boundary is defined as the critical hypersurface within 

the input space where the predicted probabilities of different classes are equal. Let the decision boundary 

constructed by the classification model : d kf R R   in the input space X be represented as the comparison of 

similarity between a sample sequence 
*

iA  input to 2M  and K. 

      max
k

k
j k

B = x X | f x = f x ,
j

 


 (0-10) 

in the process of generating adversarial samples, the role of the perturbation  is essentially to move the 

original sample x along a specific direction to the outside of the adjacent decision boundary, thereby triggering a 

sudden change in the classification result. For the target class y* , its adversarial sample x* = x+  needs to 

satisfy    *f x f x   and   , where  is the perturbation threshold. This is equivalent to finding the 

minimal perturbation path that crosses the decision boundary. 

The decision boundaries of different models have unique differential structures, which provide geometric 

fingerprints for copyright verification. The model discrepancy  f , f    quantifies the inconsistency of their 

decision boundary structures by measuring the statistically significant differences between two models on an 

adversarial sample set. This helps in identifying the structural differences in decision boundaries, offering a way 

to distinguish models based on their responses to adversarial perturbations. The metric is defined as: 

     
2

advx D x x F
f , f E f x f x ,    

    
 

(0-11) 

the equation holds if and only if   0f , f   ,which implies f f   , where∥⋅∥𝐹  denotes the Frobenius 

norm of the matrix, essentially calculating the mean squared difference of input gradients between the two 

models for all adversarial samples x* . The gradient  x f x  reflects the model's sensitivity to input 
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variations at x* , with its direction pointing to the steepest ascent path toward the decision boundary. When the 

topological structures of the decision boundaries of the two models f , f    are completely identical, their 

gradient fields are equal everywhere on 
advD , in which case   0f , f   ; conversely, the deviation of the 

gradient fields directly reflects the differences in the classification mechanisms of the two models. The 

information entropy characteristics of this metric further ensure that by sufficiently covering the adversarial 

sample set of the decision boundary, the unique 'fingerprint' features of a specific model can be identified. 

The essence of copyright authentication for deep learning models in this paper lies in constructing adversarial 

perturbations with identity characteristics, which form a stable mapping with the decision boundary of the target 

model. By generating an adversarial sample set that covers multi-class boundaries, the model’s geometric 

fingerprint features can be extracted. Based on this, watermark verification can be transformed into a decision 

boundary verification problem. Furthermore, model copyright authentication can be achieved by examining the 

outputs of the adversarial sample set spanning multiple decision boundaries. 

3.1.2 Fast Boundary Attack-based Adversarial Example Generation 

Since generating a large number of multi-class adversarial examples is required to characterize the decision 

boundary, there is a need for a targeted adversarial example generation algorithm that is both efficient and 

effective. This paper proposes an improved fast boundary attack-based adversarial example generation 

algorithm, capable of batch-producing adversarial samples with high efficiency and low model query counts. 

This algorithm is mainly divided into three parts: 

(1)Select two classes,x and y, from the training set of the generative network, wherex is the generative network, 

where x is the original target class, and y is the adversarial target class. Search for the image B in the training set 

of class Y, such that the distance between image B and the original imageA of classx is the smallest. Here, we 

define the distance between images as the Euclidean distance, which is expressed as: 

   
2

n

i i

i=1

D A,B a - b .  (0-12) 

(2)Binary Search Method 

Upon obtaining the target image B as the initial adversarial example, we employ the binary search method to 

rapidly locate the decision boundary for adversarial example generation. This approach iteratively narrows the 

search interval between the original sample A and the initial adversarial sample B to construct an optimal 

boundary point satisfying  *A Z y , where  Z y  represents the decision region of the target category. 

The main procedure is as follows: Let the initial adversarial sample B satisfy  f Y y  (where f denotes the 

classifier's mapping function), the original sample A satisfies  f A y . The algorithm on the line segment 

connecting B and A: 

    1 0,1L= x x = aA+ - ,a ,Ba ∣ (0-13) 

the search for adversarial examples that meet the threshold requirements on the above is performed, and the 

specific iteration process is as follows: 

First, set the lower bound as 
0low =A , the upper bound as 

0high =B , and define the error tolerance threshold 

as ò . Then, begin the iteration. The i iteration can be expressed as: 

 
   

   

low high
mid

2

mid 0,255

i i
i

i
,

+
= ,



(0-14) 

query the classifier to obtain 
  mid
i

f ，. If 
  mid
i

f y ，, then
   1

high mid
i i

 ， otherwise, 

   
low mid

i i
 . The iteration stops when the condition 

   
low high

i i
-  ò  is satisfied. Return 

*A  as the 

boundary point. 

(3) Surface-based random search: 

Since the decision space can be viewed as a multi-dimensional sphere, the binary search method is often 

difficult to generate effective adversarial examples. Therefore, after obtaining the approximate boundary point 



Research on Copyright Protection Methods for Deep Learning Models Based on Adversarial Examples
 

DOI: 10.35629/0743-11046882                                       www.questjournals.org                                      76 | Page 

*A , surface-based random search is continued to find adversarial examples with better performance. The goal 

of surface-based random search is to construct low-norm perturbations in the local neighborhood of the decision 

boundary, with the core objective being to explore the optimization path of 
*A  along the tangent plane 

direction of  Z y . This is achieved by adding perturbation  : 

𝑚𝑖𝑛‖𝛿‖2,    𝑠𝑡 𝑓(𝐴∗ + 𝛿) = 𝑦,(0-15) 

and it satisfies  
22

* *A A A A  + . The basic process of this algorithm is shown in Algorithm 1. 

 
The following methods were employed during the surface search process: 

(1) Momentum-guided direction sampling, Generate candidate perturbation 

2

i
i

i

v

v
   , where 𝑣~(𝑁(0,1) +

 𝛾ℎ𝑝𝑟𝑒𝑣   and prevh  is the historical perturbation momentum term, with  0 1,   being the momentum 

coefficient. This design biases the search direction towards historically successful directions, reducing 

randomness. 
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(2)Adaptive step size control: The step size   is dynamically adjusted based on the success rate. If the iteration 

successfully finds a better solution, then  1a a >   , if the number of failed iterations exceeds a 

threshold, then  1      . 

(3)Continue iterating until the output adversarial sample
*A reaches the predefined difference threshold or the 

maximum number of iterations. 

3.1.3 Adversarial Example-based Copyright Verification 

Model stealing typically preserves the topological structure of the original decision boundary, making the 

boundary deformation caused by adversarial perturbations inheritable. The theoretical core of adversarial 

sample-based copyright verification methods for deep learning models lies in leveraging the model's sensitivity 

to specific perturbation patterns to construct identifiable markers. The effectiveness of this method is built upon 

a dual theoretical foundation: the transferability of adversarial samples and the perturbation characteristics of the 

model's decision boundary. By encoding copyright information into adversarial perturbation patterns to 

characterize the model's decision boundary, it further achieves model identity authentication. Since the output of 

classification models in black-box scenarios is mostly limited to class labels, to enhance the practicality of the 

method, this paper assumes that the model output consists of categorical information. 

(1)Copyright Watermark Generation 

The construction of copyright watermarks essentially involves identifying a set of adversarial samples that 

satisfy dual constraints. First, the adversarial sample set should accurately characterize the decision boundary 

while adhering to a predefined copyright encoding sequence, i.e., the adversarial sample sequence 
iA  should 

satisfy the following condition on the target model M:  i if A = y , where y is the preset copyright encoding 

sequence. Second, the perturbation step size of the adversarial samples must meet certain constraints, expressed 

as:
2

iA -  A <    

Based on the above principles, a fast boundary attack algorithm can generate adversarial samples for a given 

target. The model owner only needs to provide a unique fingerprint-encoded sequence, and the corresponding 

adversarial sample sequence-forming the copyright watermark-can be generated using this algorithm. 

(2)Copyright authentication 

The model owner submits two sets of authentication credentials to the authoritative verification authority in 

advance: the adversarial sample set  iA  and the corresponding output label set  y i
. When a suspicious 

model M   is identified,  iA  is fed into the model under verification, and its output  i

py  is recorded. Then, 

the similarity calculation function is used to compute the similarity. If the similarity exceeds a predefined 

threshold, copyright enforcement procedures may be initiated for further verification of model ownership. 

3.2 Experimental Results and Analysis  

To verify the feasibility of the proposed solution in this chapter, this section mainly conducts experiments and 

analysis from the aspects of experimental setup, evaluation metrics, and experimental results. 

3.2.1 Experimental Setup 

The experiments were conducted using the publicly available Oxford-IIITPe dataset, which contains 37 pet 

categories (covering various breeds of cats and dogs). Three widely-used classification networks—ResNet50, 

AlexNet, andGoogLeNet-were trained on this dataset for classification tasks. All experiments were implemented 

on NVIDIA ~GeForceGTX 1050 Ti GPU using MATLAB~ 2020b. 

For this experiment, adversarial samples meeting the following criteria were generated on the three networks: 

(1)Original images: One image was selected from each of the 37 categories as the base image. 

(2)Attack generation: Using the Fast Boundary Attack method, two distinct adversarial samples were generated 

by attacking two different target categories for each base image. 

(3)Dataset composition: Each network ultimately produced 74 adversarial samples (37 base images × 2 attacks), 

collectively forming the adversarial sample dataset. 

A subset of these adversarial samples is displayed in Figure 2. 
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If the generated adversarial samples are too close to the decision boundary, the robustness of the resulting 

watermark will be compromised. To prevent copyright verification failure due to decision boundary shifts 

caused by potential model attacks, this experiment intentionally employs adversarial samples generated with 

larger perturbations. Consequently, these samples may not achieve optimal visual quality. However, since the 

sample set does not need to be disclosed during verification, the visual quality does not affect its functional 

performance. 

The output class predictions are logged and paired with the adversarial samples to constitute the watermark set. 

A sample encoding of the output classes from the adversarial set is demonstrated as: [2,17,22,1,9,7…]. This 

encoding scheme can be further designed to embed owner identification data. 

When generating adversarial examples using the fast boundary attack algorithm, the following coefficients are 

used: momentum coefficient is 0.55, maximum step size is 130, minimum step size is 1, step size decay rate is 

0.99, and the random search sample size is 300. 

Considering that the essence of model infringement lies in functional exploitation, the degree of tampering 

should be controlled within a threshold to avoid significantly compromising application performance. For the 

specific models and dataset used in this experiment, we ensured that any model tampering would not degrade 

classification performance by more than 15\% compared to its original capability - tampering attempts 

exceeding this threshold were considered invalid. 

In this study, multiple distinct models were trained on the same dataset. When adversarial samples generated 

from one model were input as watermarks to other models for output comparison, none achieved a matching 

rate exceeding 70\%. Therefore, for watermark validity verification, our experimental standard requires that 

after tampering, if the adversarial samples maintain their distinctive responses with at least 80\% probability, the 

embedded watermark is deemed to have successfully achieved authentication. 

3.2.2 Evaluation metrics 

Since this paper watermarking does not involve modifications to the model itself, and the maximum watermark 

capacity is directly determined by the maximum number of classification categories in the model and the 

number of adversarial samples, this section will focus on evaluating the model's fidelity and robustness, rather 

than evaluating aspects such as watermark concealment, watermark capacity, and concealability. 

(1) Fidelity: In deep learning model watermarking techniques, fidelity refers to the degree to which the 

embedded watermark affects the model's original functionality. This metric is quantified by comparing the 

performance differences (e.g., classification accuracy, regression error) between the watermarked model and the 
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original model on a standard test set. Ideally, the introduction of the watermark should not significantly alter the 

model's core predictive capabilities. 

(2) Robustness: In the context of model watermarking, robustness measures a watermark's survivability against 

model attacks or modifications. Typical threat scenarios include post-processing operations such as model fine-

tuning, parameter pruning, and adversarial example attacks. This metric is critically tied to the legal 

enforceability of model copyright-watermarks lacking robustness can be easily removed by malicious actors, 

thereby nullifying their verification utility. 

3.2.3 Fidelity Evaluation 

Since the watermarking approach proposed in this paper does not compromise model fidelity, this section 

primarily examines how other established watermarking methods in the literature affect model fidelity. For 

conciseness, we adopt the following abbreviated notations:  

M method: Refers to the remote watermarking framework by Merrer et al. [13], which enables watermark 

extraction via model APIs (black-box access). 

C method: Denotes the black-box multi-bit watermarking scheme by Chen et al. [14], designed to embed and 

extract high-capacity watermark information. 

These methods, along with ours, fall under the category of black-box watermarking techniques, ensuring a high 

degree of comparability. 

 
As evidenced in Table 1, conventional watermarking approaches invariably degrade model performance across 

different network architectures to varying and unpredictable degrees. This performance degradation may 

potentially introduce unforeseen security threats with severe consequences. In contrast, our method requires no 

modification to the original model parameters, thereby completely preserving the model's native functionality 

and eliminating such risks entirely. 

3.2.4  Robustness Analysis 

This subsection conducts three types of attacks-model fine-tuning, pruning, and distillation—against each of the 

three models, with the constraint that the degradation in classification performance must not exceed 15\% of the 

original level. The experimental procedure is as follows: gradually increasing intensities of each attack are 

applied to the trained models. After each attack iteration, the compromised model is evaluated on the test set to 

monitor the decline in classification accuracy. The functional degradation rate is calculated using: Functional 

degradation rate = 1- (Attacked Model Accuracy / Original Model Accuracy). The following results demonstrate 

how the number of surviving adversarial samples varies under different attack types and tampering intensities. 

(1)Model Fine-tuning 

The model fine-tuning in this experiment was carried out as follows: A collection of cat and dog images, 

different from the dataset and test set, were gradually increased in number from online sources to form the new 

training set. After retraining the network, the model was tested using the original test set to evaluate the 

functional degradation rate, ensuring that the performance drop did not exceed 15\%. 

As shown in Figure 3, the number of surviving adversarial samples decreases more rapidly in shallower 

networks AlexNetand GoogLeNetcompared to the deeper ResNet50 architecture, which maintains significantly 

greater stability. The reason is that models with low network depth are more prone to having adversarial features 

overwritten when fine-tuned, on the other hand, models with deeper network depths have larger parameter 

redundancy, causing adversarial features to be dispersed across residual blocks, which gives adversarial samples 

stronger resistance to model fine-tuning. 
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(2)Model Pruning 

The model pruning in this experiment was carried out as follows: The pruning rate was gradually increased, and 

the model's classification accuracy was observed, ensuring that the model's functional degradation rate did not 

exceed 15\%. 

As shown in Figure 4, as the pruning rate increases, the number of surviving adversarial examples for the deeper 

ResNet50 network decreases rapidly, while the decrease is slower for the shallower AlexNetand GoogLeNet 

networks. The reason for this is that the pruning strategy tends to retain key convolutional kernels, and the 

shallow weights, which are crucial for adversarial example generation, are preserved, allowing adversarial 

examples to survive. In contrast, in the ResNet50 network, the pruning strategy mistakenly deletes adversarially 

relevant channels in the residual blocks, rendering the adversarial examples ineffective. 

 
(3)Distillation Attack 

\indent In this experiment, the distillation attack is performed as follows: Images searched online are combined 

with a partially modified training set (such as cropped, rotated, or pixel-modified images) and classified using a 

trained model. Based on the classification results, these images are used as the training set to train a pirated 

network with the same class using a pre-trained model. The model is then tested on the original model’s test set, 

with the restriction that the model’s performance drop rate does not exceed 15\%. 

As shown in Figure 5, the survival rate of adversarial samples is relatively high across all models, exceeding the 

watermark effectiveness threshold. This may be due to the fact that under the constraint of the model's 
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performance degradation, the distilled attack uses a large proportion of the original training set. As a result, the 

new model is quite similar to the original model, leading to minimal changes in the decision boundary. 

 
In summary, when modifications result in only minor functional degradation of the model (low degradation rate), 

the changes to the model's decision boundary remain relatively small. Under these conditions, the classification 

labels of adversarial samples remain unchanged. However, as the intensity of model attacks progressively 

increases, more substantial alterations occur to the decision boundary, causing some adversarial samples to lose 

their original label assignments. These findings demonstrate that our method can maintain high watermark 

sample survival rates within certain attack intensity thresholds, thereby remaining effective for model copyright 

verification. 

For comparative analysis with other watermarking approaches, we focus primarily on whether the watermarks 

remain functional as our evaluation criterion, since different watermarking methods employ varying robustness 

metrics. The comparative results are presented in Table 2,3,4. 
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As can be seen from the table data, under the attack scenario with a limited modification threshold, this method 

demonstrates stronger resistance to model pruning and distillation attacks compared to other black-box 

watermarking methods, but its resistance to model fine-tuning is relatively weaker. It is evident that this method 

shows good robustness against common attacks, making it of certain practical significance. 

IV. Summary 

This paper proposes a deep learning network watermarking framework based on adversarial example 

sequences. The method generates targeted adversarial example sequences using the Fast Boundary Attack 

method and designs the watermark based on this sequence. Compared to traditional methods, the main 

advantage of this approach is that it does not modify the model itself. Instead, it designs a sequence of 

adversarial examples with a certain level of robustness based on the model's decision boundary to describe the 

decision boundary, which is then used as the model watermark to verify copyright. This approach effectively 

avoids modifications to the model itself, eliminating the invisible risks that could arise from adding a model 

watermark. Experiments show that, even in the face of common model watermarking attacks, this method still 

exhibits certain robustness and can be applied in practical scenarios. 

 

References 
[1]. Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554. 

[2]. 冯乐, 朱仁杰, 吴汉舟, 等. 神经网络水印综述[J]. 应用科学学报, 2021, 39(6): 881-892. 

[3]. Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.  

[4]. Dong Y, Liao F, Pang T, et al. Boosting adversarial attacks with momentum[C]. Proceedings of the IEEE conference on computer 

vision and pattern recognition. 2018: 9185-9193. 
[5]. Xie C, Zhang Z, Zhou Y, et al. Improving transferability of adversarial examples with input diversity[C]. Proceedings of the 

IEEE/CVF conference on computer vision and pattern recognition. 2019: 2730-2739. 

[6]. Lin J, Song C, He K, et al. Nesterov accelerated gradient and scale invariance for adversarial attacks[J]. in Proc. Int. Conf. Learn. 
Represent., 2019, pp. 112. 

[7]. 鲍蕾, 陶蔚, 陶卿. 结合自适应步长策略和数据增强机制提升对抗攻击迁移性[J]. 电子学报, 2024, 52(1): 157-169. 

[8]. Wang X, He K. Enhancing the transferability of adversarial attacks through variance tuning[C]. Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition. 2021: 1924-1933. 

[9]. Wang G, Yan H; Wei X. Enhancing transferability of adversarial examples with spatial momentum. In Pattern Recognition and 
Computer Vision, 5th Chinese Conference, PRCV 2022, Shenzhen, China, 4–7 November 2022, Proceedings, Part I; Springer 

International Publishing: Cham, Switzerland, 2022; pp. 593–604. 

[10]. Phan H, Xie Y, Liao S, et al. CAG: A real-time low-cost enhanced-robustness high-transferability content-aware adversarial attack 
generator[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(04): 5412-5419. 

[11]. Wang T, Kerschbaum F. Riga: Covert and robust white-box watermarking of deep neural networks[C]. Proceedings of the web 

conference 2021. 2021: 993-1004. 
[12]. Adi Y, Baum C, Cisse M, et al. Turning your weakness into a strength: Watermarking deep neural networks by backdooring[C]. 27th 

USENIX security symposium (USENIX Security 18). 2018: 1615-1631. 

[13]. Le Merrer E, Perez P, Trédan G. Adversarial frontier stitching for remote neural network watermarking[J]. Neural Computing and 

Applications, 2020, 32(13): 9233-9244. 

[14]. Chen H, Rouhani B D, Koushanfar F. Blackmarks: Blackbox multibit watermarking for deep neural networks[J]. arXiv preprint 

arXiv:1904.00344, 2019. 


