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Abstract 
While different numerical and classical methods have been used to solve Boundary Value Problems but not many 

of these methods have been used to solve Mildly Non-Linear Boundary Value Problems (MNBVP) hence there is 

a need to think outside the box of ways of achieving this feat. This method requires that two stages that different 

techniques are involved. The two techniques have different algorithms.   
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I. Introduction 

In recent years, there were some problems arises from the fields of science and engineering represented 

by mathematical models. These mathematical models can be written in the form of differential equations, either 

as a first order or higher order ordinary differential equations (ODEs). This study considers for solving second 

order 

Non-stiff initial value problems (IVPs) of ODEs of the form 

 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′)  𝑦(𝑎) = 𝑦0, 𝑦′(𝑎) = 𝑦0
′   𝑥 ∈ [𝑎, 𝑏].   Eqtn. (1) 

 

The approach here is to solve Eq. (1) directly without reducing to first order ODEs using four-point one-

step block method. The proposed method has been used to calculate the approximation solution of four points 

simultaneously in a block. The basic idea of the one-step block method has been studied by Rosser (1967) who 

introduced a block of new approximation values simultaneously. The approach also been discussed in Worland 

(1976) and Majid et al. (2003). In Majid et al. (2003), the authors described a two-point implicit one-step block 

method for solving first order ODEs based on integration formula using the closest point in the block. 

Equation (1) has already been solved directly by several researchers such as Chakravarti and Worland 

(1971), Suleiman (1989), Fatunla (1991), and Omar and Suleiman, (2005). The system of higher order ODEs can 

be reduced to a system of first order equation and then solved using first order ODEs. This approach will enlarge 

the system of first order ODEs and needs more computational work. According to [12], the main idea of this 

research is to extend the work done by Majid et al. (2003) for solving Eq. (1) directly and using variable step size. 

Numerical results are given to show the efficiency of the proposed method. 
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Meaning of Boundary Value Problem 

 

1. Mildly Non-Linear Boundary Value Problem 

The Mildly Nonlinear Boundary Value Problems (MNBVP) comes in various form. However, the most widely 

studied variant of (MNBVP) is of the form: 

𝑦′′ = 𝑓(𝑥, 𝑦)           (2.1) 

𝑦(𝑎) = 𝛼, 𝑦(𝑏) = 𝛽.          (2.2) 

To ensure that (2.1) and (2.2) have a unique solution, one assumes that 
𝜕𝑓(𝑥,𝑦)

𝜕𝑦
≥ 0, 𝑎 ≤ 𝑥 ≤ 𝑏, and −∞ < 𝑦 < ∞.       (2.3) 

When (2.3) is valid, (2.1) and (2.2) is called a Mildly Nonlinear problem.  

While there are many theories for the numerical solution of linear and nonlinear boundary value problems though 

is more complex than that for initial value problems, attention will be focused on theorem to support the linear 

boundary value problems of a special type as in (2.4) and (2.2). 

Theorem 1: Let 𝐼 be an interval 𝑎 < 𝑥 < 𝑏. Let 𝛼 and 𝛽 be constants and let 𝑃(𝑥), 𝑄(𝑥), and 𝑅(𝑥) be continuous 

on 𝑎 ≤ 𝑥 ≤ 𝑏. Considering the linear boundary value problem 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 𝑅(𝑥), 𝑥 ∈ 𝐼       (2.4) 

𝑦(𝑎) = 𝛼, and 𝑦(𝑏) = 𝛽         (2.4*) 

It is important to note that for numerical reasons, a priori, that the solution of the problem (2.4) and (2.4*) exists 

and it has a unique solution. Based on this, it is assumed, in addition to the above that  

 𝑄(𝑥) ≤ 0, 𝑎 ≤ 𝑥 ≤ 𝑏,         (2.5*) 

that is sufficient to ensure the existence of the solution and the uniqueness of the solution.      

If one assumes 𝑦′ to be an independent variable, then  
𝜕

𝜕𝑦
[−𝑃(𝑥)𝑦′ − 𝑄(𝑥)𝑦 + 𝑅(𝑥)] = −𝑄(𝑥)        (2.5) 

So, the condition (2.3) implies either −𝑄(𝑥) ≥ 0 or 𝑄(𝑥) ≤ 0.  
 

2. Newton-Lieberstein’s Method Algorithm 

The numerical solution of (2.1) and (2.2) follows in the manner prescribed with the three-point central 

approximation 
𝑦𝑖−1−2𝑦𝑖+𝑦𝑖+1

ℎ2
= 𝑓(𝑥𝑖 , 𝑦𝑖)          (2.6) 

Replacing (2.6) and (1.3) in (2.4) gives rise to 
𝑦𝑖−1− 2𝑦𝑖 + 𝑦𝑖+1

ℎ2
+ 𝑃(𝑥𝑖)

𝑦𝑖+1− 𝑦𝑖−1

2ℎ
+ 𝑄(𝑥𝑖)𝑦𝑖 = 𝑅(𝑥𝑖)  for 𝑖 = 1, 2, 3, … , 𝑛 − 1.  (2.7) 

The resulting nonlinear system (2.7) can now be solved using the Newton-Lieberstein’s method. To illustrate the 

processes of changing the differential equation into an argument matrix that will later be solved using the Newton-

Lieberstein’s method the following examples will be employed to demonstrate that. 

For 𝑛 ≥ 2, the general linear algebraic system of 𝑛 equations in the 𝑛 unknowns 𝑥1, 𝑥2, … , 𝑥𝑛 is given as 

 

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 +⋯+ 𝑎1𝑛𝑥1 = 𝑓1(𝑥1)
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 +⋯+ 𝑎2𝑛𝑥2 = 𝑓2(𝑥2)

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 +⋯+ 𝑎3𝑛𝑥3 = 𝑓3(𝑥3)
⋮            ⋮                 ⋮          ⋱             ⋮           ⋮  

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑓𝑛(𝑥𝑛)}
 
 

 
 

       (3.1) 

From (3.1) the coefficient matrix 𝐴, variable vector 𝑥, and solution vector 𝑏 are defined by 

𝑨 =

(

 
 

𝑎11
𝑎21
𝑎31
⋮
𝑎𝑛1

𝑎12
𝑎22
𝑎32
⋮
𝑎𝑛2

𝑎13
𝑎23
𝑎33
⋮
𝑎𝑛3

⋯
⋯
⋯
⋱
⋯

𝑎1𝑛
𝑎2𝑛
𝑎3𝑛
⋮
𝑎𝑛𝑛)

 
 

, 𝒙 =

(

 
 

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛)

 
 

, and 𝒃 =

(

 
 

𝑓1(𝑥1)
𝑓2(𝑥2)

𝑓3(𝑥3)
⋮

𝑓𝑛(𝑥𝑛))

 
 

   (3.2) 

Then, the system (3.1) can be compactly written as 

 𝑨𝒙 = 𝒃           (3.3) 

The system (3.1) or its equivalent (3.3) is said to be tridiagonal if all the entries are zero except 𝑎𝑖𝑖 , 𝑎𝑗,𝑗+1, 𝑎𝑗+1,𝑗 

for 𝑖 = 1, 2, 3, … , 𝑛, 𝑗 = 1, 2, 3, … , 𝑛 − 1, and none of these is zero. A system of simultaneous algebraic equations 

with nonzero coefficients only on the main diagonal, the lower diagonal, and the upper diagonal is called a 

tridiagonal system of equations.  

The term tridiagonal is most appropriate for the coefficient matrix in (3.3) if it has the form that the main diagonal 

𝑎𝑖𝑖 , the super-diagonal 𝑎𝑗,𝑗+1, (diagonal above the diagonal), and the sub-diagonal 𝑎𝑗+1,𝑗, (diagonal below the 

diagonal) are the only entries that are non-zeros.  
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  For practical importance, in ensuring that the tridiagonal system has a unique solution, it is expedient the 

following conditions are satisfied.  

Theorem 2: Let (3.3) be a tridiagonal system. Let the main diagonal entries be negative while the sub-diagonal 

and super-diagonal entries are positive such that 

𝑎𝑖𝑖 < 0, 𝑖 = 1, 2, 3, … , 𝑛          (3.4) 

𝑎𝑖,𝑖+1 > 0, 𝑖 = 1, 2, 3, … , 𝑛 − 1         (3.5)  

𝑎𝑖+1,𝑖 > 0, 𝑖 = 1, 2, 3, … , 𝑛 − 1         (3.6) 

Furthermore, let the main diagonal entries dominate the matrix in that, let the absolute value of the main diagonal 

entries be greater than or equal to the sum of all other row entries, with strict inequality for at least one row of the 

coefficient matrix. Precisely, let  

−𝑎11 ≥ 𝑎12            (3.7) 

−𝑎𝑛,𝑛 ≥ 𝑎𝑛,𝑛−1           (3.8)  

−𝑎𝑖𝑖 ≥ 𝑎𝑖,𝑖−1,  𝑖 = 2, 3, … . , 𝑛 − 1,        (3.9) 

With strict inequality holding for at least one of (3.7) through (3.9). then, the resulting linear algebraic system has 

one and only one solution. 

  The availability of Theorem 2 before beginning computations cannot be underestimated. If a system were 

to have no solution, computations can yield nonsense numbers. If a system were to have more than one solution, 

certain computational techniques could drift from one solution to another.  

Considering the system in (3.1) in which the coefficient is 

 

𝑨 =

(

 
 
 
 
 
 

𝑎11     𝑎12                                                                          0                             
𝑎21     𝑎22    𝑎23                                                                                            
              𝑎32    𝑎33    𝑎34                                                                                     

      …     …     …                                                              
                         …     …     …                                                              

             …     …     …                                
                                          𝑎𝑛−1,𝑛−2    𝑎𝑛−1,𝑛−1   𝑎𝑛−1,𝑛              

  0                                                             𝑎𝑛,𝑛−1       𝑎𝑛𝑛                       
)

 
 
 
 
 
 

  (3.9*) 

satisfying the conditions in Theorem 2. If 𝑓𝑖(𝑥𝑖) for all 𝑖 = 1, 2, … , 𝑛, are not all constants and the derivative, 

𝑓𝑖
′(𝑥𝑖) ≥ 0 then the system is classified as a mildly nonlinear. According to [Ortega and Rheinboldt (1980)], all 

such mildly nonlinear system has solutions and their solutions are unique. 

 The Newton-Lieberstein method for solving a mildly nonlinear system is given in the following algorithm.   

Step 1: Guess an initial value for 𝑥1
(0)
, 𝑥2

(0)
, 𝑥3

(0)
, … , 𝑥𝑛

(0)
 and a value for 𝜔 in the range [0, 2]. 

Step 2: For 𝑘 = 0, 1, 2, 3, …, iterate with the relations 

𝑥1
(𝑘+1)

= 𝑥1
(𝑘)
−  𝜔 (

𝑎11𝑥1
(𝑘)
+ 𝑎12𝑥2

(𝑘)
−𝑓1(𝑥1

(𝑘)
) 

𝑎11 − 𝑓1
′(𝑥1

(𝑘)
)

)  

𝑥2
(𝑘+1)

= 𝑥2
(𝑘)
−  𝜔 (

𝑎21𝑥1
(𝑘)
+ 𝑎22𝑥2

(𝑘)
+ 𝑎23𝑥3

(𝑘)
− 𝑓2(𝑥2

(𝑘)
) 

𝑎22 − 𝑓2
′(𝑥2

(𝑘)
)

)   

𝑥3
(𝑘+1)

= 𝑥3
(𝑘)
−  𝜔 (

𝑎32𝑥2
(𝑘)
+ 𝑎33𝑥3

(𝑘)
+ 𝑎34𝑥4

(𝑘)
− 𝑓3(𝑥3

(𝑘)
) 

𝑎33 − 𝑓3
′(𝑥3

(𝑘)
)

)  

       ⋮                          ⋮                             ⋮  

𝑥𝑛−1
(𝑘+1)

= 𝑥𝑛−1
(𝑘)

−  𝜔 (
𝑎𝑛−1,𝑛−2𝑥𝑛−2

(𝑘)
+ 𝑎𝑛−1,𝑛−1𝑥𝑛−1

(𝑘)
+ 𝑎𝑛−1,𝑛𝑥𝑛

(𝑘)
− 𝑓𝑛−1(𝑥𝑛−1

(𝑘)
) 

𝑎𝑛−1,𝑛−1 − 𝑓𝑛−1
′ (𝑥𝑛−1

(𝑘)
)

)  

𝑥𝑛
(𝑘+1)

= 𝑥𝑛
(𝑘)
−  𝜔 (

𝑎𝑛,𝑛−1𝑥𝑛−1
(𝑘)

+ 𝑎𝑛𝑛𝑥𝑛
(𝑘)
− 𝑓𝑛(𝑥𝑛

(𝑘)
) 

𝑎𝑛𝑛 − 𝑓𝑛
′(𝑥𝑛

(𝑘)
)

)  

Step 3: Set a prescribed convergence tolerance, 𝜖. Determine if |𝑥𝑖
(𝑘+1)

− 𝑥𝑖
(𝑘)
| < 𝜖, for 𝑖 = 1, 2, 3, … , 𝑛. Else, 

repeat step 2. 

Step 4: If step 3 is satisfied then, substitute the values of 𝑥1
(𝑘+1)

, 𝑥2
(𝑘+1)

, 𝑥3
(𝑘+1)

, … , 𝑥𝑛
(𝑘+1)

 into the original system 

of equations to establish that they are an approximate solution to the given problem. 

 

3. Upwind Differencing 
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4. Supporting Theorem  

 

5. Results and Discussions 

 

 

6. Conclusion 
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