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Abstract

J. Oscar Gonzalez-Cervantes, *, J. Bory-Reyes [29] in their recent works Gonzalez-Cervantes, Luna-Elizarraras
and Shapiro [11,12], laid the foundations for the generalization of the theory of Bergman spaces induced by the
foundations for the generalization of the theory of Bergman spaces induced byLaplacian (sometimes called
solenoidal and irrotational, or harmonic) vector fields by taking advantage on the intimate connections between
harmonic vector fields theory and quaternionic analysis for the Moisil-Theodorescu operator (MT-operator for
short). A deeper discussion of the last mentioned relation can be found in [1]. On the setting of general bounded
domains in R3, we extend the aforementioned study in a very natural way to the case of an introduced v-MT-
operator for v € R3, proving several properties of induced Bergman spaces and some relative results about
Stokes and Borel-Pompieu formulas for v-MT-hyperholomorphic functions, i.e., functions which belong to
kernel of the v-MT-operator. They show that this v-MT operator satisfies a conformal co-variant property.
Following [29] we improved the applications of all the above allows to study of Bergman type spaces induced
by v-Laplacian vector fields theory.
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I. Introduction and terminology

To extend classical complex analysis from R? to R was by replacing the Cauchy-Riemann equations

for holomorphic functions by the following system for smooth vector fields f;: R3 - R3:
{lefj : 0, (1)
rotf; = 0.

Smooth solutions to the system (1.1) are called Laplacian vector fields, and for a very good introduction to their
theory see [27].

Note that a Laplacian vector field satisfies the Laplace equation it named of a harmonic vector field. By
purely physical reasons the solutions of (1.1) is called solenoidal and irrotational vector fields.

For a thorough treatment of the notion of Cauchy-type integral on a compact Liapunov surface, for the
system (1.1), and some of its boundary value properties see [18]. Moreover, the subject has been treated in [1]
for compact rectifiable topological surfaces, i.e., it is the image of some bounded subset E of R? under a
Lipschitz mapping y:Z — R3. Rademacher's theorem [9, pag. 81] ensures that y is differentiable almost
everywhere in Z, hence there exist conventional tangent plane for almost every point of the surface. Rectifiable
surfaces form essentially the largest class where many basic properties of smooth surfaces have reasonable
analogues (see [29]).
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We discuss the Bergman spaces goes back toS. Bergman, [4] in the carly fifties, where the first
systematic treatment of the subject was given, and since then there have been a lot of papers devoted to this
area. See[5,8,15,28] and the references therein, which contain a broad summary and historical notes of the
subject. Preliminaries on Bergman spaces induced by the MT-hyperholomorphic functions theory. We intrduce
several properties on Bergman spaces and some relative results about Stokes and Borel-Pompieu formulas for v
-MT-hyperholomorphic functions, i.e., functions which belong to kernel of the v-MT-operator needed. We
proved the main results, where discusses Bergman type spaces induced by v-Laplacian vector, and show
remarks on general concepts.

II.  Preliminaries

ForH denote the skew-field of real quaternions generated by e, = 1 and the non-real units, e, e,, €3
that fulfill the condition e? = e2 = e2 = —1 and the multiplication rules e;e, = —e,e; = e3,e,65 = —e,e3 =
e, and e;e; = —eje3 = e,. If q € H then q = qy + g1, + g€, + qse3, where the coefficients g, € R, k =
0,1,2,3. Each quaternion q € H can be represented by q = g, + q with q = g,e; + g€, + qse;. The real
number q, is called the scalar part of q and the vector q is called the vector part of g. Due to the mapping
(91,92, 93) ~ q.e; + qze; + qzes, from R3 on {q | q € H}, is an isometric isomorphism between R-linear
spaces, we shall continue to write R? instead of {q | ¢ € H}.

A quaternionic conjugation of q is defined by q:= qy, — q. The quaternionic norm |q|:=,/qq =

V@2 + g% + g2 + g2 is the Euclidean norm with the natural identification of H with R*.
If, for onlyx, (x + €) € R3 then ityields |x(x + €)| = |X||x + €].

And in vector analysis terms, the multiplication:
x(x+e)=(x+x)((x+e)g+x+e€)=x(x+€)—(XXx+€)+x,(X+6€)+ (x+ €)X+ [X,X+ €]
where (X,X + €) and [X,X + €] stand for the inner and the usual cross product of X,x + € € R® respectively.
Set O c R® be a bounded Jordan domain. We will consider functions fj:Q > H to be written as f; =

o X ;i (fj)iei. Hencef; has properties in Q such as continuity, real differentiability of order p, Lebesgue
integrable and w-weighted Lebesgue integrable mean that all (fj); have these properties. These spaces are
usually denoted by C¥(€, H) with s € N U {0}, L, (Q, H) and L, ,,(Q, H) respectively.

We introduce series of the Moisil-Theodorescu operator (MT-operator for short) D[f;] =

af ; . af : .
Y e 6—2. As usual, the MT-operator can act on the right [f;]D = ¥7_; ¥; i;el-. Put, D,[f;] instead

ox
of [f;]D.

All functions which belong to Ker(D): = {f;: D[f;] = 0} are called left MT-hyperholomorphic and
functions fulfilled D,[f;] = 0, shall be called right MT-hyperholomorphic. For the function theories (or
quaternionic analysis), see [13,14,21,24].

The function K(€) = —

for (x+¢€x) €0 x (R*\ dQ), is both left- and right-MT-

47|€|?
hyperholomorphic fundamental solution for D, which plays the same role in quaternionic analysis as the Cauchy
kernel does in complex analysis.

We assume () to be a bounded Jordan domain of R3 with rectifiable boundary Q. However, we will
use this assumption only in the way to ensure the existence of the outward pointing unit normal (almost
everywhere) to 9().

Forg;: E > Q be a one-to-one correspondence and h: Q) — H. We introduce the following: I/I{'gj[/”]-] =

fiegj hM[f]-] = hfj and Mh[fj] = f;h for every f; belonging to a function space associated to .
So one of the principal analytical facts that forms the basis of the quaternionic analysis is the three-

£ g;(®)
2

= fﬂ Y (it ogxro+) fix+eplgla+e |due @1
j Jj

dimensional Stokes formula
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for all f;,g; € C 1(Q,H) n C(Q, H). Then, in a rather routine verification Stoke's formula yields the Borel-
Pompieu formula:

fa ) Z (Kt =)0 f;(1) + g;(©0 K (t - X))
)

[ D) (kopmier o+ Dot K@ Jducas
J J

(x)+9:(x), x€QQ,
z{f,( ) +9;X) ) (2.2)
0, xeMH\Q,
for all f;, g; € C*(Q, H) N C(Q, H).
Usually, du denotes the oriented volume element on  and O')EZ) =Y3 ., (=1)"*e;dxt, where each

term d&! is given by dx; A dx, A dx; omitting the factor dx;, for i = 1,2,3, can be represented on 9 in the
form n(x)ds, where ds is the two-dimensional surface area element of integration and n(x) =
(ny(x), ny(x),n3(x)) is the outward pointing unit normal to 9 at Xx. Noting that n(x) exists for almost every
X € dQ under the assumption on the geometry of 9.

As a direct consequence one has the MT-hyperholomorphic Cauchy integral formula:

@) _ fj(x), ifxe
LQZ K©oofix+ 0 =| 0, ifxed, (23)

for all f; € Ker(D) N C(Q, H).
See [1] and [21-23] for more information.
Consider the Theodorescu operator for f; € L, (£, H) as

TUIe:= | Y K@f o+ Odtano 24)
J

Hence, we recall that D o T = [ on both L,(Q, H) and on C(Q, H), where I denotes the identity operator. Note
that (2.4) means precisely that T still being a right inverse to D, see [18, pag. 73].
The quaternionic Mobius transformations preserving R3 are important for a variety of reasons, one
being that they are conformal maps. A deeper discussion along classical lines can be found in [ 2,3,16,25,26].
Basic examples are:
(i) Given q € R3. The translation T, (X) = x + q for all x € R3.
(ii)) The rotation associated to (a + 2¢) € H such that |a 4+ 2¢| =1 is defined by T,(X) = (a +
2¢)x(a + 2¢) for all x € R3.
(iii) The inversion is defined by T5(x) = (x)™! = — ﬁ for all x € R3 \ {0}.

(iv) The dilation with a scale factor A > 0 is T,(x) = Ax for all x € R3.
In general, any quaternionic Mobius transformation from R3 to R is given by
T(x)=(ax+a+e€)((a+2e)x+a+3e)? (2.5)
where a,a + €,a + 2€,a + 3¢ € H satisfy:
() (a+e)(a+3e)'eR3and a(a +3¢) €R,ifa+2e =0.
(i) a(a + 2e)7Y, (a+3e)(a+e—ala+2¢) (a+3€) ' €R®and (a + 2¢)(a+ € —ala+2¢) (a+3€) ER,ifa+
see [11,17,20].
The MT-hyperholomorphic Bergman space associated to < R3, denoted by A (), is defined to be
the collection of all f; € Ker(D) N C 1(Q, H) such that

J. Z 12 < o
See [19].

The quaternionic right-linear space A (Q) equipped by the inner product and the norm inherited from
L,(Q, H) results to be a quaternionic right-Hilbert space with a reproducing kernel and projection, see [11,12]
for more details.

Let E, Q c R? conformal equivalent domains with Q = T(Z), where T is given by (2.5). Define
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lal?a, ifa + 2e = 0;
la + 2¢|?|(x + €) — a(a + 2¢) 73 (a + 2¢)((x + € — a(a + 26)71),
la|?aifa + 2 =0,

BT(x+e):={ ifa+2e#0,V(x+e€)ENQ,

Cr(x):= - (a+2e)xw+ (a+3e)w  ifa+2e¢#0,VXEE,
~la+2elfa+26) |(a + 2e)xw + (a + 3e)w|?’
1, ifa+ 2e =0,
pr(x):= 1 ifa+2e+0,VX€EE,

|((a + 2€)xw + (a + 3e)w|?’
where w = (a + € — a(a + 2¢)"*(a + 3¢)) ™! and (x + €): = T(x). Then
D,[Arfj o T| = (By e T)D(xsolfj] o T, Vf; € C1(Q, H), (2.7)
or equivalently,
Dyo ATMoWy=Wpo BTMoDy,q onCH(Q, HH),
see [11,12].
So,
TM o Wy: Ly (Q, HH) — Ly 5r (8, H)
and
TM o Wrl ) A(Q) — Apr(E)
are isometric isomorphism of quaternionic right-linear Hilbert spaces, where
A, (E) = Ker(D) N C*(E H) N Ly, (E, H)
and

Fir P =) (MWLl Mo Wrlg;]) 28)

J

LZ,pT(E-H)'
forall f;, g; € L,(£, H).
Let us recall that

i 9y prc = f

Z figjprdu,
=
for all fj, gj € Ly ,r (8, H).
The Bergman kernels and the Bergman projections
Bz (X, X+ €) = Cr(X)Bo(T(x), T(x + €)Cr(x + €),Vx,(x + €) € Q,
%E‘PT = CTM o WT o %Q_ o WT—l o Cf _1M,
on L, ,.(E), see [10-12].

II.  On some v-MT-hyperholomorphic Bergman spaces
Here the authors in [29] extend the previous results working with the following MoisilTheodorescu
Hilbert type operators (MTH-type operators for brevity):
ForQl c R3 and v € R3, the MTH-type operators are defined by
JD:=D+ YM,D,:=D,+ M", onC(Q, HH)
those which will play the role of D and D, in the sequel.

The following computations will be used (implicitly) several times later on:
_eW®

Do M) = e¥uf, + D[] = o 0[],

_eW®

(wv) (31)
Do M[F]1 =" M~ ,D[f],

for all f; € C1(Q, H).

Definition 3.1. The elements of the quaternionic right-linear space ,NP(Q): = C1(Q, H) N Ker( ,D) are

called v-MT-hyperholomorphic functions and those of the quaternionic left-linear space M, (Q): = C1(Q,H) N

Ker(D,) are called r-v-MT-hyperholomorphic functions.

The following proposition shows Stokes and Borel-Pompieu formulas induced by D and D,,.
Proposition 3.2 (see [29]).
6)] Stokes Formula.
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[ howmg0=[ D (BMiIa+gx+e + fx+ OuDlgIx + ©)dinx +
a0 7 Q 7

for f;, g; € C(Q, H) N C(Q, H), where vy (t) = e295® and da,(x + €) = 2 dp e
(i1) Borel-Pompieu Formula.

LQ > K =00P [0 + ;00K - 9)
j
[ D) (R@uDIfI+ )+ Dilg;10c+ O, ©)ditero
j
_ {fj(x) +9;(x), X€Q, ) 3.2)
0, xeMH\Q,
for all fj,g; € C*(Q,H) N C(Q,H), where K,(-) =e“J)K(:), is the Cauchy Kernel of the v—MT

hyperholomorphic function theory.
Proof. 1. Applying (2.1) to ez("")fj(-), e("")gj(-) and making use of (3.1) yields

f Z f] (t) PILA)) O.t(Z) et g (t)
0 7
- fﬂ > (I + Og;(x+ O + fix+ ODIg1(x + ) g (33)
j
2. Replacing f;(-) and g;(-) by e f;(-) and e™) g, () in (2.2) we get
f Z eV IK(t—x)a (1) + g; (Do e VK (t — x)
o0 “=
J
[T (e ORI+ & + Dyl Ik + 9 OK(©)diero
q
J

:{fj(x) +9;x), x€q,

0, x € R3\ Q.
Corollary 3.3 (see [29]).
(1) v-MT-hyperholomorphic Cauchy Formula.
@) fi(x), ifx€eq,
K(e ix+e€)= { _ 3.4
LQZ vK@o@ofix+e ={1 1FC (3:4)
for all f; €€, M(Q).
(i1) A Theodorescu operator T is defined by
TIH= [ Y KE@fx+ Oditee, (35)
Q
j

requiring f; € L,(Q, H) U C(Q, H) with the property that D o 7 =1 on L,(Q, H) U C(Q, H).
Proof.(i) It follows from (3.2).

(ii) If f; belongs to L, (Q, H) U C(Q, H) does so e fi (%), x € Q. According to the above remark that
DoT =1]onL,(Q,H)UCQ, H) we have

Dy f E K(€)eV*Of,(x + €)duxse | = VS (), Vx € Q
e
j

where Dy denotes the MT-operator indexed with the variable vector in which it is applied. Thus,

Dy |e™® fn Z K(€)evof;(x + €)dppse | = eV f;(x), VX € Q
J

We now apply (3.1) to get

eV D, f Z K(E)e(v'e)fj(x + dxse) | = e Z fi(x),vx € Q
Qs -
] j
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Proposition 3.4 (see [29]). Let Z,Q c R3 be conformal equivalent domains and T given by (2.5) such that Q =
T(E). Given v, u; € R® then

e (u] 'uj 'x)

D ooc"ar a1 o Wy = MoWyo BTMo 40D, (3.6)
on C'(Q, H), where 67 = (By) (v + u;)(Ar o T™1), T~ is the inverse mapping of T and (B7) ™" is the inverse
multiplicative of By.

What is more,

Fy 9 acom = . << e m o mylg],

CTM o WT[gj]>L - (3.7)
2T

j
for all f}, g; € L,(Q, H) and the weight function yr(x) = e 2y (x) for all X € E.
Proof. Set f; € C1(Q, H) then using (2.3) and (3.1) we have that

((uj®)
Z VD o J ATMOWT[}(}']

(uj

j
(uj,Xx) +,%)
=Z Do 9“7y oW, ] + VAT M o Wylf]
Jj

TN Me(D[ AMowpIf]]+  CROATM o wr(f])
J
“WOM oWy o[ BrMeDIFI]+ CHVATM oWy}

£@j%)

—_ ) _1
MoW;yo BTMo[D[fj]+ @B wrw)(ar T )M[fj]]

WIMoeWro BTMo[D[fi]+ STM[f]]

D<M DM -]

CWIM o Wy oPT Mo 5 D[fj]
j
On the other hand, if fj, g; € L,(Q, H), (2.8) makes it clear that

(fj' gj )LZ(Q,H)

=f Z ( @XCM o Wr[fi] (( (uj’x)CTM°WT[9j])(e_2(uj’x)PT)d#
=

, ()
= Z (s(ul‘ )CrM o Wi [f}], "M o Wr[gj]>
J
for all f;, g; € L,(£, H).

Remark 3.5 [29]. According to definitions of Ay and By we are able to define
a

lal*
(x+e€ —ala+26) ) (a+2e)
la + 2€|*|(x+ €) —a(a + 2e)~1|*
for all (x + €) € (1, and introduce the following quaternionic right-linear space

SrM(Q) = CH(Q, H) N Ker(5;D).
Definition 3.6. For p: Q0 —» R*, by the v-MT-weighted hyperholomorphic Bergman space associated to the

)
LZ,ﬁT(ElH)

(v+uya, ifa+2e=0
or(x+e)=

(v+u)(a+2e)(x+e—aa+2e)™), ifa+2e#0,

weight p we mean the quaternionic right-linear space A, (Q):=  IM(Q) N L, ,(Q, H) equipped with the
inner product inherited from L, ,, (€, H) :

g = [ 5 fiajpdu v, ; e, 4, @)
J

and its induced norm:
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Vil = [ D Ifil2pdu
%7
forall f; € (A, (Q).

Similarly, the right-v-MT-weighted hyperholomorphic Bergman space associated to ) with weight p is
the quaternionic left linear space:

Apy(Q): = M, (Q) N Ly, (Q, H)
equipped with the inner product inherited from L, , (£, H) given by

i et = | D [0t Vi € ()
&~
J

If p is the constant function 1 we write A(Q) instead of A,(Q) and we will be called v-
MThyperholomorphic Bergman space associated to Q.
Proposition 3.7 (see [29]).

(1) If B(x,7) € Q then

riv|

\/_
Ifix)| < Ifillv,acy, Vi €  vA(D)
j 2T d j j

(i1) Let K < () be a compact set then there exists Cx > 0 such that

supflf; (01 1 X €K} < G ) Ifllvacan (38)
j
for all f; € veA ().
(iii) The space ( A - v ﬂ(n)) is a quaternionic right-Hilbert space.
Proof.(i) From (3.4) it follows that

f0= fa o Z KO0 fi(x+€)

(2)
(©ea, fi(x + €
= 4mr? LB(XT) z Oaxtei

J z (e)e(ve 2(x+e))o.((2) 2, X+€)f (x+¢€)
0B(x,1)

47'[r
= f Z (e 24y, (x + €)f; (x + €)
nr? AB(x1)
= Z Dy[(€)e™ @], (x + €)d Ay (x + €)
772 Jp )
= eV £ (x + €)d A, (X + €)
47‘[7’2 '[B(X‘r‘) Z / v

3
—s | Y etOfxt Odnyie
4T Jp ) 5

by our Stokes formula. Therefore, using the Cauchy inequality in L, (Q, H) we see that

OIS oz [ D eI+ Oldigens
xr) Ji

2
4nre Jg

1
3 2(v,€) : 2
< 4712 e v dﬂ(x+e) |f}(X + E)l dﬂ(x+e)
B(x,r) Bxr) 55

Due to e2"?™® < ¢2VI" it may be concluded that
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1
3 4 2
I e () [ [T 1+ OPdnge
4nr 3 Bxr) 5
r|v|
< 1 1A ).
2V 3nr -

(i1) It follows from the previous fact.

(ii1) Let {(fj)n} be a sequence of elements of veA(Q), hence (3.8) shows that {(fj)n(x)} is a Cauchy
sequence in H for each x € (. Therefore, there exists f;(x) = lim(f;), (x) for all x € Q and from (3.8) we
deduce that {(fj)n} converges uniformly, on compact sets, to f;.

From the first identity of (3.1) we see that each term of the sequence {e<£'x>M [(fj)n]} belongs to Ker(D)
and {e®'M[(fj)n]|} converges uniformly, on compact sets, to e”*M[f;]. Then, for any bounded Jordan

domain A c R such that A © Q with rectifiable boundary, the hyperholomorphic Cauchy integral formula

associated to the Moisil-Theodorescu operator, see (2.3), gives us that
(2)e<U,X+E>

e<”'“>M[(mn](x>=fAz K©oure  MUDal0x+e),
J

for x € A and it is zero if x € R3 \ A, for all n € N. The uniform convergence allows to obtain that
(2)e<E,X+E>

e M = [ Y K@oZs Mg+ o)
A=
j
for x € A and it is zero if x € R3\ A. From the Moisil-Theodorescu hyperholomorphic functions theory, see
<y [f;] € Ker(D), or equivalently using (3.1), f; € Ker( ,D). Another interesting way to
justify the previous fact is following similar method as in [6, page 1635], where several properties of harmonic

[21], we have e®

functions are used. Summarizing, we have f; €, M(Q).
On the other hand, there exists g; € L,(£, H) such that {(fj)n} converges to g; in L,(€, H). Finally,
using (3.8) we obtain f; = g; almost everywhere and f; € ,A(Q).
Remark 3.8 [29]. According to the above propositions the valuation functional is bounded on A (). Then
Riesz representation theorem for quaternionic Hilbert spaces, see [7], shows that given X € ) there exists
vBx €y A(Q) such that f;(x) = ( VBX,fj)VA(Q) for all f; €€, A(Q).

The function Bg(X,)):= By(-) is called the v-MT-hyperholomorphic Bergman kernel associated
to () and satisfies that

FO=[ D) Balox+ Ofi(x+ Odiceser VS € AW, (39)
q =
j
In addition, the v-MT-hyperholomorphic Bergman projection associated to Q is defined by

Balf100:= [ DT Balex+ Of 6+ Otero, Vfy € La( 1)
J

Properties of Bg and B are established by our next proposition.
Proposition 3.9 (see [29]).
(i) Boxx+€)= Bo(x+¢€Xx),forallx, (x+¢€) €.
(i) Givenx € Q, ,Bq(x) € MM(Q)and By(x,') € M(Q),.
(iii) BBg(:,) is the unique reproduction kernel that meets the two previous properties.
@iv) vBa is a symmetric operator; i.e.,
(VEBQ[f}']'gj>L2(ﬂ_H) = (f;, V%n[gj]hzm‘ﬂ)'vﬁ' 9j € L(Q, H)
V) vBo[L(Q,H)] = A(D).
(vi) ( VBg)? =via,
(vii) Dq 1S a continuous operator.
Proof.(i) Since Bg(X,)) € A(L) one has that
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VBQ (X, Z) = J- VBQ (Z, X+ e)vBQ (X, X+ e)d.u-(x+e)
Q

VBa(x,2)= f Ba®x+€) vBa(mx+ Odiiure
Q

= yBg (Z' X)
forall x,z € Q.
(i1) It is a consequence of the previous fact.
(iii) If M: Q x Q — H has the same properties of Bq(:,-) we would have

Mx+€x)=MEx+ €)= J- Vo(x,2)M(zZ,X + €)du,
Q

= J- M(x+€,2)vBg(z,x)dy, = VBo(X+ €X),
Q

for all x, (x + €) € Q.
(iv) Given f}, g; € L,(Q, H) we obtain

(Balf.9) 1p= | D < | an(x,x+e)f,-(x+e)du<x+e))g,-(x)dux
J

~[Y 7o vatx+ e ) dues
Q 7 Q

= Z (5, vBalg; D
j
(v) Given f; € L,(€, H) there exist unique elements (f;); €, A () and (f;), € (VA(Q))?* such that fi=
(fi)1 + (fj)2- Thus

v [(5el0 = | D7 VaGr ex(f)ax + Odhinio = 0
J

and v8q[f;] = (fj)1. Hence v8B,[L,(Q, H)] = A(Q).

(vi) It is a consequence of the previous fact.

(vii) That ®2 is a continuous operator follows from the fact that v satisfies the closed graph theorem.
Remark 3.10 [29]. By the effect of the quaternionic conjugation we deduce that the Bergman kernel of A, ()
is given by

Bov(x,xt+€) =vBa(X,x+€) = Bo(X+E€X)
forall (x + €),x € Q.
Proposition 3.11. Let Q, Z ¢ R3 be conformal equivalent domains and set T, given by (2.5), such that T(E) =
Q. Consider 67 and y; given by Proposition 3.4. Then, the following statements are true:
(i) The operator X7 M o W, satisfies

(T M o Wy | 5 AQ) = Ay (E)

SrAQ)
and

< (W)X cr ROTE .
Fir I sreacay = ). Mo Wrlf), 77 M o Wilg;]) Ayr(E)

j
forall fj,g; € 5. AQ).

v

(i1) ( v Ay (E), (0 )y, AyT(E)) is a quaternionic right-Hilbert space and the evaluation operator is
bounded on A (Z).

(iii) ( spAQ), (-,-)STC/Z(Q)) is a quaternionic right-Hilbert space, the valuation functional is bounded
on +AQ).

(iv) Bergman kernels of 67A(Q) and  ,A,,..(E) have the same properties as shown in Proposition 3.9
and they are related as follows:
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VBayy (XX +€) = Z MBI (X) 5 Bo(T(X), T(X + €)Cr(X + ©),
J
forallx, (x + €) € E.
) The v-MT-weighted hyperholomorphic Bergman projection associated to the domain Z, with
weight yr, is

- (u;)’ ()
vErr =Z eaMowro 5 Bge( < rMowy)
j
Proof. (i)By (2.6) we see that A and Cy are the same function up to a positive constant. Therefore, Proposition
3.4 proves the desired result.
(ii) It is deeply similar to fact 3. of Proposition 3.7 since v is a constant vector and the weight function
yr is a bounded function on compact subsets of = that does not affect the v-MT-hyperholomorphy.

-1

(uj,x)
(iii)As the M&bius transformation T then the operator €~ °TM o Wy is invertible too, see [10,11].
Thus, given a Cauchy sequence {(f])n} of elements in  5.A(f)) one has that { e¥ar 1y o WT[(fj)n]} isa
Cauchy sequence in v (). Therefore, as in the proof of Proposition 3.7, Fact 3., there exists g i Ev Ayr(E)

such that {

8{(11.]',)(

) {ujx)
TM o WT[(fj)n]} converges to g;, or equivalently, {(f])n} converges to ( e ey o

-1
Wr) [gl€ sAWQ).
Calculation similar to the above implies that valuation functional is bounded in  .A(2). Therefore

spA(Q) has a reproducing kernel and a projection.

(ujpx) -1
(iv)Given h € A, r(E) one has that ( (™ TM o WT) [h] €  5.A(Q) and setting (X + €) =
T (x) we obtain

"Merpy o WT)_l [A](x + €)

(<

> sBatxra( < emows) ) am
7 T

>

( e(uj'Z)CTM ° WT[SaTBQ(',X + e)], h) ‘Ayr(@

]
M—

z (e(“jvz)CT(z)sTBQ(T(Z), X+ e)) h(@)yr(z)du,

J
(e 5 Bo(x+ € T(2)Cr(2)h(Z)yr(Z)du,

:f]

Therefore, since X = T (X + €) we conclude that

h(x) = f (e™**2C1(x)5,Bo (T (x), T(2))Cr(2) ) h(2)yr (2)d .
=7

(W)It follows from the previous identity.

(vi)On Bergman type spaces in a v-Laplacian vector fields theory

Now we have been working again under the assumption that O € R3 be a domain and v € R3. Let us
consider the action of D to f; = (fj)o + fj € C1(Q, H), where (fj)o 1s the scalar part of f; and fj is the vector
part of f;, which after straightforward calculation leads to

vD[fj] = —divfj — (v, f;) + grad(fj)o + (fj)oV + rotfj + [v, fj],
where
grad(fj)o = V(fj)o, divfj = (V, fj), rotfj = [V, fj]

3
B_Xi'

The following equivalences hold:

and the gradient operator V= Y3, e;

grad(f;)o + rotf; = —(f)ov — [V, fi]
WDl =0e {divfi . £) b ]
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Analogously, it may be easily verified that

grad(f;), — rotf; = —(f;)ov + [V, fi],
hifil=0e {clivfi 2wty

In addition, if we define  ,M(Q) to be the R-linear space of all f; € C 1(Q, R3) such that div f; = —(v,f;) and
rotf; = —[v,f;] on Q, a short calculation shows that

(ke | k e R} &, M(Q) = Q) N M, (Q). (4.1)
Proposition 4.1 (see [29])(Cauchy-Integral theorem). If f; €  ,M(Q) N C (Q, H) then

LQZ (£, vy) =0, J‘;QZ [£,v,] = 0.

Proof. It follows from the Fact (i) of Proposition 3.2.
Proposition 4.2 (see [29]) (Cauchy-Integral formula). If f; € M(Q) then

fa . Z (—( vK(©),0lso)fix + € + [[VK(€), 0510 fi(x + ©)]) = (%)
Jj
and

IZ ([ vK(©),0G49]fi0) =0
005

for all x € Q.
Proof. It is a direct consequence from Fact (i) in Corollary 3.3.
Proposition 4.3 (see [29])(Borel-Pompieu formula). Let f;, g; € C'(Q, R*) N C(Q, R?) then

f > (- K@) G+t 9 +[ K(©.00,). 6+ gp(x+ 6
a0 K
H[ DT+ g+ ) + AVl + g)(x + DK ©dHiseo
e

[ D0 T K@+ g6+ ) + rotcly + g)6x-+ e
J

0, x € R¥\ Q.
Proof. Use the Fact (ii) of Proposition 3.2.
Proposition 4.4 (see [29]). Let £, Q c R® be conformal equivalent domains and T given by (2.5) such that Q =
T(E). Given v,u; € R® denote

1 (ujx) _
Splf] = Z 2 M o (A% M — MAT) o Wy [£)]
j

B {fi (x) +gj(x), x€Q,

and

1 w,X _
Vrlfi] = Z XL "y o( ATM + MAT) o Wi[f]],

for all f; € C'(Q, R3). Hence,
gradSy[f;] + rotVr[f;] = =Sy [fj]lv — [v, Ve [fj]]
divVr[f;] = —(v, Vz[fj]), on E
iff
divf= —(67. f;),
rotfi= —[ST, fi], on Q
or equivalently, f; € 5 M(Q) for all f; € C*(Q, R?).
What is more, define
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RIGI=Y (M = M) oW
j
vl = (M M) W)
j
for all f; € L,(Q, R3). Then
|2 GEddu=[ D (Rel6Relg] + (Ur15) Uylgs))orda
j S

|2 Gedu=[ D (~RelflUrle] + RelglUsis] + [Urls), Urlgs Dord
j =

for all f;, g; € L,(Q, R?).
Proof. It follows from Proposition 3.4.
Definition 4.5. The R-linear space A (Q) is defined by requiring f; €, M({2) such that

f Z If;2dp < oo
2%
equipped with the following inner product
GenA@ = [ Y (fganvh,ge AW
Q
j

We now include easy but important facts involving ,A(Q)
(a) Ifthere exists A € R such that Q c {x € R | (v,x) > A} is bounded, then
(ke | ke R} B, A(Q) = A(Q) NAL(Q)
(b) If there exists A € R such that {x € R3 | (v,x) < A} € Q then
vA(Q) = yA(Q) NAL(D)
Proposition 4.6 (see [29]). ,A(Q),(:,')yA(Q)) is a real linear Hilbert space.
Proof. Let {(fi)n} be a Cauchy sequence of elements in  ,A(Q). Therefore {(fi)n} is a Cauchy sequence in
veA () and there exists f; € A (Q) such that {(fi)n} converges to f; and, particularly, one sees that {(fi)n}
converges to f; uniformly on compact set. Thus, by uniqueness of limits f; = f; € A(Q).
Proposition 4.7 (see [29]) (Reproducing functions). The following assertions follow
(i) There exist a scalar field (a + €)q: Q X Q — R and a vector field (a + €)q: Q X Q — R3, such that
(@A) (a+e)gxx+e)=(a+e)gx+€x) and (a+€)q(x,x+€)=—(a+e€)q(x+€x), for all
xx+€)eNxq.
(b) divia+€)q(,x+€) =—(v,(a+€)q(-,x+€)), for each (x + €) € Q.
(c) grad(a+€)q(,x+€)+rot(a+€)qg(x+€)=—(a+e€)q(x+ev—[v,(a+€)q(-x+€)]
for each (x + €) € Q.
(d) Let L,(Q, R?) denote the space of all f; € L,(Q, R*) with

LZ ((a+e)qxx+€),fi(x+€)duxie =0,ae.XEQ
j

equipped with the norm inherited from L, (Q, R3). It is easily seen to be a real Banach space such
that

A = (M@ N L (QRY)
and

f Z ((@+Oaxx +Of(x +€) + [(@+ axx +€), §x + ©)])digese = £;(X), VX € Q
Q -
]

forallfj€ ,A(Q).
(ii) There exist functions C;,C,, C3: Q X Q - R3 such that C;(-,x), C,(-,x),C3(-,X) € (A(f), for each
X € Qand

|2 (et e, 60t O)dunno = 0,
J
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forallfj € (A(Q), where fj = 2o e;(fj); and (fj); € C'(Q, R). Therefore,

f,(x) = L Z Z ei(Ci(x + € %), £(x + ©))ditxre
i=0 J

Proof.(i) It is a consequence from the contention ,A(Q) € A(Q) and the properties of the Bergman kernel
of VA (Q).
(i) As vy,A(Q)) is a real Hilbert space, the functional l'I,L([fJ] =({Nix),x€Q with fj=
LAY ;i ei(fj)iand (fj);: Q — R for all i, is bounded for i = 1,2,3 since the valuation functional is bounded
on A(Q). Therefore, there exist reproducing functions C; for i = 1,2,3.

Property (ii) shows us that the "appropriate" L,-space is L, (Q, R?) in definition of ,A(Q).
Proposition 4.8 (see [29]). If E,Q c R3 be conformal equivalent domains and set T given by (2.5) such that
Q = T(Z). Consider v, u; € R* and define

1<t(u i
PIfI=D AT Me( M- M) o W)
j
20 c ¢
=Y Mo M+ Mo Wy[f]
J
Therefore, f; € C1(Q, R®) satisfies that divf; = —(8y, f;), rotf; = —[87, f;] on Q and

fz I 2du < oo
2%

divQ[fj]= —(v, Q[f;])
gradP[f;] + rotQ[fj]= —P[f;]v — [v, Q[fj]], on E

if and only if

and

fnz (IP[£11% + |QIf]1*)yrdu < co.
Jj
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