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Abstract 

J. Oscar González-Cervantes,∗, J. Bory-Reyes [29] in their recent works Gonzalez-Cervantes, Luna-Elizarraras 

and Shapiro [11,12], laid the foundations for the generalization of the theory of Bergman spaces induced by the 

foundations for the generalization of the theory of Bergman spaces induced byLaplacian (sometimes called 

solenoidal and irrotational, or harmonic) vector fields by taking advantage on the intimate connections between 

harmonic vector fields theory and quaternionic analysis for the Moisil-Theodorescu operator (MT-operator for 

short). A deeper discussion of the last mentioned relation can be found in [1]. On the setting of general bounded 

domains in ℝ3, we extend the aforementioned study in a very natural way to the case of an introduced 𝒗-MT-

operator for 𝒗 ∈ ℝ3, proving several properties of induced Bergman spaces and some relative results about 

Stokes and Borel-Pompieu formulas for 𝒗-MT-hyperholomorphic functions, i.e., functions which belong to 

kernel of the 𝒗-MT-operator. They show that this v-MT operator satisfies a conformal co-variant property. 

Following [29] we improved the applications of all the above allows to study of Bergman type spaces induced 

by v-Laplacian vector fields theory. 
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I. Introduction and terminology 

To extend classical complex analysis from ℝ2 to ℝ3 was by replacing the Cauchy-Riemann equations 

for holomorphic functions by the following system for smooth vector fields 𝑓𝑗: ℝ
3 → ℝ3: 

{
div𝑓𝑗 = 0,

rot𝑓𝑗 = 0.
                                                                 (1.1) 

Smooth solutions to the system (1.1) are called Laplacian vector fields, and for a very good introduction to their 

theory see [27]. 

Note that a Laplacian vector field satisfies the Laplace equation it named of a harmonic vector field. By 

purely physical reasons the solutions of (1.1) is called solenoidal and irrotational vector fields. 

For a thorough treatment of the notion of Cauchy-type integral on a compact Liapunov surface, for the 

system (1.1), and some of its boundary value properties see [18]. Moreover, the subject has been treated in [1] 

for compact rectifiable topological surfaces, i.e., it is the image of some bounded subset Ξ of ℝ2 under a 

Lipschitz mapping 𝜒: Ξ → ℝ3. Rademacher's theorem [9, pag. 81] ensures that 𝜒 is differentiable almost 

everywhere in Ξ, hence there exist conventional tangent plane for almost every point of the surface. Rectifiable 

surfaces form essentially the largest class where many basic properties of smooth surfaces have reasonable 

analogues (see [29]). 

http://www.questjournals.org/
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We discuss the Bergman spaces goes back toS. Bergman, [4] in the carly fifties, where the first 

systematic treatment of the subject was given, and since then there have been a lot of papers devoted to this 

area. See[5,8,15,28] and the references therein, which contain a broad summary and historical notes of the 

subject. Preliminaries on Bergman spaces induced by the MT-hyperholomorphic functions theory. We intrduce 

several properties on Bergman spaces and some relative results about Stokes and Borel-Pompieu formulas for 𝐯 

-MT-hyperholomorphic functions, i.e., functions which belong to kernel of the 𝐯-MT-operator needed. We 

proved the main results, where discusses Bergman type spaces induced by 𝐯-Laplacian vector, and show 

remarks on general concepts. 

 

II. Preliminaries 

Forℍ denote the skew-field of real quaternions generated by 𝑒0 = 1 and the non-real units, 𝑒1, 𝑒2, 𝑒3 

that fulfill the condition 𝑒1
2 = 𝑒2

2 = 𝑒3
2 = −1 and the multiplication rules 𝑒1𝑒2 = −𝑒2𝑒1 = 𝑒3, 𝑒2𝑒3 = −𝑒2𝑒3 =

𝑒1, and 𝑒3𝑒1 = −𝑒1𝑒3 = 𝑒2. If 𝑞 ∈ ℍ then 𝑞 = 𝑞0 + 𝑞1𝑒1 + 𝑞2𝑒2 + 𝑞3𝑒3, where the coefficients 𝑞𝑘 ∈ ℝ, 𝑘 =

0,1,2,3. Each quaternion 𝑞 ∈ ℍ can be represented by 𝑞 = 𝑞0 + 𝐪 with 𝐪 = 𝑞1𝑒1 + 𝑞2𝑒2 + 𝑞3𝑒3. The real 

number 𝑞0 is called the scalar part of 𝑞 and the vector 𝐪 is called the vector part of 𝑞. Due to the mapping 

(𝑞1, 𝑞2, 𝑞3) ↦ 𝑞1𝑒1 + 𝑞2𝑒2 + 𝑞3𝑒3, from ℝ3 on {𝐪 ∣ 𝑞 ∈ ℍ}, is an isometric isomorphism between ℝ-linear 

spaces, we shall continue to write ℝ3 instead of {𝐪 ∣ 𝑞 ∈ H}. 

A quaternionic conjugation of 𝑞 is defined by 𝑞‾: = 𝑞0 − 𝐪. The quaternionic norm |𝑞|:= √𝑞𝑞‾ =

√𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 is the Euclidean norm with the natural identification of H with ℝ4. 

If, for only𝐱, (𝐱 + 𝝐) ∈ ℝ3 then ityields |𝐱(𝐱 + 𝝐)| = |𝐱||𝐱 + 𝝐|. 

And in vector analysis terms, the multiplication: 

𝑥(𝑥 + 𝜖) = (𝑥0 + 𝐱)((𝑥 + 𝜖)0 + 𝐱 + 𝝐) = 𝑥0(𝑥 + 𝜖)0 − ⟨𝐱, 𝐱 + 𝝐⟩ + 𝑥0(𝐱 + 𝝐) + (𝑥 + 𝜖)0𝐱 + [𝐱, 𝐱 + 𝝐] 

where ⟨𝐱, 𝐱 + 𝝐⟩ and [𝐱, 𝐱 + 𝝐] stand for the inner and the usual cross product of 𝐱, 𝐱 + 𝝐 ∈ ℝ3 respectively. 

Set Ω ⊂ ℝ3 be a bounded Jordan domain. We will consider functions 𝑓𝑗: Ω → H to be written as 𝑓𝑗 =

∑  3
𝑖=0 ∑𝑗 (𝑓𝑗)𝑖𝑒𝑖. Hence𝑓𝑗 has properties in Ω such as continuity, real differentiability of order 𝑝, Lebesgue 

integrable and 𝜔-weighted Lebesgue integrable mean that all (𝑓𝑗)𝑖 have these properties. These spaces are 

usually denoted by 𝐶𝑠(Ω,ℍ) with 𝑠 ∈ ℕ ∪ {0}, 𝐿2(Ω,ℍ) and 𝐿2,𝜔(Ω,ℍ) respectively. 

We introduce series of the Moisil-Theodorescu operator (MT-operator for short) 𝐷[𝑓𝑗] =

∑  3
𝑖=1 ∑𝑗 𝑒𝑖

𝜕𝑓𝑗

𝜕𝑥𝑖
. As usual, the MT-operator can act on the right [𝑓𝑗]𝐷 = ∑  3

𝑖=1 ∑𝑗
𝜕𝑓𝑗

𝜕𝑥𝑖
𝑒𝑖. Put, 𝐷𝑟[𝑓𝑗] instead 

of [𝑓𝑗]𝐷.  

All functions which belong to Ker(𝐷): = {𝑓𝑗: 𝐷[𝑓𝑗] = 0} are called left MT-hyperholomorphic and 

functions fulfilled 𝐷𝑟[𝑓𝑗] = 0, shall be called right MT-hyperholomorphic. For the function theories (or 

quaternionic analysis), see [13,14,21,24]. 

The function 𝐾(𝝐) = −
𝝐

4𝜋|𝛜|2
 for (𝐱 + 𝛜, 𝐱) ∈ 𝜕Ω × (ℝ3 ∖ 𝜕Ω), is both left- and right-MT-

hyperholomorphic fundamental solution for 𝐷, which plays the same role in quaternionic analysis as the Cauchy 

kernel does in complex analysis. 

We assume Ω to be a bounded Jordan domain of ℝ3 with rectifiable boundary 𝜕Ω. However, we will 

use this assumption only in the way to ensure the existence of the outward pointing unit normal (almost 

everywhere) to 𝜕Ω. 

For𝑔𝑗: Ξ → Ω be a one-to-one correspondence and ℎ: Ω → ℍ. We introduce the following: 𝑊𝑔𝑗[𝑓𝑗] =

𝑓𝑗 ∘ 𝑔𝑗 ,
ℎ𝑀[𝑓𝑗] = ℎ𝑓𝑗 and 𝑀ℎ[𝑓𝑗] = 𝑓𝑗ℎ for every 𝑓𝑗 belonging to a function space associated to Ω. 

So one of the principal analytical facts that forms the basis of the quaternionic analysis is the three-

dimensional Stokes formula 

∫  
𝜕Ω

∑

𝑗

𝑓𝑗(𝐭)𝜎𝐭
(2)
𝑔𝑗(𝐭)

= ∫  
Ω

∑

𝑗

(𝐷𝑟[𝑓𝑗](𝐱 + 𝛜)𝑔𝑗(𝐱 + 𝛜) +∑

𝑗

𝑓𝑗(𝐱 + 𝛜)𝐷[𝑔𝑗](𝐱 + 𝛜))𝑑𝜇(𝐱+𝛜)    (2.1) 
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for all 𝑓𝑗, 𝑔𝑗 ∈ 𝐶
1(Ω,ℍ) ∩ 𝐶(Ω‾ ,ℍ). Then, in a rather routine verification Stoke's formula yields the Borel-

Pompieu formula: 

∫  
𝜕Ω

 ∑

𝑗

(𝐾(𝐭 − 𝐱)𝜎𝐭
(2)
𝑓𝑗(𝐭) + 𝑔𝑗(𝐭)𝜎𝐭

(2)
𝐾(𝐭 − 𝐱))

−∫  
Ω

 ∑

𝑗

(𝐾(𝛜)𝐷[𝑓𝑗](𝐱 + 𝛜) +∑

𝑗

𝐷𝑟[𝑔𝑗](𝐱 + 𝛜)𝐾(𝛜)) 𝑑𝜇(𝐱+𝛜)

 

= {
𝑓𝑗(𝐱) + 𝑔𝑗(𝐱), 𝐱 ∈ Ω,

0, 𝐱 ∈ ℍ ∖ Ω‾ ,
                                                                 (2.2) 

for all 𝑓𝑗, 𝑔𝑗 ∈ 𝐶
1(Ω,ℍ) ∩ 𝐶(Ω‾ ,ℍ). 

Usually, 𝑑𝜇 denotes the oriented volume element on Ω and 𝜎x
(2)
= ∑  3

𝑖=1 (−1)
𝑖+1𝑒𝑖𝑑�̂�

𝑖, where each 

term 𝑑�̂�𝑖  is given by 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 omitting the factor 𝑑𝑥𝑖, for 𝑖 = 1,2,3, can be represented on 𝜕Ω in the 

form 𝐧(𝑥)𝑑𝑠, where 𝑑𝑠 is the two-dimensional surface area element of integration and 𝐧(𝑥) =

(𝑛1(𝑥), 𝑛2(𝑥), 𝑛3(𝑥)) is the outward pointing unit normal to 𝜕Ω at 𝐱. Noting that 𝐧(𝐱) exists for almost every 

𝐱 ∈ 𝜕Ω under the assumption on the geometry of 𝜕Ω. 

As a direct consequence one has the MT-hyperholomorphic Cauchy integral formula: 

∫  
𝜕Ω

∑

𝑗

𝐾(𝛜)𝜎(𝐱+𝛜)
(2)

𝑓𝑗(𝐱 + 𝛜) = {
𝑓𝑗(𝐱),  if 𝐱 ∈ Ω

0,  if 𝐱 ∉ Ω‾ ,
                                (2.3) 

for all 𝑓𝑗 ∈ Ker(𝐷) ∩ 𝐶(Ω‾ ,ℍ). 

See [1] and [21-23] for more information. 

Consider the Theodorescu operator for 𝑓𝑗 ∈ 𝐿2(Ω, H) as 

𝒯[𝑓𝑗](𝐱): = ∫  
Ω

∑

𝑗

𝐾(𝛜)𝑓𝑗(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜)                                                  (2.4) 

Hence, we recall that 𝐷 ∘ 𝒯 = 𝐼 on both 𝐿2(Ω,ℍ) and on 𝐶(Ω,ℍ), where 𝐼 denotes the identity operator. Note 

that (2.4) means precisely that 𝒯 still being a right inverse to 𝐷, see [18, pag. 73]. 

The quaternionic Möbius transformations preserving ℝ3 are important for a variety of reasons, one 

being that they are conformal maps. A deeper discussion along classical lines can be found in [ 2,3,16,25,26]. 

Basic examples are: 

(i) Given 𝐪 ∈ ℝ3. The translation 𝑇1(𝐱) = 𝐱 + 𝐪 for all 𝐱 ∈ ℝ3. 

(ii) The rotation associated to (𝑎 + 2𝜖) ∈ ℍ such that |𝑎 + 2𝜖| = 1 is defined by 𝑇2(𝐱) = (𝑎 +

2𝜖)𝐱(𝑎 + 2𝜖)‾  for all 𝐱 ∈ ℝ3. 

(iii) The inversion is defined by 𝑇3(𝐱) = (𝐱)
−1 = −

𝐱

|𝐱|2
 for all 𝐱 ∈ ℝ3 ∖ {0}. 

(iv) The dilation with a scale factor 𝜆 > 0 is 𝑇4(𝐱) = 𝜆𝐱 for all 𝐱 ∈ ℝ3. 

In general, any quaternionic Möbius transformation from ℝ3 to ℝ3 is given by 

𝑇(𝐱) = (𝑎𝐱 + 𝑎 + 𝜖)((𝑎 + 2𝜖)𝐱 + 𝑎 + 3𝜖)−1                                                  (2.5) 

where 𝑎, 𝑎 + 𝜖, 𝑎 + 2𝜖, 𝑎 + 3𝜖 ∈ ℍ satisfy: 

 (i) (𝑎 + 𝜖)(𝑎 + 3𝜖)−1 ∈ ℝ3 and 𝑎‾(𝑎 + 3𝜖) ∈ ℝ, if 𝑎 + 2𝜖 = 0. 

 (ii) 𝑎(𝑎 + 2𝜖)−1, (𝑎 + 3𝜖)(𝑎 + 𝜖 − 𝑎(𝑎 + 2𝜖)−1(𝑎 + 3𝜖))−1 ∈ ℝ3 and (𝑎 + 2𝜖)‾ (𝑎 + 𝜖 − 𝑎(𝑎 + 2𝜖)−1(𝑎 + 3𝜖)) ∈ ℝ, if 𝑎 + 2𝜖 ≠ 0, 
 

see [11,17,20]. 

The MT-hyperholomorphic Bergman space associated to Ω ⊂ ℝ3, denoted by 𝒜(Ω), is defined to be 

the collection of all 𝑓𝑗 ∈ Ker(𝐷) ∩ 𝐶
1(Ω,ℍ) such that 

∫  
Ω

∑

𝑗

|𝑓𝑗|
2𝑑𝜇 < ∞ 

See [19]. 

The quaternionic right-linear space 𝒜(Ω) equipped by the inner product and the norm inherited from 

𝐿2(Ω,ℍ) results to be a quaternionic right-Hilbert space with a reproducing kernel and projection, see [11,12] 

for more details. 

Let Ξ, Ω ⊂ ℝ3 conformal equivalent domains with Ω = 𝑇(Ξ), where 𝑇 is given by (2.5). Define 
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𝐵𝑇(𝐱 + 𝛜): = {
|𝑎|2𝑎‾,  if 𝑎 + 2𝜖 = 0;

|𝑎 + 2𝜖|2|(𝐱 + 𝛜) − 𝑎(𝑎 + 2𝜖)−1|3(𝑎 + 2𝜖)‾ ((𝐱 + 𝛜) − 𝑎(𝑎 + 2𝜖)−1),
 if 𝑎 + 2𝜖 ≠ 0, ∀(𝐱 + 𝛜) ∈ Ω,

𝐶𝑇(𝐱): = {

|𝑎|2𝑎‾ if 𝑎 + 2𝜖 = 0,

−|𝑎 + 2𝜖|2(𝑎 + 2𝜖)‾
(𝑎 + 2𝜖)𝐱𝑤 + (𝑎 + 3𝜖)𝑤‾

|(𝑎 + 2𝜖)𝐱𝑤 + (𝑎 + 3𝜖)𝑤|3
,
 if 𝑎 + 2𝜖 ≠ 0, ∀𝐱 ∈ Ξ,

𝜌𝑇(𝐱): = {

1,  if 𝑎 + 2𝜖 = 0,
1

|((𝑎 + 2𝜖))𝐱𝑤 + (𝑎 + 3𝜖)𝑤|2
,
 if 𝑎 + 2𝜖 ≠ 0, ∀𝐱 ∈ Ξ,

                         (2.6) 

where 𝑤 = (𝑎 + 𝜖 − 𝑎(𝑎 + 2𝜖)−1(𝑎 + 3𝜖))−1 and (𝐱 + 𝛜): = 𝑇(𝐱). Then 

𝐷𝐱[𝐴𝑇𝑓𝑗 ∘ 𝑇] = (𝐵𝑇 ∘ 𝑇)𝐷(𝐱+𝛜)[𝑓𝑗] ∘ 𝑇, ∀𝑓𝑗 ∈ 𝐶
1(Ω,ℍ),                             (2.7) 

or equivalently, 

𝐷𝐱 ∘
𝐴𝑇𝑀 ∘𝑊𝑇 = 𝑊𝑇 ∘

𝐵𝑇𝑀 ∘ 𝐷(𝐱+𝛜) on 𝐶1(Ω, 𝐻𝐇), 

see [11,12]. 

So, 
𝐶𝑇𝑀 ∘𝑊𝑇: 𝐿2(Ω, 𝐻𝐻) ⟶ 𝐿2,𝜌𝜏(Ξ, 𝐻) 

and 
𝐶𝑇𝑀 ∘𝑊𝑇|𝒜(Ω):𝒜(Ω) ⟶ 𝒜𝜌𝑇(Ξ) 

are isometric isomorphism of quaternionic right-linear Hilbert spaces, where 

𝒜𝜌𝑇(Ξ) = Ker(𝐷) ∩ 𝐶
1(Ξ,ℍ) ∩ 𝐿2,𝜌𝑇(Ξ,ℍ) 

and 

⟨𝑓𝑗 , 𝑔𝑗⟩𝐿2(Ω,H) =∑

𝑗

⟨ 𝐶𝑇𝑀 ∘𝑊𝑇[𝑓𝑗],
𝐶𝑇𝑀 ∘𝑊𝑇[𝑔𝑗]⟩𝐿2,𝜌𝑇(Ξ,H)

,                           (2.8) 

for all 𝑓𝑗, 𝑔𝑗 ∈ 𝐿2(Ω,ℍ). 

Let us recall that 

⟨𝑓𝑗 , 𝑔𝑗⟩𝐿2,𝜌𝑇(Ξ,H) = ∫  
≡

∑

𝑗

𝑓‾𝑗𝑔𝑗𝜌𝑇𝑑𝜇, 

for all 𝑓𝑗, 𝑔𝑗 ∈ 𝐿2,𝜌𝑇(Ξ,ℍ). 

The Bergman kernels and the Bergman projections 

ℬΞ,𝜌𝑇(𝐱, 𝐱 + 𝛜) = 𝐶𝑇(𝐱)ℬΩ(𝑇(𝐱), 𝑇(𝐱 + 𝛜))𝐶𝑇(𝐱 + 𝛜), ∀𝐱, (𝐱 + 𝛜) ∈ Ω,

𝔅Ξ,𝜌𝑇 =
𝐶𝑇𝑀 ∘𝑊𝑇 ∘ 𝔅Ω ∘ 𝑊𝑇−1 ∘ 𝐶𝑇‾

−1𝑀,
 

on 𝐿2,𝜌𝑇(Ξ), see [10-12]. 

 

III. On some v-MT-hyperholomorphic Bergman spaces 

Here the authors in [29] extend the previous results working with the following MoisilTheodorescu 

Hilbert type operators (MTH-type operators for brevity): 

ForΩ ⊂ ℝ3 and 𝐯 ∈ ℝ3, the MTH-type operators are defined by 

𝐯𝐷:= 𝐷 +
𝐯𝑀,𝐷𝐯: = 𝐷𝑟 +𝑀

𝐯,  on 𝐶1(Ω, 𝐻𝐇) 

those which will play the role of 𝐷 and 𝐷𝑟  in the sequel. 

The following computations will be used (implicitly) several times later on: 

𝐷 ∘𝑒
(𝑣,𝐯)

𝑀[𝐹] = 𝑒(𝐯,𝐱)𝐯𝑓𝑗 + 𝑒
(𝐯,𝐱)𝐷[𝑓𝑗] =

𝑒(𝐯,𝐱) 𝑀 ∘ 𝐷𝐯 [𝑓𝑗],

𝐷 ∘𝑒
(𝑣,𝐯)

𝑀[𝐹] =𝑒
(𝐯,𝐱)

𝑀 ∘ 𝐷𝐯 [𝑓𝑗],
                       (3.1) 

for all 𝑓𝑗 ∈ 𝐶
1(Ω,ℍ). 

Definition 3.1. The elements of the quaternionic right-linear space 𝑣𝔑𝔓(Ω):= 𝐶
1(Ω,ℍ) ∩ Ker( 𝑣𝐷) are 

called 𝐯-MT-hyperholomorphic functions and those of the quaternionic left-linear space 𝔐𝐯(Ω): = 𝐶
1(Ω,ℍ) ∩

Ker(𝐷𝐯) are called r-v-MT-hyperholomorphic functions. 

The following proposition shows Stokes and Borel-Pompieu formulas induced by 𝐯𝐷 and 𝐷𝐯. 

Proposition 3.2 (see [29]). 

(i) Stokes Formula. 
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∫  
𝜕Ω

∑

𝑗

𝑓𝑗(𝐭)𝜈𝐯(𝐭)𝑔𝑗(𝐭) = ∫  
Ω

∑

𝑗

(𝐷𝐯[𝑓𝑗](𝐱 + 𝛜)𝑔𝑗(𝐱 + 𝛜) + 𝑓𝑗(𝐱 + 𝛜)𝐯𝐷[𝑔𝑗](𝐱 + 𝛜))𝑑𝜆𝐯(𝐱 + 𝛜) 

for 𝑓𝑗, 𝑔𝑗 ∈ 𝐶
1(Ω,ℍ) ∩ 𝐶(Ω‾ ,ℍ), where 𝜈𝐯(𝐭) = 𝑒2(𝐯,𝐭)𝜎𝐭

(2)
 and 𝑑𝜆𝐯(𝐱 + 𝛜) = 𝑒2(𝐯,𝐱+𝛜)𝑑𝜇(𝐱+𝛜). 

(ii) Borel-Pompieu Formula. 

∫  
𝜕Ω

 ∑

𝑗

(𝐾𝐯(𝐭 − 𝐱)𝜎𝐭
(2)
𝑓𝑗(𝐭) + 𝑔𝑗(𝐭)𝜎𝐭

(2)
𝐾𝐯(𝐭 − 𝐱))

−∫  
Ω

 ∑

𝑗

(𝐾𝐯(𝛜)𝐯𝐷[𝑓𝑗](𝐱 + 𝛜) + 𝐷𝐯[𝑔𝑗](𝐱 + 𝛜)𝐾𝐯(𝛜))𝑑𝜇(𝐱+𝛜)

 

= {
𝑓𝑗(𝐱) + 𝑔𝑗(𝐱), 𝐱 ∈ Ω,

0, 𝐱 ∈ ℍ ∖ Ω‾ ,
                                                                (3.2) 

for all 𝑓𝑗, 𝑔𝑗 ∈ 𝐶
1(Ω,ℍ) ∩ 𝐶(Ω‾ ,ℍ), where 𝐾𝐯(⋅) = 𝑒

(𝐯,⋅)𝐾(⋅), is the Cauchy Kernel of the 𝐯 −𝑀𝑇 

hyperholomorphic function theory. 

Proof. 1. Applying (2.1) to 𝑒2(𝐯,⋅)𝑓𝑗(⋅), 𝑒
(𝐯,⋅)𝑔𝑗(⋅) and making use of (3.1) yields 

∫  
𝜕Ω

∑

𝑗

𝑓𝑗(𝐭)𝑒
(𝐯,𝐭)𝜎𝐭

(2)
𝑒(𝐯,𝐭)𝑔𝑗(𝐭)

= ∫  
Ω

∑

𝑗

(𝐷𝐯[𝑓𝑗](𝐱 + 𝛜)𝑔𝑗(𝐱 + 𝛜) + 𝑓𝑗(𝐱 + 𝛜)𝐯𝐷[𝑔𝑗](𝐱 + 𝛜))𝑒
2(𝐯,𝐱+𝛜)𝑑𝜇(𝐱+𝛜)       (3.3) 

2. Replacing 𝑓𝑗(⋅) and 𝑔𝑗(⋅) by 𝑒(𝐯,
′)𝑓𝑗(⋅) and 𝑒(𝐯,⋅)𝑔𝑗(⋅) in (2.2) we get 

∫  
𝜕Ω

∑

𝑗

  𝑒(𝐯,𝐭−𝐱)𝐾(𝐭 − 𝐱)𝜎𝐭
(2)
𝑓𝑗(𝐭) + 𝑔𝑗(𝐭)𝜎𝐭

(2)
𝑒(𝐯,𝐭−𝐱)𝐾(𝐭 − 𝐱)

−∫  
Ω

 ∑

𝑗

(𝑒(𝐯,𝛜)𝐾(𝛜)𝐯𝐷[𝑓𝑗](𝐱 + 𝛜) + 𝐷𝐯[𝑔𝑗](𝐱 + 𝛜)𝑒
⟨𝐯,𝛜)𝐾(𝛜))𝑑𝜇(𝐱+𝛜)

={
𝑓𝑗(𝐱) + 𝑔𝑗(𝐱), 𝐱 ∈ Ω,

0, 𝐱 ∈ ℝ3 ∖ Ω‾ .

 

Corollary 3.3 (see [29]). 

(i) v-MT-hyperholomorphic Cauchy Formula. 

∫  
𝜕Ω

∑

𝑗

𝐯𝐾(𝛜)𝜎(𝐱+𝛜)
(2)

𝑓𝑗(𝐱 + 𝛜) = {
𝑓𝑗(𝐱),  if 𝐱 ∈ Ω,

0,  if 𝐱 ∉ Ω‾ ,
                                (3.4) 

for all 𝑓𝑗 ∈∈v 𝔐(Ω). 

(ii) A Theodorescu operator v𝒯 is defined by 

𝐯𝒯[𝑓𝑗](𝐱): = ∫  
Ω

∑

𝑗

𝐾(𝛜)𝑓𝑗(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜),                                        (3.5) 

requiring 𝑓𝑗 ∈ 𝐿2(Ω,ℍ) ∪ 𝐶(Ω,ℍ) with the property that 𝐯𝐷 ∘ 𝐯𝒯 = 𝐼 on 𝐿2(Ω,ℍ) ∪ 𝐶(Ω,ℍ). 

Proof.(i) It follows from (3.2). 

(ii) If 𝑓𝑗 belongs to 𝐿2(Ω,ℍ) ∪ 𝐶(Ω,ℍ) does so 𝑒(𝐯,𝐱)𝑓𝑗(𝐱), 𝑥 ∈ Ω. According to the above remark that 

𝐷 ∘ 𝒯 = 𝐼 on 𝐿2(Ω,ℍ) ∪ 𝐶(Ω,ℍ) we have 

𝐷𝐱 [∫  
Ω

 ∑

𝑗

𝐾(𝛜)𝑒⟨𝐯,𝐱+𝛜⟩𝑓𝑗(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜)] = 𝑒(𝐯,𝐱)𝑓𝑗(𝐱), ∀𝐱 ∈ Ω 

where 𝐷𝐱 denotes the MT-operator indexed with the variable vector in which it is applied. Thus, 

𝐷𝐱 [𝑒
(𝐯,𝐱⟩∫  

Ω

 ∑

𝑗

𝐾(𝛜)𝑒⟨𝐯,𝛜⟩𝑓𝑗(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜)] = 𝑒⟨𝐯,𝐱⟩𝑓𝑗(𝐱), ∀𝐱 ∈ Ω 

We now apply (3.1) to get 

𝑒⟨𝐯,𝐱⟩ 𝐯𝐷𝐱 [∫  
Ω

 ∑

𝑗

𝐾(𝛜)𝑒(𝐯,𝛜)𝑓𝑗(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜)] = 𝑒
(𝐯,𝐱)∑

𝑗

𝑓𝑗(𝐱), ∀𝐱 ∈ Ω 
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Proposition 3.4 (see [29]). Let Ξ, Ω ⊂ ℝ3 be conformal equivalent domains and 𝑇 given by (2.5) such that Ω =

𝑇(Ξ). Given 𝐯, 𝐮𝐣 ∈ ℝ
3 then 

𝐯𝐷 ∘∘
𝑒
(𝑢𝑗,𝐱)𝐴𝑇 𝑀 ∘𝑊𝑇 =

𝑒
(𝑢𝑗,𝑢𝑗,𝑥)

𝑀 ∘𝑊𝑇 ∘
𝐵𝑇𝑀 ∘ 𝛿𝑇𝐷,                          (3.6) 

on 𝐶1(Ω,ℍ), where 𝛿𝑇 = (𝐵𝑇)
−1(𝐯 + 𝐮𝐣)(𝐴𝑇 ∘ 𝑇

−1), 𝑇−1 is the inverse mapping of 𝑇 and (𝐵𝑇)
−1 is the inverse 

multiplicative of 𝐵𝑇 . 

What is more, 

⟨𝑓𝑗, 𝑔𝑗⟩𝐿2(Ω,H) =∑

𝑗

⟨⟨ ⟨uj,𝐱)𝐶𝑇𝑀 ∘𝑊𝑇[𝑓𝑗],
𝜀
(𝑢𝑗,𝐱)𝐶𝑇𝑀 ∘𝑊𝑇[𝑔𝑗]⟩

𝐿2,ר𝑇(Ξ,H)
                 (3.7) 

for all 𝑓𝑗, 𝑔𝑗 ∈ 𝐿2(Ω,ℍ) and the weight function 𝛾𝑇(𝐱) = 𝑒
−2(𝐮𝐣,𝐱)𝜌𝑇(𝐱) for all 𝐱 ∈ Ξ. 

Proof. Set 𝑓𝑗 ∈ 𝐶
1(Ω,ℍ) then using (2.3) and (3.1) we have that 

∑

𝑗

v𝐷 ∘
((𝑢𝑗,ℵ)𝐴𝑇 𝑀 ∘𝑊𝑇[𝑓𝑗]

=∑

𝑗

𝐷 ∘ Ω
(𝑢𝑗,×)𝐴𝑇𝑀 ∘𝑊𝑇[𝑓𝑗] +

(𝑢𝑗+,×)𝑣𝐴𝑇𝑀 ∘𝑊𝑇[𝑓𝑗]

= 𝜀
(uj,x)

∑

𝑗

𝑀 ∘ {𝐷[ 𝐴𝑇𝑀 ∘𝑊𝑇[𝑓𝑗]] +
(v+uj)𝐴𝑇𝑀 ∘𝑊𝑇[𝑓𝑗]}

=∑

𝑗

𝑒(uj,x)𝑀 ∘ {𝑊𝑇 ∘ [
𝐵𝑇𝑀 ∘ 𝐷[𝑓𝑗]] +

(v+uj)𝐴𝑇𝑀 ∘𝑊𝑇[𝑓𝑗]}

=∑

𝑗

𝜀
(𝑢𝑗,𝑥)

𝑀 ∘𝑊𝑇 ∘
𝐵𝑇𝑀 ∘ [𝐷[𝑓𝑗] +

(𝐵𝑇)
−1(𝑣+w)(𝐴𝑇

∘𝑇−1)

𝑀[𝑓𝑗]]

=∑

𝑗

(𝑢𝑗,∗)𝑀 ∘𝑊𝑇 ∘
𝐵𝑇𝑀 ∘ [𝐷[𝑓𝑗] +

𝑠𝑇𝑀[𝑓𝑗]]

=∑

𝑗

𝑒(𝑢𝑗,∗)𝑀 ∘𝑊𝑇 ∘
𝐵𝑇 𝑀 ∘ 𝛿𝑇𝐷[𝑓𝑗]

 

On the other hand, if 𝑓𝑗, 𝑔𝑗 ∈ 𝐿2(Ω,ℍ), (2.8) makes it clear that 

⟨𝑓𝑗, 𝑔𝑗⟩𝐿2(Ω,H)

= ∫  
≡

∑

𝑗

  ( (4,𝐱)𝐶𝑇𝑀 ∘𝑊𝑇[𝑓𝑗]) ((
(uj,𝐱)𝐶𝑇𝑀 ∘𝑊𝑇[𝑔𝑗])(𝑒

−2(𝐮𝐣,𝐱)𝜌𝑇)𝑑𝜇

=∑

𝑗

⟨𝜀(uj,⋆)𝐶𝑇𝑀 ∘𝑊𝑇[𝑓𝑗],
(uj,⋆)𝐶𝑇𝑀 ∘𝑊𝑇[𝑔𝑗]⟩

𝐿2,𝜗𝑇(Ξ,H)
,

 

for all 𝑓𝑗, 𝑔𝑗 ∈ 𝐿2(Ω,ℍ). 

Remark 3.5 [29]. According to definitions of 𝐴𝑇 and 𝐵𝑇  we are able to define 

𝛿𝑇(𝐱 + 𝛜) =

{
 

 
𝑎

|𝑎|4
(𝐯 + 𝐮𝐣)𝑎‾,  if 𝑎 + 2𝜖 = 0

((𝐱 + 𝛜) − 𝑎(𝑎 + 2𝜖)−1)(𝑎 + 2𝜖)

|𝑎 + 2𝜖|4|(𝐱 + 𝛜) − 𝑎(𝑎 + 2𝜖)−1|4
(𝐯 + 𝐮𝐣)(𝑎 + 2𝜖)‾ (𝑥 + 𝜖 − 𝑎(𝑎 + 2𝜖)−1),  if 𝑎 + 2𝜖 ≠ 0,

 

for all (𝐱 + 𝛜) ∈ Ω, and introduce the following quaternionic right-linear space 

𝛿𝑇𝔐(Ω) = 𝐶1(Ω,ℍ) ∩ 𝐾er(𝛿𝑇𝐷). 

Definition 3.6. For 𝑝: Ω → ℝ+, by the 𝐯-MT-weighted hyperholomorphic Bergman space associated to the 

weight 𝑝 we mean the quaternionic right-linear space 𝐯𝒜𝑝(Ω):= v𝔐(Ω) ∩ 𝐿2,𝑝(Ω,ℍ) equipped with the 

inner product inherited from 𝐿2,𝑝(Ω,ℍ) : 

⟨𝑓𝑗, 𝑔𝑗⟩𝐯𝒜𝑝(Ω) = ∫  
Ω

∑

𝑗

𝑓‾𝑗𝑔𝑗𝑝𝑑𝜇, ∀𝑓𝑗 , 𝑔𝑗 ∈∈𝐯 𝒜𝑝(Ω) 

and its induced norm: 
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‖𝑓𝑗‖𝔳𝒜𝑝(Ω)
2 = ∫  

Ω

∑

𝑗

|𝑓𝑗|
2𝑝𝑑𝜇 

for all 𝑓𝑗 ∈ 𝐯𝒜𝜌(Ω). 

Similarly, the right-v-MT-weighted hyperholomorphic Bergman space associated to Ω with weight 𝑝 is 

the quaternionic left linear space: 

𝒜𝑝,𝐯(Ω): = 𝔐𝐯(Ω) ∩ 𝐿2,𝑝(Ω,ℍ) 

equipped with the inner product inherited from 𝐿2,𝑝(Ω,ℍ) given by 

⟨𝑓𝑗, 𝑔𝑗⟩𝒜𝑝,𝐯(Ω) = ∫  
Ω

∑

𝑗

𝑓𝑗𝑔‾𝑗𝑝𝑑𝜇, ∀𝑓𝑗, 𝑔𝑗 ∈ 𝒜𝑝,𝐯(Ω) 

If 𝑝 is the constant function 1 we write v𝒜(Ω) instead of 𝐯𝒜𝑝(Ω) and we will be called 𝐯-

MThyperholomorphic Bergman space associated to Ω. 

Proposition 3.7 (see [29]). 

(i) If 𝔹(𝐱, 𝑟) ⊂ Ω then 

|𝑓𝑗(𝐱)| ≤
√3𝑒𝑟|𝐯|

2√𝜋𝑟
∑

𝑗

‖𝑓𝑗‖𝐯,𝐴(Ω), ∀𝑓𝑗 ∈ v𝒜(Ω) 

(ii) Let 𝐾 ⊂ Ω be a compact set then there exists 𝐶𝐾 > 0 such that 

sup{|𝑓𝑗(𝐱)| ∣ 𝐱 ∈ 𝐾} ≤ 𝐶𝐾∑

𝑗

‖𝑓𝑗‖𝐯𝒜(Ω),                                   (3.8) 

for all 𝑓𝑗 ∈ v𝒜(Ω). 

(iii) The space ( 𝑣𝒜(Ω), ‖ ⋅ ‖v𝒜(Ω)) is a quaternionic right-Hilbert space. 

Proof.(i) From (3.4) it follows that 

𝑓𝑗(𝐱)= ∫  
𝜕𝐁(𝐱,𝑟)

 ∑

𝑗

𝐯𝐾(𝛜)𝜎(𝐱+𝛜)
(2)

𝑓𝑗(𝐱 + 𝛜)

=
−1

4𝜋𝑟2
∫  
𝜕𝐁(𝐱,𝑟)

 ∑

𝑗

(𝛜)𝑒(𝐯,𝛜)𝜎(𝐱+𝛜)
(2)

𝑓𝑗(𝐱 + 𝛜)

=
−1

4𝜋𝑟2
∫  
𝜕𝐁(𝐱,𝑟)

 ∑

𝑗

(𝛜)𝑒(𝐯,𝛜−2(𝐱+𝛜))𝜎(𝐱+𝛜)
(2)

𝑒2(𝐯,𝐱+𝛜)𝑓𝑗(𝐱 + 𝛜)

=
−1

4𝜋𝑟2
∫  
𝜕𝐁(𝐱,𝑟)

 ∑

𝑗

(𝛜)𝑒(𝐯,𝛜−2(𝐱+𝛜))𝜈𝐯(𝐱 + 𝛜)𝑓𝑗(𝐱 + 𝛜)

=
−1

4𝜋𝑟2
∫  
𝐁(𝐱,𝑟)

 ∑

𝑗

𝐷𝐯[(𝛜)𝑒
(𝐯,−(2𝐱+𝛜))]𝑓𝑗(𝐱 + 𝛜)𝑑𝜆𝐯(𝐱 + 𝛜)

=
3

4𝜋𝑟2
∫  
𝐁(𝐱,𝑟)

 ∑

𝑗

𝑒(𝐯,−(2𝐱+𝛜))𝑓𝑗(𝐱 + 𝛜)𝑑𝜆𝐯(𝐱 + 𝛜)

=
3

4𝜋𝑟2
∫  
𝐁(𝐱,𝑟)

∑

𝑗

  𝑒(𝐯,𝛜)𝑓𝑗(𝐱 + 𝛜)𝑑𝜇𝐱+𝛜

 

by our Stokes formula. Therefore, using the Cauchy inequality in 𝐿2(Ω,ℍ) we see that 

|𝑓𝑗(𝐱)|≤
3

4𝜋𝑟2
∫  
𝔹(𝐱,𝑟)

∑

𝑗

  𝑒(𝐯,𝛜)|𝑓𝑗(𝐱 + 𝛜)|𝑑𝜇(𝐱+𝛜)

≤
3

4𝜋𝑟2
(∫  

𝔹(𝐱,𝑟)

  𝑒2(𝐯,𝛜)𝑑𝜇(𝐱+𝛜))

1

2

(∫  
𝔹(𝐱,𝑟)

 ∑

𝑗

|𝑓𝑗(𝐱 + 𝛜)|
2𝑑𝜇(𝐱+𝛜))

1

2 

Due to 𝑒2⟨𝐯,𝒚−𝐱⟩ ≤ 𝑒2|𝐯|𝑟 it may be concluded that 



Applications on Bergman spaces induced by a 𝑣-Laplacian vector fields theory 

DOI: 10.35629/0743-11081023                                  www.questjournals.org                                           17 | Page 

|𝑓𝑗(𝐱)|≤
3

4𝜋𝑟2
𝑒|𝐯|𝑟 (

4

3
𝜋𝑟3)

1

2

(∫  
ℬ(𝐱,𝑟)

 ∑

𝑗

|𝑓𝑗(𝐱 + 𝛜)|
2𝑑𝜇(𝐱+𝛜))

≤
3𝑒𝑟|𝐯|

2√3𝜋𝑟
∑

𝑗

‖𝑓𝑗‖𝐯𝒜(Ω).

 

(ii) It follows from the previous fact. 

(iii) Let {(𝑓𝑗)𝑛} be a sequence of elements of 𝐯𝒜(Ω), hence (3.8) shows that {(𝑓𝑗)𝑛(𝐱)} is a Cauchy 

sequence in ℍ for each 𝐱 ∈ Ω. Therefore, there exists 𝑓𝑗(𝐱) = lim(𝑓𝑗)𝑛(𝐱) for all 𝐱 ∈ Ω and from (3.8) we 

deduce that {(𝑓𝑗)𝑛} converges uniformly, on compact sets, to 𝑓𝑗. 

From the first identity of (3.1) we see that each term of the sequence {𝑒⟨𝜀,𝑥⟩𝑀[(𝑓𝑗)𝑛]} belongs to Ker(𝐷) 

and {𝑒⟨𝑣,𝑥⟩𝑀[(𝑓𝑗)𝑛]} converges uniformly, on compact sets, to 𝑒⟨𝑣,𝑥⟩𝑀[𝑓𝑗]. Then, for any bounded Jordan 

domain Λ ⊂ ℝ3 such that Λ‾ ⊂ Ω with rectifiable boundary, the hyperholomorphic Cauchy integral formula 

associated to the Moisil-Theodorescu operator, see (2.3), gives us that 

𝑒<𝑣,𝛼⟩𝑀[(𝑓𝑗)𝑛](𝑥) = ∫ 
Λ

∑

𝑗

𝐾(𝜖)𝜎(𝑥+𝜖)
(2)𝑒<𝑣,𝑥+𝜖>

𝑀[(𝑓𝑗)𝑛](𝑥 + 𝜖), 

for 𝑥 ∈ Λ and it is zero if 𝑥 ∈ ℝ3 ∖ Λ‾ , for all 𝑛 ∈ ℕ. The uniform convergence allows to obtain that 

𝑒<𝑣,𝑧⟩𝑀[𝑓𝑗](𝑥) = ∫  
Λ

∑

𝑗

𝐾(𝜖)𝜎(𝑥+𝜖)
(2)𝑒<𝜀,𝑥+𝜖>

𝑀[𝑓𝑗](𝑥 + 𝜖) 

for 𝑥 ∈ Λ and it is zero if 𝑥 ∈ ℝ3 ∖ Λ‾ . From the Moisil-Theodorescu hyperholomorphic functions theory, see 

[21], we have 𝑒𝑒
<𝑣,𝑟⟩

𝑀[𝑓𝑗] ∈ Ker(𝐷), or equivalently using (3.1), 𝑓𝑗 ∈ Ker( 𝑣𝐷). Another interesting way to 

justify the previous fact is following similar method as in [6, page 1635], where several properties of harmonic 

functions are used. Summarizing, we have 𝑓𝑗 ∈𝐯 𝔐(Ω). 

On the other hand, there exists 𝑔𝑗 ∈ 𝐿2(Ω,ℍ) such that {(𝑓𝑗)𝑛} converges to 𝑔𝑗 in 𝐿2(Ω,ℍ). Finally, 

using (3.8) we obtain 𝑓𝑗 = 𝑔𝑗 almost everywhere and 𝑓𝑗 ∈ v𝐴(Ω).  

Remark 3.8 [29]. According to the above propositions the valuation functional is bounded on v𝒜(Ω). Then 

Riesz representation theorem for quaternionic Hilbert spaces, see [7], shows that given 𝐱 ∈ Ω there exists 

𝐯𝐵𝐱 ∈𝐯 𝒜(Ω) such that 𝑓𝑗(𝐱) = ⟨ 𝐯𝐵𝐱, 𝑓𝑗⟩𝐯𝐴(Ω) for all 𝑓𝑗 ∈∈𝐯 𝒜(Ω). 

The function 𝐯ℬΩ(𝐱,⋅):= 𝐯𝐵𝐱(⋅) is called the 𝐯-MT-hyperholomorphic Bergman kernel associated 

to Ω and satisfies that 

𝑓𝑗(𝐱) = ∫  
Ω

∑

𝑗

𝐯ℬΩ(𝐱, 𝐱 + 𝛜)𝑓𝑗(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜), ∀𝑓𝑗 ∈𝐯 𝒜(Ω).                           (3.9) 

In addition, the 𝐯-MT-hyperholomorphic Bergman projection associated to Ω is defined by 

v𝔅Ω[𝑓𝑗](𝐱): = ∫  
Ω

∑

𝑗

vℬΩ(𝐱, 𝐱 + 𝛜)𝑓𝑗(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜), ∀𝑓𝑗 ∈ 𝐿2(Ω,ℍ) 

Properties of vℬΩ and v𝔅Ω are established by our next proposition. 

Proposition 3.9 (see [29]). 

(i) ℬΩ(𝐱, 𝐱 + 𝛜) = vℬΩ(𝐱 + 𝛜, 𝐱), for all 𝐱, (𝐱 + 𝛜) ∈ Ω. 

(ii) Given 𝐱 ∈ Ω, 𝑣ℬΩ(⋅, 𝐱) ∈ v𝔐(Ω) and vℬΩ(𝐱,⋅) ∈ 𝔐(Ω)v. 

(iii) BℬΩ(⋅,⋅) is the unique reproduction kernel that meets the two previous properties. 

(iv) v𝐵Ω  is a symmetric operator; i.e., 

⟨v𝔅Ω[𝑓𝑗], 𝑔𝑗⟩𝐿2(Ω,H)
= ⟨𝑓𝑗, 𝐯𝔅Ω[𝑔𝑗]⟩𝐿2(Ω,H)

, ∀𝑓𝑗 , 𝑔𝑗 ∈ 𝐿2(Ω, 𝐻) 

(v) 𝑣𝔅Ω[𝐿2(Ω, 𝐻)] = v𝒜(Ω). 

(vi) ( v𝔅Ω)
2 = v𝔅Ω. 

(vii) 𝔳Ω is a continuous operator. 

Proof.(i) Since 𝐯ℬΩ(𝐱,⋅) ∈ v𝒜(Ω) one has that 
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vℬΩ(𝐱, 𝐳)= ∫  
Ω

  vℬΩ(𝐳, 𝐱 + 𝛜)𝐯ℬΩ(𝐱, 𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜)

vℬΩ(𝐱, 𝐳)= ∫  
Ω

  vℬΩ(𝐱, 𝐱 + 𝛜) vℬΩ(𝐳, 𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜)

= 𝐯ℬΩ(𝐳, 𝐱)

 

for all 𝐱, 𝐳 ∈ Ω. 

(ii) It is a consequence of the previous fact. 

(iii) If 𝑀:Ω × Ω → ℍ has the same properties of vℬΩ(⋅,⋅) we would have 

𝑀(𝐱 + 𝛜, 𝐱) = 𝑀(𝐱, 𝐱 + 𝛜)= ∫  
Ω

 𝒱Ω(𝐱, 𝐳)𝑀(𝐳, 𝐱 + 𝛜)𝑑𝜇𝐳

= ∫  
Ω

 𝑀(𝐱 + 𝛜, 𝐳)𝐯ℬΩ(𝐳, 𝐱)𝑑𝜇𝐳 =
vℬΩ(𝐱 + 𝛜, 𝐱),

 

for all 𝐱, (𝐱 + 𝛜) ∈ Ω. 

(iv) Given 𝑓𝑗, 𝑔𝑗 ∈ 𝐿2(Ω,ℍ) we obtain 

⟨𝔳𝔅Ω[𝑓𝑗], 𝑔𝑗⟩𝒜𝐴(Ω)= ∫  
Ω

 ∑

𝑗

(∫  
Ω

 𝑣ℬΩ(𝐱, 𝐱 + 𝛜)𝑓𝑗(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜))𝑔𝑗(𝐱)𝑑𝜇𝐱

= ∫  
Ω

∑

𝑗

 𝑓𝑗(𝐱 + 𝛜) (∫  
Ω

  vΩ(𝐱 + 𝛜, 𝐱)𝑔𝑗(𝐱)𝑑𝜇𝐱)𝑑𝜇(𝐱+𝛜)

=∑

𝑗

⟨𝑓𝑗 , 𝐯ℬΩ[𝑔𝑗|⟩𝒜(Ω).

 

(v) Given 𝑓𝑗 ∈ 𝐿2(Ω,ℍ) there exist unique elements (𝑓𝑗)1 ∈𝐯 𝒜(Ω) and (𝑓𝑗)2 ∈ (v𝒜(Ω))
⊥ such that 𝑓𝑗 =

(𝑓𝑗)1 + (𝑓𝑗)2. Thus 

𝐯𝔅Ω[(𝑓𝑗)2](𝐱) = ∫  
Ω

∑

𝑗

𝒱Ω(𝐱 + 𝛜, 𝐱)(𝑓𝑗)2(𝐱 + 𝛜)𝑑𝜇(𝐱+𝛜) = 0 

and 𝐯𝔅Ω[𝑓𝑗] = (𝑓𝑗)1. Hence 𝐯𝔅Ω[𝐿2(Ω,ℍ)] = 𝐯𝒜(Ω). 

(vi) It is a consequence of the previous fact. 

(vii) That 𝔳𝔅Ω is a continuous operator follows from the fact that 𝔳𝔅Ω satisfies the closed graph theorem. 

Remark 3.10 [29]. By the effect of the quaternionic conjugation we deduce that the Bergman kernel of 𝒜𝐯(Ω) 

is given by 

ℬΩ,𝐯(𝐱, 𝐱 + 𝛜) = 𝐯ℬΩ(𝐱, 𝐱 + 𝛜) = vℬΩ(𝐱 + 𝛜, 𝐱) 

for all (𝐱 + 𝛜), 𝐱 ∈ Ω. 

Proposition 3.11. Let Ω, Ξ ⊂ ℝ3 be conformal equivalent domains and set 𝑇, given by (2.5), such that 𝑇(Ξ) =

Ω. Consider 𝛿𝑇 and 𝛾𝑇 given by Proposition 3.4. Then, the following statements are true: 

(i) The operator (4,𝐱)𝜎𝑇𝑀 ∘𝑊𝑇 satisfies 

(uj,𝐱
𝑜𝑇
𝑀 ∘𝑊𝑇|

𝛿𝑇𝒜(Ω)
: 𝛿𝑇

𝒜(Ω) ⟶ v𝒜𝛾𝑇(Ξ) 

and 

⟨𝑓𝑗, 𝑔𝑗⟩𝑠𝑇,𝒜(Ω) =∑

𝑗

⟨
⟨

(𝑢𝑗,𝐱)𝑐𝑇𝑀 ∘𝑊𝑇[𝑓𝑗], ,
𝜀
(𝑢𝑗,𝐱)𝑐𝑇𝑀 ∘𝑊𝑇[𝑔𝑗]⟩

𝐯

𝐴𝛾𝑇(Ξ) 

for all 𝑓𝑗, 𝑔𝑗 ∈ 𝛿𝑇
𝒜(Ω). 

(ii) ( 𝑣𝒜𝛾𝑇
(Ξ), ⟨⋅, ⟩𝑣,𝐴𝛾𝑇(Ξ)) is a quaternionic right-Hilbert space and the evaluation operator is 

bounded on 𝑣𝒜𝑇𝑇(Ξ). 

(iii) ( 𝛿𝑇𝒜(Ω), ⟨⋅,⋅⟩𝑠𝑇𝒜(Ω)) is a quaternionic right-Hilbert space, the valuation functional is bounded 

on 
𝑇
𝒜(Ω). 

(iv) Bergman kernels of 𝛿𝑇𝒜(Ω) and 𝑣𝒜𝛾𝑇(Ξ) have the same properties as shown in Proposition 3.9 

and they are related as follows: 
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𝐯ℬΞ,𝛾𝑇(𝐱, 𝐱 + 𝛜) =∑

𝑗

𝑒⟨𝐮𝐣,𝟐𝐱+𝛜⟩𝐶𝑇(𝐱)𝛿𝑇ℬΩ(𝑇(𝐱), 𝑇(𝐱 + 𝛜))𝐶𝑇(𝐱 + 𝛜), 

for all 𝐱, (𝐱 + 𝛜) ∈ Ξ. 

(v) The 𝐯-MT-weighted hyperholomorphic Bergman projection associated to the domain Ξ, with 

weight 𝛾𝑇, is 

v𝔅Ξ,𝛾𝑇 =∑

𝑗

𝜀
(uj,)

′
𝐶𝑇𝑀 ∘𝑊𝑇 ∘ 𝛿𝑇𝔅Ω ∘ (

𝜀
(𝑢𝑗⋅)𝐶𝑇𝑀 ∘𝑊𝑇)

−1

 

Proof. (i)By (2.6) we see that 𝐴𝑇 and 𝐶𝑇 are the same function up to a positive constant. Therefore, Proposition 

3.4 proves the desired result. 

(ii) It is deeply similar to fact 3. of Proposition 3.7 since 𝐯 is a constant vector and the weight function 

𝛾𝑇 is a bounded function on compact subsets of Ξ that does not affect the 𝐯-MT-hyperholomorphy. 

(iii)As the Möbius transformation 𝑇 then the operator 𝑒
(uj,x)𝐶𝑇𝑀 ∘𝑊𝑇 is invertible too, see [10,11]. 

Thus, given a Cauchy sequence {(𝑓𝑗)𝑛} of elements in 𝛿𝑇𝒜(Ω) one has that { 𝐞(𝜇,x)𝜎𝑇𝑀 ∘𝑊𝑇[(𝑓𝑗)𝑛]} is a 

Cauchy sequence in 𝐯𝒜𝛾𝑇(Ξ). Therefore, as in the proof of Proposition 3.7, Fact 3., there exists 𝑔𝑗 ∈𝐯 𝒜𝛾𝑇(Ξ) 

such that { 𝜀
{(𝑢𝑗,𝐱⟩𝐶𝑇𝑀 ∘𝑊𝑇[(𝑓𝑗)𝑛]} converges to 𝑔𝑗, or equivalently, {(𝑓𝑗)𝑛} converges to ( 𝜀

{𝑢𝑗,𝐱⟩𝐶𝑇𝑀 ∘

𝑊𝑇)
−1

[𝑔𝑗] ∈ 𝛿𝑇
𝒜(Ω). 

Calculation similar to the above implies that valuation functional is bounded in 𝛿𝑇𝒜(Ω). Therefore 

𝛿𝑇𝒜(Ω) has a reproducing kernel and a projection. 

(iv)Given ℎ ∈ 𝐯𝒜𝛾𝑇(Ξ) one has that (
(

(𝑢𝑗,𝑥)𝐶𝑇𝑀 ∘𝑊𝑇)
−1

[ℎ] ∈ 𝛿𝑇𝒜(Ω) and setting (𝐱 + 𝛜) =

𝑇(𝐱) we obtain 

( 𝜀
(𝐮𝐣,𝐱)𝐶𝑇𝑀 ∘𝑊𝑇)

−1

[ℎ](𝐱 + 𝛜)

=∑

𝑗

⟨ 𝛿𝑇
ℬΩ(⋅, 𝐱 + 𝛜), (

𝑒
(𝐮𝐣,𝐱)𝐶𝑇𝑀 ∘𝑊𝑇)

−1

[ℎ]⟩
𝛿𝑇

𝒜(Ω)

=∑

𝑗

⟨ 𝑒
(𝑢𝑗,𝐳)𝐶𝑇𝑀 ∘𝑊𝑇[𝛿𝛿𝑇ℬΩ(⋅, 𝐱 + 𝛜)], ℎ⟩

𝐯
𝒜𝛾𝑇((Ξ)

=∫  
≡

 ∑

𝑗

(𝑒(𝐮𝐣,𝐳)𝐶𝑇(𝐳)𝛿𝑇ℬΩ(𝑇(𝐳), 𝐱 + 𝛜)) ℎ(𝐳)𝛾𝑇(𝐳)𝑑𝜇𝐳

=∫  
≡

 ∑

𝑗

(𝑒⟨𝐮𝐣,𝐳) 𝛿𝑇ℬΩ(𝐱 + 𝛜, 𝑇(𝐳))𝐶𝑇(𝐳))ℎ(𝐳)𝛾𝑇(𝐳)𝑑𝜇𝐳.

 

Therefore, since 𝐱 = 𝑇(𝐱 + 𝛜) we conclude that 

ℎ(𝐱) = ∫  
≡

∑

𝑗

(𝑒(𝐮𝐣,𝐱+𝐳)𝐶𝑇(𝐱)𝛿𝑇ℬΩ(𝑇(𝐱), 𝑇(𝐳))𝐶𝑇(𝐳))ℎ(𝐳)𝛾𝑇(𝐳)𝑑𝜇𝐳. 

(v)It follows from the previous identity. 

(vi)On Bergman type spaces in a v-Laplacian vector fields theory 

Now we have been working again under the assumption that Ω ⊂ ℝ3 be a domain and 𝐯 ∈ ℝ3. Let us 

consider the action of 𝐯𝐷 to 𝑓𝑗 = (𝑓𝑗)0 + 𝐟𝐣 ∈ 𝐶
1(Ω,ℍ), where (𝑓𝑗)0 is the scalar part of 𝑓𝑗 and 𝐟𝐣 is the vector 

part of 𝑓𝑗, which after straightforward calculation leads to 

𝐯𝐷[𝑓𝑗] = −div𝐟𝐣 − ⟨𝐯, 𝐟𝐣⟩ + grad(𝑓𝑗)0 + (𝑓𝑗)0𝐯 + rot𝐟𝐣 + [𝐯, 𝐟𝐣], 

where 

grad(𝑓𝑗)0 = ∇(𝑓𝑗)0, div𝐟𝐣 = ⟨∇, 𝐟𝐣⟩, rot𝐟𝐣 = [∇, 𝐟𝐣] 

and the gradient operator ∇= ∑  3
𝑖=1 𝑒𝑖

𝜕

𝜕𝑥𝑖
. 

The following equivalences hold: 

𝐯𝐷[𝑓𝑗] = 0 ⟺ {
grad(𝑓𝑗)0 + rot𝐟𝐣 = −(𝑓𝑗)0𝐯 − [𝐯, 𝐟𝐣]

div𝐟𝐣 = −⟨𝐯, 𝐟𝐣⟩
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Analogously, it may be easily verified that 

𝐷𝐯[𝑓𝑗] = 0 ⟺ {
grad(𝑓𝑗)0 − rot𝐟𝐣 = −(𝑓𝑗)0𝐯 + [𝐯, 𝐟𝐣],

div𝐟𝐣 = −⟨𝐯, 𝐟𝐣⟩.
 

In addition, if we define 𝑣𝐌(Ω) to be the ℝ-linear space of all 𝐟𝐣 ∈ 𝐶
1(Ω, ℝ3) such that div 𝐟𝐣 = −⟨𝐯, 𝐟𝐣⟩ and 

rot𝐟𝐣 = −[𝐯, 𝐟𝐣] on Ω, a short calculation shows that 

{𝑘𝑒−(𝐯,𝐱⟩ ∣ 𝑘 ∈ ℝ} ⊕𝐯 𝐌(Ω) = 𝐯𝔐(Ω) ∩𝔐𝐯(Ω).                            (4.1) 

Proposition 4.1 (see [29])(Cauchy-Integral theorem). If 𝑓𝑗 ∈ vM(Ω) ∩ 𝐶(Ω‾ ,ℍ) then 

∫  
𝝏𝛀

∑

𝑗

⟨𝐟𝐣, 𝝂𝐯⟩ = 𝟎,∫  
𝝏𝛀

∑

𝑗

[𝐟𝐣, 𝝂𝐯] = 𝟎. 

Proof. It follows from the Fact (i) of Proposition 3.2.  

Proposition 4.2 (see [29]) (Cauchy-Integral formula). If 𝑓𝑗 ∈ 𝐯M(Ω) then 

∫  
𝜕Ω

∑

𝑗

(−⟨ 𝐯𝐾(𝛜), 𝜎(𝐱+𝛜)
2 ⟩𝐟𝐣(𝐱 + 𝛜) + [⌈𝐯𝐾(𝛜), 𝜎(𝐱+𝛜)

2 ], 𝐟𝐣(𝐱 + 𝛜)]) = 𝐟𝐣(𝐱) 

and 

∫  
𝜕Ω

∑

𝑗

⟨[ 𝐯𝐾(𝛜), 𝜎(𝐱+𝛜)
2 ], 𝐟𝐣(𝐱)⟩ = 0 

for all 𝐱 ∈ Ω. 

Proof. It is a direct consequence from Fact (i) in Corollary 3.3.  

Proposition 4.3 (see [29])(Borel-Pompieu formula). Let 𝐟𝐣, 𝐠𝐣 ∈ 𝐶
1(Ω, ℝ3) ∩ 𝐶(Ω‾ , ℝ3) then 

∫  
𝜕Ω

 ∑

𝑗

(− ⟨ 𝐯𝐾(𝛜), 𝜎(𝐱+𝛜)
(2)

⟩ (𝐟𝐣 + 𝐠𝐣)(𝐱 + 𝛜) + [ 𝐯𝐾(𝛜), 𝜎(𝐱+𝛜)
(2)

] , (𝐟𝐣 + 𝐠𝐣)(𝐱 + 𝛜)])

 +∫  
Ω

 ∑

𝑗

(⟨𝐯, (𝐟𝐣 + 𝐠𝐣)(𝐱 + 𝛜)⟩ + div(𝐟𝐣 + 𝐠𝐣)(𝐱 + 𝛜))𝐯𝐾(𝛜)𝑑𝜇(𝐱+𝛜)

 −∫  
Ω

 ∑

𝑗

[ 𝐯𝐾(𝛜), [𝐯, (𝐟𝐣 + 𝐠𝐣)(𝐱 + 𝛜)] + rot(𝐟𝐣 + 𝐠𝐣)(𝐱 + 𝛜)]𝑑𝜇(𝐱+𝛜)

= {
𝐟𝐣(𝐱) + 𝐠𝐣(𝐱), 𝐱 ∈ Ω,

0, 𝐱 ∈ ℝ3 ∖ Ω‾ .

 

Proof. Use the Fact (ii) of Proposition 3.2. 

Proposition 4.4 (see [29]). Let Ξ, Ω ⊂ ℝ3 be conformal equivalent domains and 𝑇 given by (2.5) such that Ω =

𝑇(Ξ). Given 𝐯, 𝐮𝐣 ∈ ℝ
3 denote 

𝑆𝑇[𝐟𝐣] = ∑

𝑗

1

2
𝑒
(𝑢𝑗,𝑥)

𝑀 ∘ (𝐴𝐴𝑇𝑀 −𝑀𝐴‾𝑇) ∘ 𝑊𝑇[𝐟𝐣] 

and 

𝑉𝑇[𝐟𝐣] = ∑

𝑗

1

2
( (𝑤,𝑥)

𝑀 ∘ ( 𝐴𝑇𝑀 +𝑀𝐴‾𝑇) ∘ 𝑊𝑇[𝐟𝐣], 

for all 𝐟𝐣 ∈ 𝐶
1(Ω, ℝ3). Hence, 

grad𝑆𝑇[𝐟𝐣] + rot𝑉𝑇[𝐟𝐣] = −𝑆𝑇[𝐟𝐣]𝐯 − [𝐯, 𝑉𝑇[𝐟𝐣]] 

div𝑉𝑇[𝐟𝐣] = −⟨𝐯, 𝑉𝑇[𝐟𝐣]⟩,  on Ξ 

iff 

div𝐟𝐣= −⟨𝛿𝑇 , 𝐟𝐣⟩,

rot𝐟𝐣= −[𝛿𝑇 , 𝐟𝐣],  on Ω
 

or equivalently, 𝐟𝐣 ∈ 𝛿𝑇𝐌(Ω) for all 𝐟𝐣 ∈ 𝐶
1(Ω, ℝ3). 

What is more, define 
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𝑅[𝐟𝐣] =∑

𝑗

(
1

2
𝐶𝑇𝑀 −𝑀

1

2
𝐶𝑇) ∘ 𝑊𝑇[𝐟𝐣],

𝑈[𝐟𝐣] = ∑

𝑗

(
1

2
𝐶𝑇𝑀 +𝑀

1

2
𝐶𝑇) ∘ 𝑊𝑇[𝐟𝐣],

 

for all 𝐟𝐣 ∈ 𝐿2(Ω, ℝ
3). Then 

∫  
Ω

 ∑

𝑗

⟨𝐟𝐣, 𝐠𝐣⟩𝑑𝜇 = ∫ 
Ξ

 ∑

𝑗

(𝑅𝑇[𝐟𝐣]𝑅𝑇[𝐠𝐣] + ⟨𝑈𝑇[𝐟𝐣], 𝑈𝑇[𝐠𝐣]⟩)𝜌𝑇𝑑𝜇

∫  
Ω

 ∑

𝑗

[𝐟𝐣, 𝐠𝐣]𝑑𝜇 = ∫ 
Ξ

 ∑

𝑗

(−𝑅𝑇[𝐟𝐣]𝑈𝑇[𝐠𝐣] + 𝑅𝑇[𝐠𝐣]𝑈𝑇[𝐟𝐣] + [𝑈𝑇[𝐟𝐣], 𝑈𝑇[𝐠𝐣]])𝜌𝑇𝑑𝜇
 

for all 𝐟𝐣, 𝐠𝐣 ∈ 𝐿2(Ω, ℝ
3). 

Proof. It follows from Proposition 3.4.  

Definition 4.5. The ℝ-linear space v𝐀(Ω) is defined by requiring 𝐟𝐣 ∈v 𝐌(Ω) such that 

∫  
Ω

∑

𝑗

|𝐟𝐣|
2𝑑𝜇 ≤ ∞ 

equipped with the following inner product 

⟨𝐟𝐣, 𝐠𝐣⟩𝑣𝐀(Ω) = ∫  
Ω

∑

𝑗

⟨𝐟𝐣, 𝐠𝐣⟩𝑑𝜇, ∀𝐟𝐣, 𝐠𝐣 ∈ 𝐯𝐀(Ω) 

We now include easy but important facts involving v𝐀(Ω) 

(a) If there exists 𝜆 ∈ ℝ such that Ω ⊂ {𝐱 ∈ ℝ3 ∣ ⟨𝐯, 𝐱⟩ > 𝜆} is bounded, then 

{𝑘𝑒−(𝐯,𝐱⟩ ∣ 𝑘 ∈ ℝ} ⊕𝐯 𝐀(Ω) = 𝐯𝒜(Ω) ∩𝒜𝐯(Ω) 

(b) If there exists 𝜆 ∈ ℝ such that {𝐱 ∈ ℝ3 ∣ ⟨𝐯, 𝐱⟩ < 𝜆} ⊂ Ω then 

v𝐀(Ω) = v𝒜(Ω) ∩𝒜𝐯(Ω) 

Proposition 4.6 (see [29]). 𝐯𝐀(Ω), ⟨⋅,⋅⟩𝐯𝐀(Ω)) is a real linear Hilbert space. 

Proof. Let {(𝐟𝐣)𝑛} be a Cauchy sequence of elements in 𝐯𝐀(Ω). Therefore {(𝐟𝐣)𝑛} is a Cauchy sequence in 

v𝒜(Ω) and there exists 𝑓𝑗 ∈ 𝐯𝒜(Ω) such that {(𝐟𝐣)𝑛} converges to 𝑓𝑗 and, particularly, one sees that {(𝐟𝐣)𝑛} 

converges to 𝑓𝑗 uniformly on compact set. Thus, by uniqueness of limits 𝑓𝑗 = 𝐟𝐣 ∈ 𝐯𝐀(Ω).  

Proposition 4.7 (see [29]) (Reproducing functions). The following assertions follow 

(i) There exist a scalar field (𝑎 + 𝜖)Ω: Ω × Ω → ℝ and a vector field (𝒂 + 𝝐)Ω: Ω × Ω → ℝ3, such that 

(a) (𝑎 + 𝜖)Ω(𝐱, 𝐱 + 𝛜) = (𝑎 + 𝜖)Ω(𝐱 + 𝛜, 𝐱) and (𝒂 + 𝝐)Ω(𝐱, 𝐱 + 𝛜) = −(𝒂 + 𝝐)Ω(𝐱 + 𝛜, 𝐱), for all 

(𝐱, 𝐱 + 𝛜) ∈ Ω × Ω. 

(b) div(𝒂 + 𝝐)Ω(⋅, 𝐱 + 𝛜) = −⟨𝐯, (𝒂 + 𝝐)Ω(⋅, 𝐱 + 𝛜)⟩, for each (𝐱 + 𝛜) ∈ Ω. 

(c) grad(𝑎 + 𝜖)Ω(⋅, 𝐱 + 𝛜) + rot(𝒂 + 𝝐)Ω(⋅, 𝐱 + 𝛜) = −(𝑎 + 𝜖)Ω(⋅, 𝐱 + 𝛜)𝐯 − [𝐯, (𝒂 + 𝝐)Ω(⋅, 𝐱 + 𝛜)] 

for each (𝐱 + 𝛜) ∈ Ω. 

(d) Let �̂�2(Ω, ℝ
3) denote the space of all 𝐟𝐣 ∈ 𝐿2(Ω, ℝ

3) with 

∫  
Ω

∑

𝑗

⟨(𝒂 + 𝝐)Ω(𝐱, 𝐱 + 𝛜), 𝐟𝐣(𝐱 + 𝛜)⟩𝑑𝜇(𝐱+𝛜) = 0, a.e. 𝐱 ∈ Ω 

equipped with the norm inherited from 𝐿2(Ω, ℝ
3). It is easily seen to be a real Banach space such 

that 

𝐯𝐀(Ω) = 𝐯𝐌(Ω) ∩ �̂�2(Ω, ℝ
3) 

and 

∫  
Ω

∑

𝑗

((𝑎 + 𝜖)Ω(𝐱, 𝐱 + 𝛜)𝐟𝐣(𝐱 + 𝛜) + [(𝒂 + 𝝐)Ω(𝐱, 𝐱 + 𝛜), 𝐟𝐣(𝐱 + 𝛜)])𝑑𝜇(𝐱+𝛜) = 𝐟𝐣(𝐱), ∀𝐱 ∈ Ω 

for all 𝐟𝐣 ∈ 𝐯𝐀(Ω). 

(ii) There exist functions 𝐂1, 𝐂2, 𝐂3: Ω × Ω → ℝ3 such that 𝐂1(⋅, 𝐱), 𝐂2(⋅, 𝐱), 𝐂3(⋅, 𝐱) ∈ 𝐯𝐀(Ω), for each 

𝐱 ∈ Ω and 

∫  
Ω

∑

𝑗

⟨𝐂𝑖(𝐱 + 𝛜, 𝐱), 𝐟𝐣(𝐱 + 𝛜)⟩𝑑𝜇(𝐱+𝛜) = (𝑓𝑗)𝑖(𝐱), 
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for all 𝐟𝐣 ∈ 𝐯𝐀(Ω), where 𝐟𝐣 = ∑  3
𝑖=0 𝑒𝑖(𝑓𝑗)𝑖 and (𝑓𝑗)𝑖 ∈ 𝐶

1(Ω, ℝ). Therefore, 

𝐟𝐣(𝐱) = ∫  
Ω

∑ 

3

𝑖=0

∑

𝑗

𝑒𝑖⟨𝐂𝑖(𝐱 + 𝛜, 𝐱), 𝐟𝐣(𝐱 + 𝛜)⟩𝑑𝜇(𝐱+𝛜) 

Proof.(i) It is a consequence from the contention 𝑣𝐀(Ω) ⊂ 𝐯𝒜(Ω) and the properties of the Bergman kernel 

of 𝐯𝒜(Ω). 

(ii) As 𝐯𝐯𝐀(Ω) is a real Hilbert space, the functional Π𝐱
𝑖 [𝑓𝑗] = (𝑓𝑗)𝑖(𝐱), 𝐱 ∈ Ω with 𝐟𝐣 =

∑  3
𝑖=1 ∑𝑗 𝑒𝑖(𝑓𝑗)𝑖 and (𝑓𝑗)𝑖: Ω → ℝ for all 𝑖, is bounded for 𝑖 = 1,2,3 since the valuation functional is bounded 

on 𝐯𝒜(Ω). Therefore, there exist reproducing functions 𝐂𝑖 for 𝑖 = 1,2,3.  

Property (ii) shows us that the "appropriate" 𝐿2-space is �̂�2(Ω, ℝ
3) in definition of 𝐯𝐀(Ω). 

Proposition 4.8 (see [29]). If Ξ, Ω ⊂ ℝ3 be conformal equivalent domains and set 𝑇 given by (2.5) such that 

Ω = 𝑇(Ξ). Consider 𝐯, 𝐮𝐣 ∈ ℝ
3 and define 

𝑃[𝐟𝐣] = ∑

𝑗

1

2
(𝑡
(𝑢𝑗,𝑥)

𝑀 ∘ ( 𝐶𝑇𝑀 −𝑀𝑐𝑇) ∘ 𝑊𝑇[𝐟𝐣],

𝑄[𝐟𝐣] = ∑

𝑗

1

2
𝑡
(𝑢𝑗,𝑥)

𝑀 ∘ ( 𝐶𝑇𝑀 +𝑀𝑐𝑇) ∘ 𝑊𝑇[𝐟𝐣].

 

Therefore, 𝐟𝐣 ∈ 𝐶
1(Ω, ℝ3) satisfies that div𝐟𝐣 = −⟨𝛿𝑇 , 𝐟𝐣⟩, rot𝐟𝐣 = −[𝛿𝑇, 𝐟𝐣] on Ω and 

∫  
Ω

∑

𝑗

|𝐟𝐣|
2𝑑𝜇 < ∞ 

if and only if 

div𝑄[𝐟𝐣]= −⟨𝐯, 𝑄[𝐟𝐣]⟩

grad𝑃[𝐟𝐣] + rot𝑄[𝐟𝐣]= −𝑃[𝐟𝐣]𝐯 − [𝐯, 𝑄[𝐟𝐣]],  on Ξ
 

and 

∫  
Ω

∑

𝑗

(|𝑃[𝐟𝐣]|
2 + |𝑄[𝐟𝐣]|

2)𝛾𝑇𝑑𝜇 < ∞. 
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