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ABSTRACT. Einstein functions are considered special functions with notable
significance in mathematical analysis and theoretical physics, exhibit specific
properties that make them suitable for defining and investigating subclasses of
analytic-univalent functions. The aim of this paper is to define a new class of
g-star-like function in the unit disk U. Utilizing the principle of subordination
and the framework of basic g-calculus, the sharp coefficient bounds and up-
per bounds for the Fekete-Szego functional for this newly defined class, were
established based on the properties of Einstlein functions|
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1. Introduction And Preliminaries

Let A be the class of functions f(z) defined by
fE) =24+ at (1.1)
k=2

which are analytic in the unit disk U = {z € C : |z| < 1}. Denote by S the
subclass of A consisting of functions which are analytic, univalent in the unit
disk U= {z € C: |z| < 1} and normalized by f(0) = 0= f/(0) — 1.

A function f(z) € S of the form (1.1) is star-like in the unit disk U = {z € C :
z| < 1} if it maps a unit disk onto a star-like domain. A necessary and sufficient
condition for a function f(z) to be star-like is that

~
Re (f {”)) >0,(zeU)
f(z)

The class of all star-like functions is denoted by S*.

An analytic function f(z) is convex if it maps the unit disk U= {z € C:
1} conformally onto a convex domain. Equivalently, a function f(z) is said to be
convex if and only if it satisfies the following condition;

~
Re (l + f’ LJ) >0, (z e ).
f'(z)

The class of all convex functions is denoted by K

<
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Let f(z) and g(2) be analytic functions in the unit disk U, then f(z) is sub-
ordinate to g(z) in the unit U written as f(z) < g(z), if there exist a function
w(z) analytic in the unit U with w(0)= z)| < 1 which is called the Schwartz
function such that f(z) = g(w(z)). If the function ¢ is univalent in the unit U,
then f(z) < g(2),z € U<+= f(0) = g(0) and f(U) < ¢(U).

Let P be the class of functions p(z) of the form

pl) =1+ en" (1.2)
k=1
which are analytic in the unit disk U = {z € C: |z| < 1}. If p(z) € P satisfies

the conditions Re(p(z)) = 0 and p(0) = 1, for = € U, then p(z) is called a
Carathéodory function or function having positive real part in the unit disk U.

Einstein functions. In mahtematics, Finstein function is a name occasionally
used for one of the functions

El(ﬁ) = 1
E’ZZQ
Ey(z) = W
E3(z) = log(1 —e™7);
Eiz) = e ; —log(1—e77)

Eq(z) and FEs(z)(convex functions) hm e a symmetric range along the real axis
and star-like range about F1(0) = FEa(0) = 1, R(F1(0)) > 0, and R(FE5(0)) >
0,¥z € U. The series expansion for Fi(z) and Es(z) can be given by

where B,, is the n"® Bernoulli number.
But unfortunately F;(z) and Fs(2) do not satisfy the condition Ei((’)) # 0 and
E;(z) # (0. Hence, new functions must be defined for £;(z) and Es(z) as follows

E(z)=FE(z)+= (1.3)
and
E(:) - Ba(s)+ 2= 145+ 3 LB (1.4)
’ 2 n=1 .
which satisfies the conditions £'(0) > 0 and E'(z) > 0. Therefore, E(z) and

E(z) e P
The Bernoulli number B, can be defined by the contour integral

nl z dz
B,
" om j£ — 1 2l

DOI: 10.35629/0743-11082430 www.questjournals.org 25 | Page



Einstein Function - Based Approach To Q-Starlike Analytic Functions and Their ..

where the radius of the contour encircling the origin is less than 27i.

The g-derivative (or g-difference) of a function f(z) € A given by (1.1) is
defined by

f(z-)_f(q;). 2f:?£0
Dyf(z) = (1—gq)z
F(0), ifz=0
When ¢ — 17,
Dyf(z) = f'(2)
provided f’(2) exists. Also, for analytic functions f(z) € A given by (1.1),
Dyf(z) =1+ Z[n]qan:”*l (1.5)
n=0
where
1—q"
[n]y = =

Lemma 1.1. Let p € P defined by (1.2), then

‘C'R-l S 2'.
for alln > 1. This result is sharp and equality holds for the Maobius function
M,(z). [3]

Lemma 1.2. Let the function p € P gquwen by (1.2) with Re(p(z)) > 0,p(0) =1
and has the power series representation

pE) =1+ past.
n=1

Then, 2ps = p? + x(4 — p?), for some x : |x| < 1. [6]

Definition 1.3. A function f € A of the form (1.1) belong to the class B(q. IY)
if
2Dy f(2) -
— < E(z 1.6)
7) J (

z2eU,qe (0,1) and E(z) is the modified Einstein function of the first kind.

Ma and Minda [9], studied the geometric properties (such as distortion, growth
and covering theorems) for a class of star-like functions by means of subordination
principle, given by:
iy Lz f(z) : ) o
S*p)=9feA: —"<d(2),0epzelU (1.7)

Janowski and Sokol et al also established some geometric properties of star-like
functions defined in the unit disk U, for more information on this, see [8] and
14].

Remark 1.4. When ¢ — 17 and £(z) is replaced with ¢(z), Ma-Minda star-like
function in equation (1.7) is obtained from equation (1.6).
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The researchers in [7] were the first to introduce a subclass of g-starlike func-
tions in the theory of univalent functions. Subsequently, few other researchers
has worked on g-satrlike functions and established their geometric properties.
For further studies on subclasses of g-starlike and g-convex functions and their
geometric properties, see[l, 12].

El-Qadeem et al [4, 5] and Rossdy et al [13] established the coefficient estimates
and Fekete-Szego functionals for new subclasses of bi-univaelnt functions using
Einstein first and second kinds.

Motivated by [4, 5, 13], the present work introduces a novel subclass of univa-
lent function related to g-calculus by means of subordination involving Einstein
function and discuss the first two coefficient bounds and the upper bound for the
Fekete - Szego functional.

2. MAIN RESULTS
2.1. Coefficient bounds for the Class R(q. F).
Theorem 2.1. If f(z) € A belong to the class R(q, ). then
1
2q
lag| < 1 . 3 —5q
T+ 2P +q+1)

las| <

g€ (0,1),2€U.

Proof. Let f € A be in the subclass R(q, £), then from the definition of B(q, £)
in (1.6), which states that
2Dy f(2) _
— = =< L(2) (2.1)
f(2)
where [91(z) is the modified Einstein function of the first kind. Also, from the
definition of subordination, (2.1) can be written as

2D, f(2) .
——— = E(w(z 2.2
Fo = Blw(2) 22)
2Dyf(2) . w(z) (w(z))?
) =1 > + o + ..
Since w(z) is a Schwartz function, then p(z) can be expressed as
o Ltw(z) L
p(z) = —w() 1+ prz+pez®+ .
o) -1
w(z) = plz)+1
w(z) = {p(z) + 2+ {24+ p= + paz? + ...}_1 (2.3)
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On further simplification of (2.3) using binomial expansion,

ey P1E 1 7}’% 2
w(,.,)— 2 +2{p2 2}, + ...

S0,
o w(z) | (w(z))?
Elw(z) =1+ 5 + 1 +
1 (pz 1 %) ., 1 [pz 1 117
—l+2{9 5!’2*5 Z E B +§ pg*; + ...
L iz 1 57\ o ;
Elw(z)=14—+—qp2— 27+ .. 24
ey =1+ 25+ 1= L (2.0
Next is to present the series expansion of g-starlike function introduced in (2.1)
as;
2D,f(2)
f(z)
where
[E) =2+
k=2
2D, f(z -
fq({g) — (14 [20qagz + [Blgas=> + ..) (1 + asz +az2® + ..) 7"
| zDgf(=
fq({ﬁ) =1+ gasz + {a.g(q +¢%) — qa%} 224 (2.5)
comparing the coeflicients of z and z# in (2.4) and (2.5);
" o
== 2.6
a2 4q (2.6)
1 (3 —
a— {2y BN (2.7)
q-+q 4 4‘%q

Using triangle inequality and lemma 1.1 in (2.6) and (

. the bounds on ay and
as can be obtained as follows;

1
|ag| < %
1 3—5q
a5l < 5 (1+ 12q(¢2
9 129(¢* +q+1)
O
Corollary 2.2. Let f(z) € R(q, E) and ¢ — 17 . Then,
jaz] < 5
lag| < ‘
=36
The next result is the upper bound for the Fekete-Szego functional of the class
R(g, E)
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Theorem 2.3. Forq e (0,1) and = € U, f(z) € A given by (1.1) belongs to the
class R(q. E) if

—ddl < 2.8
|as G’2|_2q (2.8)

(g+1)
Proof. 1f (2.6) and (2.7) are substituted into the Fekete-Szego functional defined
by

lag — oaj|
with o = 1, then
D2 _ pi
4q(g+1)  Gqlg+1)
using lemma 1.2 in (2.9) and on application of triangle inequality, it yields

|ag — a3| <

o |z —pD) Pt .
- <3 2.10
=l < {5+ )| T |20+ D (2.10)
Suppose py =p:p e [0,2] and £ = |z] < 1
4 — 2 2
g —a2) < SG4=P) P (2.11)
Aq(g+1)  6glg+1)
Setting |ag — a3 = dq(p, €), (2.11) can be written as
. 14— p? )7

4q(g+1)  Gglg+1)
To maximize the function ¢4(p.£) on the closed region [0,2] x [0, 1], we find the
first partial derivative of ¢,(p, &) with respect to £
i 1 — 2
Ko _ 270 5
9¢  Aqlg+1)
Therefore og4(p, ) becomes an increasing function of ¢ and hence it cannot have
a maximum value at any point in the interior of the closed region [0, 1] x [0,2].
Moreover, for a fixed p € [0, 2]
1-® R
Sqlg +1)  24q9(q +1)

1axX dg(p. £) = dg(p. 1) = = ¢ 2.1:
nax bq(p, §) = dq(p. 1) bq(p) (2.13)

On further simplification of (2.13);
_ 1 n
29(q+1)  6q(g+1)

Obviusly, the function ¢4(p) has a maximum value at p = 0.

Pq(p)

Hence,
max{dg(p) : p € [0,2]} = ¢,(0)

where ]

;‘ 1

$q(0) = 2(q+ 1)
Therefore,

2
93 =2l < S0+ 1)
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When ¢ — 17, the following corollary can be deduced from theorem 2.3

Corollary 2.4. Let f(z) €. Then

1
|ag — a§| < 1

Conclusion

Researchers in geometric function theory have used quite a number of Special
functions such as, but not limited to Chebyvshev polynomials, Bessel functions,
Einstein functions, in order to study the geometric properties of various sub-
classes of analytic and univalent functions defined in the unit disk U. The co-
efficient bounds and the upper bound for the Fekete-Szego functional obtained
in this paper are new the geometric properties for the class R(q, £) defined in
the unit disk U. The results established not only contributes to knowledge in
theoretical advancement of g-calculus and special functions in geometric function
theory but open up potential opportunity for applications in signal processing,
fluid dynamics and engineering fields
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