Quest Journals

Journal of Research in Applied Mathematics

Volume 11 ~ Issue 9 (September 2025) pp: 01-06 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735

www.questiournals.org

Research Paper

η^* -REGULAR AND η^* -NORMAL SPACES IN TOPOLOGY

¹Hamant Kumar and ²Jogendra Kumar

Department of Mathematics

¹V. A. Govt. Degree College, Atrauli-Aligarh-202280, Uttar Pradesh (India)

²Govt. Degree College, Raza Nagar, Swar-Rampur-244901, Uttar Pradesh (India)

Abstract: In this paper, we introduce and study two new classes of generalized regular and normal spaces are called η^* -regular and η^* -normal spaces which are weaker than regularity and normality respectively. The relationships among strongly rg-regular, g-regular, regular, Q^* -regular, η^* -regular, almost regular and softly regular spaces are investigated. Some of basic properties and characterizations of η^* -regular spaces in the terms of some other separation axioms are obtained.

Key words: regular open, η^* -open sets; softly regular, almost-regular, Q^* -regular, η^* -regular spaces **2020 Mathematics subject classification**: 54B05, 54B10, 54B15, 54D10

Received 26 Aug., 2025; Revised 02 Sep., 2025; Accepted 04 Sep., 2025 © The author(s) 2025. Published with open access at www.questjournas.org

I. Introduction

In 1925, Urysohn [17] introduced and studied a new type of separation axiom, called Urysohn space. In 1926, Cartan [1] introduced and studied the concept of symmetric space. In topology, an R₀-space is also known as a symmetric space. In 1937, Stone [16] introduced the notion of semi-regular spaces and obtained their characterizations. In 1958, Kuratowski [7] introduced a new type of generalized sets, called regularly-open and regularly-closed sets in general topology. In 1963, Levine [8] introduced the concept of generalized closed sets and obtained their properties. In 1969, Singal and Arya [14] introduced a new class of separation axiom (namely almost regular space) in topological spaces and investigated some basic properties with other separation axioms such as T₀, T₁, semi-regular, Hausdorff and k-spaces. In 1986, Munshi [10] introduced and studied some new class of separation axioms (named g-regular and g-normal spaces etc.) in topological spaces which are stronger than regularity and normality. In 1993, Palaniappan [12] introduced the concept of generalized closed sets, called regular generalized closed which is a weaker form of closed and g-closed sets and studied some properties. In 2010, Murugalingam and Lalitha [11] introduced and studied the concept of O*-open sets and obtained some properties of Q*-open sets. In 2011, Gnanachandra and Thangavelu [3] introduced and studied the concepts of strongly rg-regular and strongly rg-normal spaces in topological spaces which are stronger than regularity and normality. In 2018, Kumar and Sharma [4] introduced and studied the concept of softly regular spaces in topological spaces which is a weak form of regularity and obtained some characterizations with regular, strongly rg-regular, weakly regular, almost regular, π-normal and quasi normal spaces. Recently, Hamant Kumar [6] introduced and studied the concept of Q*-regular spaces which is a weaker form of regularity and obtained some characterizations.

II. Preliminaries

Throughout this paper, spaces (X, \Im) , (Y, σ) , and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by $\mathbf{cl}(\mathbf{A})$ and $\mathbf{int}(\mathbf{A})$ respectively. A subset A of a topological space (X, \Im) is said to be **regularly-open** [7] if it is the interior of its own closure or, equivalently, if it is the interior of some closed sets or equivalently, $A = \mathbf{int}(\mathbf{cl}(\mathbf{A}))$. A subset A is said to be **regularly-closed** [7] if it is the closure of its own interior or, equivalently, if it is the closure of some open sets or equivalently, $A = \mathbf{cl}(\mathbf{int}(\mathbf{A}))$. Clearly, a set is

regularly-open iff its complement is regularly-closed. The finite union of regularly open sets is said to be π open. The complement of a π -open set is said to be π -closed. Every regularly open (resp. regularly closed) set is π -open (resp. π -closed).

- **2.1 Definition.** A subset A of a space (X, \Im) is said to be
- (i) generalized closed (briefly g-closed) [8] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.
- (ii) regular generalized closed (briefly rg-closed) [12] if $cl(A) \subset U$ whenever $A \subset U$ and U is regular-open in X

The complement of a is g-closed (resp. rg-closed) set is said to be **g-open** (resp. **rg-open**). The family of all Q^* -closed (resp. Q^* -open) sets of a space X is denoted by Q^* -C(X) (resp. Q^* -O(X)).

The **generalized closure** of A is defined as the intersection of all g-closed sets in X containing A and is denoted by **cl*(A)**. The **generalized interior** of A is defined as the union of all g-open sets in X contained in A and is denoted by **int*(A)**.

- **2.2 Definition.** A subset A of a space (X, \mathfrak{I}) is said to be \mathbf{Q}^* -closed [11] if $int(A) = \emptyset$ and A is closed. The complement of a \mathbf{Q}^* -closed set is said to be \mathbf{Q}^* -open.
- **2.3 Definition.** The δ -interior of a subset A of X is the union of all regular open sets of X contained in A and is denoted by δ -int(A). The subset A is called δ -open [18] if δ -int(A) = A. i.e. a set is δ -open if it is the union of regular open sets, the complement of a δ -open set is called δ -closed. Alternatively, a set $A \subset X$ is δ -closed if $A = \delta$ -cl(A), where δ -cl(A) is the intersection of all regular closed sets of (X, \Im) containing A.
- **2.4 Definition.** Let (X, \Im) be a topological space. A subset A of (X, \Im) is called **regular*-open** [13] (or r*-open) if $A = \operatorname{int}(\operatorname{cl*}(A))$. The complement of a regular*-open set is called **regular*-closed**. The union of all regular*-open sets of X contained in A is called **regular*-interior** and is denoted by **r*-int(A)**. The intersection of all regular*-closed sets of X containing A is called **regular*-closure** and is denoted by **r*-cl(A)**.
- **2.5 Definition.** A subset A of a topological space (X, \mathfrak{T}) is called η^* -open [9] set if it is a union of regular*-open sets (r*-open sets). The complement of a η^* -open set is called η^* -closed. A subset A of a topological space (X, \mathfrak{T}) is called η^* -Interior of A is the union of all η^* -open sets of X contained in A and is denoted by η^* -int(A). The intersection of all η^* -closed sets of X containing A is called as the η^* -closure of A and is denoted by η^* -cl(A).

2.6 Remark.

(i) regular closed \Rightarrow π -closed \Rightarrow δ -closed \Rightarrow η^* -closed \Rightarrow closed \Rightarrow g-closed \Rightarrow rg-closed

2.7 Remark. For every subset U of X,

(i)
$$g\text{-cl}(U) \subset cl(U)$$
) $\subset \eta^*\text{-cl}(U) \subset \delta\text{-cl}(U) \subset \pi\text{-cl}(U) \subset r\text{-cl}(U)$.

2.8 Remark. We have the following implications for the properties of subsets:

Where none of the implications is reversible as can be seen from the following examples:

- **2.9 Example.** Let $X = \{a, b, c\}$ and $\mathfrak{T} = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then
- (i) regular closed sets are : ϕ , X, $\{a, c\}$, $\{b, c\}$.
- (ii) π -closed sets are : ϕ , X, $\{c\}$, $\{a, c\}$, $\{b, c\}$.
- (iii) closed sets are : ϕ , X, $\{c\}$, $\{a, c\}$, $\{b, c\}$.
- (iv) Q^* -closed sets are : ϕ , $\{c\}$.
- (v) g-closed sets are : ϕ , X, $\{c\}$, $\{a, c\}$, $\{b, c\}$.
- (vi) πg -closed sets are : ϕ , X, $\{c\}$, $\{a, c\}$, $\{b, c\}$.
- (vii) rg-closed sets are : ϕ , X, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$.
- (viii) η *-closed sets are : ϕ , X, {c}, {a, c}, {b, c}.

- **2.10 Example.** In R with usual metric, finite sets are Q^* -closed but not regular closed. [0, 1] is regular closed but not Q^* -closed. Hence regular closed and Q^* -closed sets are independent of each other.
- **2.11 Definition.** A space X is said to be a Urysohn space [17] if for every pair of distinct points x and y, there exist open sets U and V such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \phi$.
- **2.12 Definition.** A space X is said to **symmetric space** (or $\mathbf{R_0}$ -space) [1] if for any two distinct points x and y of X, $x \in cl(\{y\})$ implies that $y \in cl(\{x\})$.
- **2.13 Definition.** A topological space X is called T_{n*} -space if every n*-closed set in it is closed set.
- **2.14 Definition.** A space X is said to be $\eta*$ -normal if for every pair of disjoint $\eta*$ -closed subsets A, B of X, there exist disjoint open sets U, V of X such that $A \subset U$ and $B \subset V$.
- **2.15 Definition.** A space X is said to be **g-normal** [10] (resp. **strongly rg-normal** [3], Q^* -**normal** [5]) if for every pair of disjoint g-closed (resp. rg-closed, Q^* -closed) subsets A, B of X, there exist disjoint open sets U, V of X such that $A \subset U$ and $B \subset V$.

III. Q*-regular spaces

- **3.1 Definition.** A space (X, \mathfrak{T}) is said to be η^* -regular if for every η^* -closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $x \in U$, $A \subset V$, and $U \cap V = \emptyset$.
- 3.2 Definition. A space (X, \mathfrak{I}) is said to be \mathbb{Q}^* -regular [6] (resp. softly regular [4], almost regular [14], gregular [10], strongly rg-regular [3]) if for every \mathbb{Q}^* -closed (resp. π -closed, regularly closed, g-closed, rg-closed) set A and a point $x \notin A$, there exist disjoint open sets U and V such that $x \in U$, $A \subset V$, and $U \cap V = \emptyset$.
- **3.3 Definition.** A space (X, \mathfrak{I}) is said to be **semi-regular** [16] if for each point x of the space and each open set U containing x, there is an open set V such that $x \in V \subset \text{int}(cl(V)) \subset U$.
- **3.4 Theorem.** Every regular space is η^* -regular.

Proof. Let X be a regular space. Let F be any η^* -closed set in X and a point $x \in X$ such that $x \notin F$. Since we know that every η^* -closed set is closed. So, F is closed and $x \notin F$. Since X is a regular space, there exists a pair of disjoint open sets G and H such that $F \subset G$ and $x \in H$. Hence X is a η^* -regular space.

- **3.5 Theorem [10].** Every g-regular space is regular hence η^* -regular.
- **3.6 Theorem [3].** Every strongly rg-regular space is regular hence η^* -regular.

By the definitions and results stated above, we have the following diagram:

$$\begin{array}{c} Q^*\text{-regular} \\ \uparrow \\ \text{strongly rg-regular} \\ \Rightarrow g\text{-regular} \\ \Rightarrow regular \\ \Rightarrow \eta^*\text{-regular} \\ \downarrow \\ \text{softly regular} \\ \Rightarrow almost regular \end{array}$$

Where none of the implications is reversible as can be seen from the following examples:

- **3.7 Example.** Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b, c\}, X\}$. Consider the closed set $\{b, c\}$ and a point 'a' such that $a \notin \{b, c\}$. Then $\{b, c\}$ and $\{a\}$ are disjoint open sets such that $\{b, c\} \subset \{b, c\}$, $a \in \{a\}$ and $\{b, c\} \cap \{a\} = \phi$. Similarly, for the closed set $\{a\}$ and a point 'c' such that $c \notin \{a\}$. Then there exist open sets $\{a\}$ and $\{b, c\}$ such that $\{a\} \subset \{a\}$, $c \in \{b, c\}$ and $\{a\} \cap \{b, c\} = \phi$. It follows that (X, \mathfrak{I}) is regular as well as softly regular space.
- **3.8 Example.** Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. If we take a point 'a' and an open set $V = \{a\}$, then $cl(V) = \{a, c\}$ and a regularly-open set U = X. So by the definition of weakly regular space $x \in V \subset cl(V) \subset U$, where V be an open set and U be a regularly-open set such that $a \in \{a\} \subset \{a, c\} \subset X$. Hence (X, \mathfrak{I}) is weakly regular. If we take a point 'a' and a regularly-closed set $A = \{b, c\}$ does not containing the point 'a',

there do not exist disjoint open sets containing the point 'a' and a regularly-closed set $A = \{b, c\}$. Hence (X, \mathfrak{I}) is not almost-regular.

- **3.9 Example.** Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, \mathfrak{I}) is weakly regular but not partly-regular. If we take a point 'a' and an open set $V = \{a\}$, then $cl(V) = \{a, c\}$. Let $U = \{a, b\}$ be any π -open set. So by the definition of partly-regular space $x \in V \subset cl(V) \subset U$, where V be an open set and U be a π -open set such that $a \in \{a\} \subset \{a, c\} \not\subset \{a, b\}$. Hence (X, \mathfrak{I}) is not partly-regular.
- **3.10 Example.** Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, \mathfrak{I}) is weakly regular but not softly-regular. Let $A = \{c\}$ be any π -closed set doesnot containing a point 'a' i.e. $a \notin \{c\}$, there do not exist disjoint open sets containing the point 'a' and the π -closed set $A = \{c\}$. Hence (X, \mathfrak{I}) is not softly-regular.
- **3.11 Example.** Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then the space (X, \mathfrak{I}) is almost regular but not strongly rg-regular. If we take a point 'a' and $F = \{b\}$ be any rg-closed set. Then there do not exist disjoint open sets containing the point 'a' and rg-closed set $F = \{b\}$. Hence (X, \mathfrak{I}) is not strongly rg-regular.

IV. Properties of η^* -regular spaces

- **4.1 Theorem.** For a topological space (X, \mathfrak{I}) , the following properties are equivalent:
- (a) (X, \mathfrak{F}) is η^* -regular.
- (b) For every $x \in X$ and every η^* -open set U containing x, there exists an open set V such that $x \in V \subset cl(V) \subset U$.
- (c) For every η^* -closed set A, the intersection of all the closed neighbourhood of A is A.
- (d) For every set A and a η^* -open set B such that $A \cap B \neq \phi$, there exists an open set F such that $A \cap F \neq \phi$ and $cl(F) \subset B$.
- (e) For every nonempty set A and η^* -closed set B such that $A \cap B = \phi$, there exist disjoint open sets L and M such that $A \cap L \neq \phi$ and $B \subset M$.

Proof.

- (a) \Rightarrow (b). Suppose (X, \mathfrak{F}) is η^* -regular. Let $x \in X$ and U be a η^* -open set containing x so that X U is η^* -closed. Since (X, \mathfrak{F}) is η^* -regular, there exist open sets V_1 and V_2 such that $V_1 \cap V_2 = \emptyset$ and $x \in V_1$, $X U \subset V_2$. Take $V = V_1$. Since $V_1 \cap V_2 = \emptyset$, $V \subset X V_2 \subset U$ that implies $cl(V) \subset cl(X V_2) = X V_2 \subset U$. Therefore $x \in V \subset cl(V) \subset U$.
- (b) \Rightarrow (c). Let A be η^* -closed set and $x \notin A$. Since A is η^* -closed, X A is η^* -open and $x \in X A$. Therefore by (b) there exists an open set V such that $x \in V \subset cl(V) \subset X A$. Thus $A \subset X cl(V) \subset X V$ and $X \notin X V$. Consequently X V is a closed neighborhood of A.
- (c) \Rightarrow (d). Let $A \cap B \neq \emptyset$ and B be η^* -open. Let $x \in A \cap B$. Since B is η^* -open, X B is η^* -closed and $x \notin X B$. By our assumption, there exists a closed neighborhood V of X B such that $x \notin V$. Let $X B \subset U \subset V$, where U is open. Then F = X V is open such that $x \in F$ and $A \cap F \neq \emptyset$. Also X U is closed and $cl(F) = cl(X V) \subset X U \subset B$. This shows that $cl(F) \subset B$.
- (d) \Rightarrow (e). Suppose $A \cap B = \phi$, where A is non-empty and B is η^* -closed. Then X B is η^* -open and $A \cap (X B) \neq \phi$. By (d), there exists an open set L such that $A \cap L \neq \phi$, and $L \subset cl(L) \subset X B$. Put M = X cl(L). Then $B \subset M$ and L, M are open sets such that $M = X cl(L) \subset (X L)$.
- (e) \Rightarrow (a). Let B be η^* -closed and $x \notin B$. Then $B \cap \{x\} = \emptyset$. By (e), there exist disjoint open sets L and M such that $L \cap \{x\} \neq \emptyset$ and $B \subset M$. Since $L \cap \{x\} \neq \emptyset$, $x \in L$. This proves that (X, \mathfrak{I}) is η^* -regular.
- **4.2 Theorem.** A topological space (X, \mathfrak{T}) is η^* -regular if and only if for each η^* -closed set F of (X, \mathfrak{T}) and each $x \in X F$, there exist open sets U and V of (X, \mathfrak{T}) such that $x \in U$ and $F \subset V$ and $cl(U) \cap cl(V) = \emptyset$. **Proof:** Let F be a η^* -closed set in (X, \mathfrak{T}) and $x \notin F$. Then there exist open sets U_x and V such that $x \in U_x$, $F \subset V$.

V and $U_x \cap V = \phi$. This Implies that $U_x \cap cl(V) = \phi$. Since cl(V) is closed and $x \notin cl(V)$. Since (X, \mathfrak{F}) is η^* -regular, there exist open sets G and H of (X, \mathfrak{F}) such that $x \in G$, $cl(V) \subset H$ and $G \cap H = \phi$. This implies $cl(G) \cap G$

 $H = \phi$. Take $U = U_x \cap G$. Then U and V are open sets of (X, \mathfrak{F}) such that $x \in U$ and $F \subset V$ and $cl(U) \cap cl(V) = \phi$, since $cl(U) \cap cl(V) \subset cl(G) \cap H = \phi$.

Conversely, suppose for each η^* -closed set F of (X, \mathfrak{T}) and each $x \in X - F$, there exist open sets U and V of (X, \mathfrak{T}) such that $x \in U$, $F \subset V$ and and $cl(U) \cap cl(V) = \phi$. Now $U \cap V \subset cl(U) \cap cl(V) = \phi$. Therefore $U \cap V = \phi$. Thus (X, \mathfrak{T}) is η^* -regular.

4.3 Theorem. In a η^* -regular space X, every pair consisting of a compact set A and a disjoint η^* -closed set B can be separated by open sets.

Proof. Let X be η^* -regular space and let A be a compact set, B be a η^* -closed set with $A \cap B = \phi$. Since X is η^* -regular space, for each $x \in A$, there exist disjoint open sets U_x and V_x such that $x \in U_x$, $B \subset V_x$. Clearly $\{U_x : x \in A\}$ is an open covering of the compact set A. Since A is compact, there exists a finite subfamily $\{U_{xi} : i = 1, 2, 3, \ldots, n\}$ which covers A. It follows that $A \subset \bigcup \{U_{xi} : i = 1, 2, 3, \ldots, n\}$ and $B \subset \bigcap \{V_{xi} : i = 1, 2, 3, \ldots, n\}$. Put $U = \bigcup \{U_{xi} : i = 1, 2, 3, \ldots, n\}$ and $V = \bigcap \{V_{xi} : i = 1, 2, 3, \ldots, n\}$, then $V \subseteq V = \emptyset$. For, if $V \subseteq V \subseteq V = \emptyset$ are disjoint open sets containing A and B respectively.

V. Relationships of η*-regular spaces with Some Separation Axioms

- **5.1 Theorem [14]**. Every almost regular, semi-regular space is regular.
- **5.2 Corollary.** Every almost regular, semi-regular space is η^* -regular. **Proof.** Using the fact that every regular space is η^* -regular.
- **5.3 Corollary.** Every softly regular, semi-regular space is η^* -regular. **Proof.** Using the fact that every softly regular space is almost regular.
- **5.4 Theorem [1]**. Every normal, symmetric space is regular.
- **5.5 Corollary.** Every normal, symmetric space is η^* -regular. **Proof.** Using the fact that every regular space is η^* -regular.
- **5.6 Corollary.** Every g-normal, symmetric space is η^* -regular. **Proof.** Using the fact that every g-normal space is normal.
- **5.7 Corollary.** Every rg-normal, symmetric space is η^* -regular. **Proof.** Using the fact that every rg-normal space is normal.
- **5.8 Theorem [15].** Every compact Hausdorff space is regular. **5.9 Corollary.** Every compact Hausdorff space is η^* -regular. **Proof.** Using the fact that every regular space is η^* -regular.
- **5.10 Corollary.** Every compact Urysohn space is η^* -regular. **Proof.** Using the fact that every Urysohn space is Hausdorff.

VI. Conclusion.

In this paper, we introduce and study a new class of generalized regular space is called η^* -regular space which is weaker than regularity. The relationships among strongly rg-regular, g-regular, regular, Q^* -regular, η^* -regular, almost regular and softly regular spaces are investigated. Some of basic properties and characterizations of η^* -regular spaces in the terms of other separation and countability axioms such as semi-regular, Hausdorff, separable, second countable and Lindelof spaces are obtained. This idea can be extended to topological ordered, bitopological ordered and fuzzy topological spaces etc.

Acknowledgement: The author is thankful to Dr. M. C. Sharma, NREC College Khurja, U. P. for his valuable suggestions and encouragement throughout preparation of this article.

REFERENCES

- E. Cartan, Surune Classe Remarquable d'espaces de Riemann, I', Bulletin de la Societe Mathematique de France, 54(1926), 214-[1].
- **[2].** [3]. W. Dunham, A new closure operator for non T1 Topologies, Kyungpook Math. J., 22, (1982), 55-60.
- P. Gnanachandra and P. Thangavelu, On strongly rg-regular and strongly rg-normal spaces, International Journal of Mathematical Archive-2(12), (2011), 2570-2577.
- [4]. H. Kumar and M. C. Sharma, Softly regular spaces in topological spaces Jour. of Emerging Tech. and Innov. Res. (JETIR), Vol. 5, Issue 11, (2018), 183-190.
- H. Kumar and N. K. Tomar, Q*-normal spaces, IJMTT (2024), (Communicated)
- H. Kumar, Q*-regular spaces, Quest Journals, Journal of Research in Applied Mathematics, Vol. 10, Issue 11, (2024), 84-88. [6].
- [7]. C. Kuratowski, Topologie I, 4th ed., in French, Hafner, New York, 1958.
- [8]. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89 - 96.
- [9]. P. L. Meenakshi and K. Sivakamasundari, Unification of regular star open sets, International Journal of Research and Analytical Reviews, (2019), 20-23.
- [10].
- B. M. Munshi, Separation Axioms, Acta Ciencia Indica, Vol. 12, No. 2, (1986), 140-144.

 M. Murugalingam and N. Lalitha, Q*-closed sets, Bull. of Pure and Appl. Sci., Vol. 29 E, Issue 2, (2010), 369 376. [11].
- N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33 (1993), 211 219. [12].
- [13]. S. Pious Missier and M. Annalakshmi, Between regular open sets and open sets, IJMA, 7(5), (2016), 128-133.
- M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik Math., 4(24) (1969), 89-99. [14].
- [15]. Stephen Willard, General Topology, Addison Wesley, 1970.
- [16]. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 375-481.
- P. Urysohn, Über die Machitigkeit der zusammenhangenden Mengen, Math. Ann. 94(1925), 262-295. [17].
- [18]. N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78, (1968), 103-118.