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Abstract:  Second- order differential equations have great significance theoretically and practically. The 

article begins by providing an in-depth analysis of different methods for solving homogeneous second-order 

ordinary differential equation(ODEs) involving constant coefficients, the concepts of solution and the different 

methods of obtaining these solutions are analyzed. This study reviews the classical techniques, including the 

characteristic equation methods, solution involving real roots, repeated roots and complex roots and presents 

the general solution for each case, with examples. Next, the article goes to discuss use of the method 

undetermined coefficients for solving non-homogeneous equations. The article also highlights the role of initial 

conditions in determining particular solutions. By providing a systematic overview of these approaches the 

researcher contributes to a deeper understanding of the structure and application of the second -order linear 

ODEs, offering both theoretical insights and practical problem-solving tools. 
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I. INTRODUCTION 

Linear differential equations are fundamental mathematical tools used to model various phenomena in 

science, engineering, and other disciplines. They describe relationships between a function and its derivatives, 

where the function and its derivatives are multiplied by coefficients that are constants or functions of the 

independent variable. 

Linear differential equations are characterized by their linearity, meaning that the dependent variable 

along with its derivatives are present only to the first degree and are not multiplied together or divided. This 

linearity allows for the use of superposition, where the addition of any two solutions to a linear differential 

equation also results in a solution [Boyce & DiPrima,2017. Higher-order linear differential equations are a 

specific type of linear differential equation where the highest order derivative is of order n. These equations are 

of particular interest as they involve more complex relationships between the function and its derivatives. The 

highest order derivative present in a differential equation determines its order [Kreyszig,2018]. Differential 

equations are categorized into partial differential equations (PDE) or ordinary differential equations (ODE) 

based on the presence or absence of partial derivatives. The order of a differential equation is determined by the 

highest order derivative it contains. A solution, or particular solution, of a differential equation of order 𝑛 is a 

function defined and differentiable 𝑛 times over a domain. A solution containing arbitrary constants 

corresponding to the differential equations order is known as a general solution. On the other hand, a solution 

devoid of arbitrary constants is referred to as a particular solution [Hilbert, 2013]. Higher-order linear 

differential equations have great significance theoretically and practically. They are typically used in a variety of 

applications in Science and Engineering (Ross, 2021, p. 110). Differential equations find applications in physics, 

biology, economics, and many other disciplines, playing a crucial role in predicting and analyzing the behaviour 

of complex phenomena [Strogatz, 2014]. Most real-world equations are second-order, though higher-order ones 

do show up now and then. This leads to the common belief that the world operates on a "second-order" basis in 
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modern physics. Essentially, the key results for higher-order linear ODEs are quite similar to those for second-

order equations, just with "n" replacing "2" [Lebl, 2013]. 

This study covers both mathematical aspects of solving linear differential equations and physical 

interpretations and applications. We discuss the connection between the solutions and physical systems and how 

the solution can be used to analysis and predict the physics and engineering [8]. The techniques and methods 

presented in this article are fundamental to many fields of study, including mathematics, physics, and 

engineering. The article aims to provide a comprehensive guide for students and researchers who are interested 

in this topic, and it may be used as a reference for solving problems to relate fields [14]. 

 

II. PRELIMINARIES 
2.1 Differential Equations 

An equation involving independent and dependent variables and the derivatives or differentials of one or more 

dependent variables is called a differential equation.  

A differential equation which involves derivatives with respect to a single variable is known as an ordinary 

differential equation. For example:  
𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
− 𝑥𝑦 = 0. 

The order of the highest derivatives involves in a differential equation is called the order of a differential 

equation. The degree of a differential equation is the degree of the highest order derivative present in the 

equation, after the differential equation has been free from the radicals and fractions as far as the derivatives 

concerned. For example: 
𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
− 𝑥𝑦 = 0 is a second order and first degree differential equation. 

A differential equation in which dependent variables and all its derivatives present occur in the first degree only 

and no products of dependent variables and/or derivatives occur is known as a linear differential equation. For 

example:  
𝑑𝑦

𝑑𝑥
= sin 𝑥 + cos 𝑥 is a linear equation of first order. 

 

2.2 Higher Order Linear Differential Equations 

The general linear equation of nth order can be written   

              𝑏0(𝑥)
𝑑𝑛𝑦

𝑛
+ 𝑏1(𝑥)

𝑑𝑛−1

𝑑𝑥𝑛−1 + ⋯ + 𝑏𝑛−1(𝑥) + 𝑏𝑛(𝑥)𝑦 = 𝐹(𝑥)     

  An equation qualifies as a homogeneous linear differential equation when the function 𝐹(𝑥) equals 
zero for all 𝑥.    If 𝐹(𝑥) is non-zero for any  𝑥, the equation is considered non-homogeneous [Rainville & 
Bedient, 1989]. 
If the solution of Eq. (1) are 𝑦1, 𝑦2,…….., 𝑦𝑛 and if  𝑐1, 𝑐2, 𝑦2,…….., 𝑐𝑛 are constants, then 
   𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 + ⋯ + 𝑐𝑛𝑦𝑛       
For a solution to a higher-order linear differential equation be valid, it must have linear independence. For a 
set of functions to be linearly independent, scalars 𝑣1, 𝑣2,…….., 𝑣𝑛 of Eq. (3) should be zero (Xu, 2011). 
                                                  𝑣1𝑦1 + 𝑣2𝑦2 + ⋯ + 𝑣𝑛𝑦𝑛        
Linear independence is crucial in the determining the general solution to a differential equation, as it 
guarantees that the solution is not redundant (Coddington & Levinson, 1955). 
Moreover, their Wronskian must not be equal to zero. The Wronskian of 𝑛 functions 𝑦1(𝑥), 𝑦2(𝑥), …….,𝑦𝑛(𝑥) 
is denoted by 𝑊(𝑥) and is defined to be the determinant 

                                 𝑊(𝑥) = |

𝑦1         𝑦2      …     𝑦𝑛

𝑦1
′            𝑦2        

′ …    𝑦𝑛
′

⋮              ⋮               ⋮ 

𝑦1
(𝑛−1)

   𝑦2
(𝑛−1)

      𝑦𝑛
(𝑛−1)

| 

If 𝑊 = 0, then 𝑦1, 𝑦2,…….., 𝑦𝑛 are considered to be linearly dependent and if  𝑊 ≠ 0, it can be deduced that 
they are linearly independent. 
 

2.3 Differential Operators 

 Let 𝐷 denote the differentiation with respect to 𝑥. Then, 𝐷𝑘 , as shown in Eq. (1), refers to 

differentiating 𝑘 times with respect to 𝑥. This is true for positive integral 𝑘. 

                           Dky =
dky

dxk                                                                 

(1) 

 If 𝑃(𝐷) is a polynomial operator of order 𝑛 defied by 

                                                   𝑃(𝐷) = 𝑎0 + 𝑎1𝐷 + 𝑎2𝐷2 + ⋯ + 𝑎𝑛𝐷𝑛 , 𝑎𝑛 ≠ 0                                            (2) 

and 𝑦 is an 𝑛th order differentiable function, then 

               𝑃(𝐷)𝑦 = (𝑎0 + 𝑎1𝐷 + 𝑎2𝐷2 + ⋯ + 𝑎𝑛𝐷𝑛)𝑦 

From Eq. (1), we obtain 
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                     𝑃(𝐷)𝑦 = 𝑎0𝑦 + 𝑎𝑘−1𝑦𝑘−1 + 𝑎𝑘−2𝑦𝑘−2 + ⋯ + 𝑎𝑘𝑦                                   

(3) 

 

2.4 Differential Operators Properties 

 For constant 𝑚 and positive integral 𝑘 

    𝐷𝑘𝑒𝑚𝑥 = 𝑚𝑘𝑒𝑚𝑥             (4) 

The effect of an operator upon 𝑒𝑚𝑥 can be determined. Suppose 𝑃(𝐷) be a polynomial in 𝐷  

    𝑃(𝐷) = 𝑎0 + 𝑎1𝐷 + 𝑎2𝐷2 + ⋯ + 𝑎𝑛𝐷𝑛, 𝑎𝑛 ≠ 0      (5) 

Then  

                                                         𝑃(𝐷)𝑒𝑚𝑥 = 𝑎0𝑚𝑛𝑒𝑚𝑥 + 𝑎1𝑚𝑛−1𝑒𝑚𝑥 + ⋯ + 𝑎𝑛−1𝑚𝑒𝑚𝑥𝑎𝑛𝑒𝑚𝑥                 

Therefore, 

    𝑃(𝐷)𝑒𝑚𝑥 = 𝑒𝑚𝑥𝑃(𝐷)         (6) 

If 𝑚 satisfies 𝑃(𝑚) = 0, then in light of Eq. (6), we obtain 

     𝑃(𝐷)𝑒𝑚𝑥 = 0 

Eq. (7) and Eq. (8) demonstrate how the operator (𝐷 − 𝑎) affects the product of a function 𝑦 and 𝑒𝑎𝑥,   

    (𝐷 − 𝑎)(𝑒𝑎𝑥𝑦) = 𝐷(𝑒𝑎𝑥𝑦) − 𝑎𝑒𝑎𝑥𝑦         

(7) 

      = 𝑒𝑎𝑥𝐷𝑦            

(8) 

Subsequently, the use of the operator (𝐷 − 𝑎) 2 is shown on Eq. (9) and (10), 

                          (𝐷 − 𝑎)2(𝑒𝑎𝑥) = 𝑒𝑎𝑥𝐷𝑛𝑦                 

(9) 

      = 𝑒𝑎𝑥𝐷2𝑦              

(10) 

By linearity of differential operators, it can be concluded that when 𝑃(𝐷) represents a polynomial in 𝐷, then 

              𝑒𝑎𝑥𝑃(𝐷)𝑦 = 𝑃(𝐷 − 𝑎)[𝑒𝑎𝑥𝑦]                    

(11)                              2.5 Inverse Operation 

 Let 𝑃(𝐷)𝑦 = 𝐹(𝑥), where 𝑃(𝐷) is the polynomial operator defined in Eq. (2) and 𝐹(𝑥) is the function 

consisting only of such terms as 𝑏, 𝑥𝑘, 𝑒𝑎𝑥, sin 𝑎𝑥, cos 𝑎𝑥 and finite number of combination of these terms, 

where 𝑎, 𝑏 are constants and 𝑘 is a positive integral. The inverse operators of  𝑃(𝐷) written as 𝑃−1(𝐷) or 
1

𝑃(𝐷)⁄ , is then defined as an operator which, when operating in 𝐹(𝑥), will give the particular integral (𝑦𝑝) of 

𝑃(𝐷)𝑦 = 𝐹(𝑥) that is contains no constant multiples of a term in complementary function (𝑦𝑐) .i.e., 

    𝑃−1(𝐷)𝐹(𝑥) = 𝑦𝑝 or  𝑦𝑝 =
1

𝑃(𝐷)
𝐹(𝑥)                       

(12)      

Therefore, 𝐷−𝑛𝐹(𝑥) will mean the integration of 𝐹(𝑥) 𝑛 times by ignoring constants of integration. 

Also, if 𝑃(𝐷)𝑦 = 0, then 𝑦𝑝 = 0.  

Therefore,  𝑃(𝐷)[𝑃−1(𝐷)𝐹(𝑥)] = 𝐹(𝑥)               

(13) 

 

III. RESEARCH OBJECTIVES 
This article focuses on linear ordinary differential equations with constant coefficients, a common types of 

differential equation in various applications, since they very frequently in many branches of applied 

mathematics.  Explicit methods of available for solving these equations include the variation of parameters, 

reduction of order, exponential shift, and undetermined coefficients. Being a relatively simple solution method 

requiring only skills in differentiation and algebra, this article aims to discuss the method of solutions of second-

order linear differential equations with constant coefficients. More specially, it aims to: 

i. Analyse the  various standard methods use to solve second-ordinary ordinary differential equation with 

constants coefficients including the characteristic equation methods, solution involving real roots, repeated roots 

and complex roots and present the general solution for each case, with examples. 

ii. Discuss the method of undetermined coefficients to solve a second-order differential equations. 

 

IV. METHODOLOGY 
In this section we discuss the different methods for solving second order linear differential equations (ODEs) 

with constant coefficients. The typical form of such equation is 

                        𝑏0(𝑥)
𝑑2𝑦

𝑑𝑥2 + 𝑏1(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑏2(𝑥)𝑦 = 𝐹(𝑥),                                                 

(14)                                                          Using the differential operators symbols in Eq. (14), we obtain 
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        𝑓(𝐷)𝑦 = 𝐹(𝑥)                                              

(15)     where 𝑓(𝐷) = 𝑏0(𝑥)𝐷2 + 𝑏1(𝑥)𝐷 + 𝑏2(𝑥) and 𝑏0, 𝑏1and 𝑏2 are constants. Two forms of this 

equation usually presents themselves, namely, homogeneous, when the right-hand member is zero, and non-

homogeneous, when the right-hand number is a function of 𝑥. We will first consider the first form and then the 

second. 

 

4.1 Solution of Homogeneous Linear ODEs 

Consider the equation of the form: 

       𝑏0(𝑥)
𝑑2𝑦

𝑑𝑥2 + 𝑏1(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑏2(𝑥)𝑦 = 0  or 𝑓(𝐷) = 0             

(16)                       

 Let us take 𝑦 = 𝑒𝑚𝑥 (𝑥 ≠ 0) be the nontrivial solution. The, if we put 𝑦 = 𝐶𝑒𝑚𝑥 in the left side of Eq. (16), it 

must satisfy the equation, i.e. we must have 

         𝐶𝑒𝑚𝑥⌈𝑏0(𝑥)𝑚2 + 𝑏1(𝑥)𝑚 + 𝑏2(𝑥)⌉ = 0      

Since  𝐶𝑒𝑚𝑥 ≠ 0,                  𝑏0(𝑥)𝑚2 + 𝑏1(𝑥)𝑚 + 𝑏2(𝑥) = 0 or  𝐹(𝑚) = 0            

(17) 

The Eq.(17) is called the Auxiliary Equation (A.E) or Characteristic Equation (C.E.) of Eq.  (16). 

Let 𝑚1, 𝑚2 be two roots of the equation (17). 

Then, 𝑦 = 𝑐1𝑒𝑚1𝑥 and  𝑦 = 𝑐2𝑒𝑚2𝑥  are obviously solutions of the Eq. (16). Also, it can be easily verified by 

directly substitution that 𝑦 = 𝑐𝑒𝑚1𝑥, 𝑦 = 𝑐𝑒𝑚2𝑥  and 𝑦 = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥  satisfy the Eq. (16), and, as such 

are solutions of Eq. (16). 

We will now consider the nature of the general solution of the Eq.  (16) according as the roots of the auxiliary 

Eq.  (17) are (i) real and distinct, (ii) real and repeated and (iii) imaginary. 

Case- I: Auxiliary equation having real and distinct roots. 

If  𝑚1 and 𝑚2 are real and distinct, then 𝑦 = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥is the general solution, since it is satisfy the Eq. 

(16), and contains two independent arbitrary constants equal in number to the order of the equation. 

Example-1  Solve (D2 − 7D + 12)y = 0  

Solution: It has an auxiliary equation 

m2 − 7m + 12 = 0   

Notice that this can be simplified and rewritten as 

  (m − 3)(m − 4) = 0 

Equating each factor to 0, we obtain the roots. Therefore, the roots of the equation are m = 3,4 

The roots are real and distinct. Thus, e3x and e4x are the solutions of the given equation and we can express the 

general solution as: 

y = c1e3x + c2e4x , where c1 and c2 are arbitrary constants 

 

Case- II: Auxiliary equation having two equal roots. 

If the auxiliary equation has two equal roots, the method of the preceding paragraph does not lead to the general 

solution. For, if  𝑚1 = 𝑚2 = 𝛼 say, then the solution of the preceding paragraph assumes the form 

                        𝑦 = (𝑐1 +  𝑐2)𝑒𝛼𝑥 = 𝑐𝑒𝛼𝑥  , where 𝑐1 +  𝑐2 = 𝑐, 

which is not the general solution, since it involves only one independent constant and the equation is of the 

second order. 

A method will now be devised for finding the general solution in the case under discussion. Since the auxiliary 

solution (17) has two equal roots each being equal to, it follows from the Eq.  (16) assumes the form  

               𝑏0(𝑥)𝑚2 + 𝑏1(𝑥)𝑚 + 𝑏2(𝑥) = 0              (18) 

Let = 𝑒𝛼𝑥𝑣, where 𝑣 is a function of 𝑥, be a trial solution of this equation. Substituting this value of 𝑦 in the left 
side of the above equation, we obtain 

                    𝑒𝛼𝑥𝑏0(𝑥)
𝑑2𝑦

𝑑𝑥2 = 0, i.e.,  
𝑑2𝑦

𝑑𝑥2 = 0, since  𝑒𝛼𝑥 ≠ 0 

Now, integrating this twice, we get 𝑣 = (𝑐1 + 𝑐𝑥) 𝑒𝛼𝑥. 
Hence, the solution of the Eq. (17) in this case is  𝑦 = (𝑐1 + 𝑐2𝑥) 𝑒𝛼𝑥. 
This is the general solution of Eq. (17), since it satisfies the Eq.  (17), and contains two independent arbitrary 
constants. 
Example-2.  Solve  (16D2 − 24D + 9)y = 0 
Solution: It has an auxiliary equation 

16m2 − 24m + 9 = 0 

Notice that this can be simplified and rewritten as 

(4m − 3)2 = 0 

Equating each factor to 0, we obtain the roots. Therefore, the roots of the equation are m =
3

4
,

3

4
 



On Some Analytical Methods for Solving Second Order Ordinary Differential Equations .. 

DOI: 10.35629/0743-11090715                                  www.questjournals.org                                           11 | Page 

The roots are real and equal. Therefore, e x4
3

 and e x4
3

 are the solutions of the given equation. Therefore, the 

general solution is: 

y = (c1 + c2x)e x4
3

, where c1 and c2 are arbitrary constants 

 
Case- III: Auxiliary equation having a pair of complex roots. 
Let 𝑚1 = 𝛼 + 𝑖𝛽 and  𝑚2 = 𝛼 − 𝑖𝛽, then the general solution of Eq. (17) is 

𝑦 = 𝑐1𝑒(𝛼+𝑖𝛽)𝑥 + 𝑐2𝑒(𝛼−𝑖𝛽)𝑥 
The above solution, by adjusting the arbitrary constants, can be put in a more convenient form not involving 
imaginary expression, thus we have 

                                    𝑦 = 𝑒𝛼𝑥[𝑐1𝑒𝑖𝛽𝑥 + 𝑐2𝑒−𝑖𝛽𝑥] 

= 𝑒𝛼𝑥[𝑐1(cos 𝛽𝑥 + 𝑖 sin 𝛽𝑥) + 𝑐2(cos 𝛽𝑥 − 𝑖 sin 𝛽𝑥)] 
                                                        = 𝑒𝛼𝑥[(𝑐1 + 𝑐2) cos 𝛽𝑥 + 𝑖(𝑐1 − 𝑐2) sin 𝛽𝑥] 
                                                        = 𝑒𝛼𝑥[𝐴 cos  𝛽𝑥 + 𝑖𝐵 sin  𝛽𝑥] 
where 𝐴 = 𝑐 + 𝑐2 and 𝐵 = 𝑖(𝑐1 − 𝑐2) are the arbitrary constants, which may be given any real values we like. 
Example-3  Solve   (D2 − 2D + 5)y = 0 

Solution: It has an auxiliary equation 

m2 − 2m + 5 = 0 

By the quadratic formula, the roots of the auxiliary equation are 

m =
2 ± √4 − 20

2
=

2 ± 4i

2
= 1 ± 2i 

Here, the roots are complex numbers α ± iβ, where α = 1 and β = 2 . 

Therefore, the general solution to this differential equation is 

                               y = ex(c1 cos 2x + c2 sin 2x), where c1 and c2 are arbitrary constants 

4.2 Solution of Non-Homogeneous Linear ODEs 

Consider the equation of the form  

                                         𝑏0(𝑥)
𝑑2𝑦

𝑑𝑥2 + 𝑏1(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑏2(𝑥)𝑦 = 𝐹(𝑥),                                     

(19)   where the coefficients  b0 , b1 and b2 are constants but the non-homogeneous term 𝐹(𝑥) in general a non-

constant and function of x.  

The general solution of the Eq. (19) is may be written,y = yc + yp, where yc is the general solution of the 

corresponding homogeneous Eq. (16) with 𝐹(𝑥) replacing by zero and yp is called the particular integral  and it 

is any specific solution to the non-homogeneous ODE that contains no arbitrary constant. The complete general 

solution to the ODE is the sum of the complementary function and the particular integral. 

 

4.3 Determination of the particular integral (P.I) 

 Case-I:  When 𝐅(𝐱) = 𝐛𝐱𝐤 and 𝐏(𝐃) = 𝐃 − 𝐚𝐨, 𝐚𝐨 ≠ 𝟎.            

(20) 

Then P.I. =yp =
1

P(D)
b =

b

a0
, a0 ≠ 0. 

Example-4: Solve (D2 − 2D − 3)y = 5 

Solution: The A.E. is:   m2 − 2m − 3 = 5 

After solving, the roots of the equation are m=-1, 3 

Thus,  C.F. =yc = c1e−x + c2e3x, where c1 and c2 are arbitrary constants 

Now, from the Eq. (20) the particular integral can be expressed as 

  P.I. =P(D) = D2 − 2D − 3, with a0 = −3 and b = 5 

Hence  P.I. =yp=
b

P(D)
=

b

a0
= −

5

3
 

Therefore, the complete solution is 

  y = yc + yp = c1e−x + c2e3x −
5

3
 

Case-II: When 𝐅(𝐱) = 𝐛𝐱𝐤 and 𝑷(𝑫) = 𝒂𝒏𝑫𝒏 + 𝒂𝒏−𝟏𝑫𝒏−𝟏 + ⋯ + 𝒂𝟏𝑫.      (21) 

Then, from Eq. (13), we get,  P.I.=𝑦𝑝 =
1

𝐷𝑟(𝑎𝑛𝐷𝑛+𝑎𝑛−1𝐷𝑛−1+⋯+𝑎1𝐷+𝑎𝑟)
bxk 

Example-5: Solve (𝐷2 + 4)𝑦 = 𝑥2 

Solution: The auxiliary equation is m2 + 4 = 0 has roots 𝑚 = ±2𝑖. 
The complementary function (yc) = c1 cos 2x + c2 sin 2x   

Now, using Eq. (21), wee obtain 

Particular Integral (𝑦𝑝) =
1

𝐷2+4
𝑥2 = 

1

4(1+
1

4
𝐷2)

𝑥2 =  
 1

4
(1 +

1

4
𝐷2)−1𝑥2  
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        =   
1

4
(1 +

1

4
𝐷2 +

1

16
𝐷4 − ⋯ )𝑥2  =  

1

4
(𝑥2 −

1

2
)  

Therefore, the complete solution is 

      y = yc + yp = c1 cos 2x + c2 sin 2x +
1

4
(𝑥2 −

1

2
)  

Case-III:  When 𝐅(𝐱) = 𝐛𝐞𝐚𝐱 

In this case P(D)y = F(x) becomes P(D) = beax.  

The P.I. here is 

              yp =
1

P(D)
beax =

beax

P(a)
,      P(a) ≠ 0       (22) 

Example-6: Solve (D2 − 2D + 5)y = e−x  

Solution: The A. E. is:  m2 − 2m + 5 = 0 

The roots are      m= −1, ±2i 
C. F. =e−x(c1cos2x + c2sin2x) 

Now, using the Eq. (22) the particular integral is 

 P.I. =
1

D2−2D+5
e−x =

1

(−1)−2(−1)+5
=

1

8
e−x 

The complete solution is 

 y = yc + yp = e−x(c1cos2x + c2sin2x) +
1

8
e−x 

Case-IV: When 𝑭(𝒙) = 𝐜𝐨𝐬 𝒂𝒙  or 𝐬𝐢𝐧 𝒃𝒙 and 𝑷(−𝒂𝟐) ≠ 𝟎.      (23) 

Then, Particular Integral  (𝑦)𝑝 =
1

𝑃(𝐷2)
sin 𝑎𝑥 =

1

𝑃(−𝑎2)
sin 𝑎𝑥 

Also,               𝑦𝑝 =
1

𝑃(𝐷2)
cos 𝑎𝑥 =  

1

𝑃(−𝑎2)
cos 𝑎𝑥 

If 𝑦𝑝 =
1

𝑃(𝐷)
sin 𝑎𝑥, then we should put −𝑎2 for 𝐷2, −𝑎4 for 𝐷4, −𝑎6 for 𝐷6 and so on, in 𝑃(𝐷) to calculate 𝑦𝑝 

The above method fails when 𝑃(−𝑎2) = 0. In this situation, we proceed as follows: 

We know that 

              𝑒𝑖𝑎𝑥 = cos 𝑎𝑥 + sin 𝑎𝑥        (24) 

 From this relation, we obtain  

 
1

𝐷2+𝑎2 sin 𝑎𝑥 =Im
1

 𝐷2+𝑎2 𝑒𝑖𝑎𝑥        

and                   
1

𝐷2+𝑎2 cos 𝑎𝑥 =Re 
1

𝐷2+𝑎2 𝑒𝑖𝑎𝑥  

Now,     

   
1

𝐷2+𝑎2 cos 𝑎𝑥 =
1

(𝐷−𝑖𝑎)(𝐷+𝑖𝑎)
𝑒𝑖𝑎𝑥 =

1

(𝐷−𝑖𝑎)

𝑒𝑖𝑎𝑥

2𝑖𝑎
=

𝑥

2𝑖𝑎
𝑒𝑖𝑎𝑥 

             =
𝑥

2𝑖𝑎
(cos 𝑎𝑥 + sin 𝑎𝑥) =  

𝑥

2𝑎
(sin 𝑎𝑥 − cos 𝑎𝑥) 

Equating the real and imaginary parts, we obtain 

          
1

𝐷2+𝑎2 cos 𝑎𝑥 =
𝑥

2𝑎
       (25) 

and                
1

𝐷2+𝑎2 sin 𝑎𝑥 = −
𝑥

2𝑎
cos 𝑎𝑥                                                                  

(26) 

Example-7: Solve  (D2 + 4)y = cos 2x 

Solution: The A.E. m2 + 4=0 gives 𝑚 = ±2𝑖 
Therefore, 𝑦𝑐 = 𝑐1 cos 2𝑥 + 𝑐2 sin 2𝑥 

Now, by using the Eq. (25) we can find the particular integral as 

  𝑦𝑝 =
1

𝐷2+𝑎2 cos 2𝑥 =
1

𝐷2+4
cos 2𝑥=

𝑥

2(2)
sin 2𝑥 

Hence, complete solution is 

  y = yc + yp = 𝑐1 cos 2𝑥 + 𝑐2 sin 2𝑥 +
𝑥

4
sin 2𝑥 

Case-V: When𝑭(𝒙) = 𝒙𝑽, where 𝑽 is any function of x. 

Here,    𝑦𝑝 =
1

𝑃(𝐷)
(𝑥𝑉) 

                       = 𝑥
1

𝑃(𝐷)
𝑉 −

𝑃′(𝐷)

[𝑃(𝐷)]2 𝑉           (27)

  

Example-8: Solve  (D2 − 2D + 1)y = xex sin x 

Solution: The A.E. m2 − 2m + 1=0 gives 𝑚 = 1, 1 

Therefore, 𝑦𝑐 = (𝑐1 + 𝑐2𝑥)ex 

Now, by using the Eq. (27) we can find the particular integral as 

  𝑦𝑝 =
1

𝐷2−2𝐷+1
𝑥𝑒𝑥 sin 𝑥 =

1

(𝐷+1)2−2(𝐷+1)+1
𝑥 sin 𝑥 = 𝑒𝑥𝐷−1(𝑥 sin 𝑥) 

Integrating by parts, we get 
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𝑦𝑝 = 𝑒−𝑠(−𝑥 sin 𝑥 − 2 cos 𝑥) 

Hence, complete solution is 

  y = yc + yp = (𝑐1 + 𝑐2𝑥)ex − 𝑒−𝑠(𝑥 sin 𝑥 + 2 cos 𝑥) 

 

4.4 Method of Undetermined Coefficients 

This method is yet another method of finding a particular integral of non-homogeneous linear ODEs 

    𝑓(𝐷)𝑦 = 𝐹(𝑥)        (28) 

  In this method we first find the complementary function of Eq. (28) as in Eq. (16). This method is 

useful only when  𝐹(𝑥) contains terms in some special forms given in the Table-1. The method of undetermined 

coefficients consists in making a guess of the trial solution 𝒚∗ from the form of 𝐹(𝑥). Then, we substitute the 

trial solution 𝒚∗ in Eq. (28) and determine constants by comparing like terms on both sides of the equation 

𝑓(𝐷)𝒚∗ = 𝐹(𝑥). Finally, the general solution is given by 

   𝑦 = 𝐶. 𝐹. +𝒚∗  

Table-1 shows the general form of right-hand member 𝐹(𝑥) along with their corresponing prediction for the 

particular solution. The specific functions that this method can handle are those that have a finite family of 

constants occurring in first column are known and the constants second column are determined by substituting 

into the trial solution in the given equation i.e., they are obtained from the resulting identity, 𝑓(𝐷)𝒚∗ = 𝐹(𝑥). 

 

Table 1. Functions suitable for method of undetermined coefficients 

 

 

Case-I: When 𝑭(𝒙) is an exponential function 

Example: 9 Solve  (D2 − 2D − 3)y = 2e4x              

(29) 

Solution: The A. E. is: m2 − 2m − 3 = 0 

The roots are m = 3, −1 

The C.F. is written is  yc = c1e3x + c2e−x  

Now by undetermined coefficient method- Trial solution for 𝒚∗ is : 

   𝒚∗ = Ae4x               (30) 

Since Eq. (30) is second-order differential equation,  𝒚∗ must be differentiated two times, we get 

   D𝒚∗ = 4Ae4x   and  D2𝒚∗ = 𝐷(𝐷𝑦𝑝) = 𝐷(4Ae4x) = 16𝐴e4x    

Now, since Eq. (30) is the trial solution of the Eq. (29), so it must satisfy the Eq. (29). Substituting these values 

of  𝒚∗, D𝒚∗  and D2𝒚∗   in the Eq. (29), which yields,  

   D2𝒚∗ − 2D𝒚∗
p

− 3𝒚∗ = 2e4x     

   16Ae4x − 8Ae4x − 3Ae4x = 2e4x  

which will simplify to   

 5Ae4x = 2e4x 

Equating the coefficient of e4x on the both sides : 

   5A = 2  i.e., A =
2

5
.  

Thus   𝒚∗ =
2

5
e4x 

Since 

 𝑦 = 𝑦𝑐 + 𝒚∗ 

the general solution of Eq. (29) is the linearly independent 

   y = c1e3x + c2e−x +
2

5
e4x  

Case-II: If  𝑭(𝒙) is a polynomial 

Example:10  Solve  (D2 + 4)y = x2        (31) 

Solution: The A. E. is: m2 + 4 = 0 

The roots are m = ±2i 

Special form of 𝑭(𝒙) Trial solution 𝒚∗ for P.I. 

𝒙𝒏 or 𝒂𝒙𝒙𝒏 or 𝒂𝟎 + 𝒂𝟏 + ⋯ + 𝒂𝒙𝒏 𝑨𝟎 + 𝑨𝟏𝒙 + ⋯ + 𝑨𝒏𝒙𝒏 

𝒆𝒂𝒙  or   𝒑𝒆𝒙 𝑨𝒆𝒂𝒙 

𝒒 𝐜𝐨𝐬 𝒂𝒙 𝑨𝒔𝒊𝒏 𝒂𝒙 + 𝑩 𝒄𝒐𝒔 𝒂𝒙 

𝒑 𝒔𝒊𝒏 𝒂𝒙 𝑨𝒔𝒊𝒏 𝒂𝒙 + 𝑩 𝒄𝒐𝒔 𝒂𝒙 

𝒑 𝒔𝒊𝒏 𝒂𝒙 + 𝒒 𝐜𝐨𝐬 𝒂𝒙 𝑨𝒔𝒊𝒏 𝒂𝒙 + 𝑩 𝒄𝒐𝒔 

nth degree polynomial 𝑨𝟎 + 𝑨𝟏𝒙 + ⋯ + 𝑨𝒏𝒙𝒏 

Where  𝑛 is a positive integer and  𝐴, 𝐵, 𝑝, 𝑞 are arbitrary constants 
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The C.F. is written is  yc = c1 cos 2x + c2 sin 2x  

Now by undetermined coefficient method- Trial solution for 𝒚∗ is : 

   𝒚∗ = A0 + A1x + A2x2         (32) 

Since 𝒚∗ must satisfy Eq. (32), we get 

 (D2 + 4)𝒚∗  = x2 or  D2𝒚∗ + 4𝒚∗ = x2      (33) 

Since Eq. (31) is second-order differential equation,  𝒚∗ must be differentiated two times, we get 

   D𝒚∗ = A1 + 2A2x     and       D2𝒚∗ = 2A2  

Substituting these values of  𝒚∗, D𝒚∗  and D2𝒚∗   in the Eq. (33), which yields,    

   2A2 + 4(A0 + A1x + A2x2) = x2 

which will simplify to  

   2A2 + 4A0 + 4A1x + 4A2x2 = x2  

Equating the coefficients of the like terms: 

   𝑥2:  4A2 = 1 i.e., 𝐴2 =
1

4
 

   𝑥 :  4A1 = 0  i.e.  A1 = 0 

   𝑥0 :  2A2 + 4A0 = 0 i.e.,  A0 = −
1

8
 

Substituting the obtained values of  A0, A1 and 𝐴2 into Eq. (32), 

   𝒚∗ = −
1

8
+

𝑥2

4
 

The general solution is  

   𝑦 = 𝑦𝑐 + 𝒚∗ = c1 cos 2x + c2 sin 2x −
1

8
+

𝑥2

4
  

Case-III: When 𝑭(𝒙) contains 𝐬𝐢𝐧 𝒂𝒙 or 𝐜𝐨𝐬 𝒂𝒙 

Example:11 Solve  (D2 + 3D + 2)y = x + 𝐜𝐨𝐬 𝒙              

(34) 

Solution: The A. E. is: m2 + 3m + 2 = 0 

The roots are m = −1, −2 

The C.F. is written is  yc = c1e−x + c2e−2x  

Corresponding to special form 𝑥 of R.H.S. of Eq.(34), we choose trial solution for P.I. as A0 + A1x and 

corresponding to special form cos 𝑥 of R.H.S. of (34), we predict trial solution for P.I. as A2 cos x + A3 sin x. 

Combining these, we attempt a trial solution for particular solution as: 

           𝒚∗ = A0 + A1x + A2 cos x + A3 sin x.              (35) 

where A0, A1, A2 and A3 are constants to be determined. 

Since 𝒚∗ must satisfy Eq. (34), we get 

 D2𝒚∗ + 3D𝒚∗ + 2𝒚∗ = x + cos 𝑥             (36) 

Since Eq. (34) is second-order differential equation,  𝒚∗ must be differentiated two times, we get 

   D𝒚∗ = A1 − A2 sin x + A3 cos x     

 and                     D2𝒚∗ = −A2 cos x − A3 sin x  

Substituting these values of  𝒚∗, D𝒚∗  and D2𝒚∗ in the Eq. (36), which yields,    

−A1 cos x − A3 sin x + 3(A1 − A2 sin x + sin x + A3 cos x ) + 2(A0 + A1x + A2 cos x + A3 sin x)  = x + cos 𝑥 

which will simplify to  

   3A1 + 2A0 + 2A1x + (A2 + 3A1) cos x + (A3 − A1) sin x = x + cos 𝑥  

which an identity and so equating the coefficients of the like terms: 

   𝑥0:  3A1 + 2A0 

   𝑥 :  2A0 = 1  

                cos x : A2 + 3A1 = 1 

and                sin x : A3 − A1 = 0 

After solving these, we obtain  

   A0 = −
3

4
, A1 =

1

2
,  A2 =

1

10
,  and A3 =

3

10
 

Substituting the obtained values of  A0, A1, 𝐴2 and 𝐴3 into Eq. (35), we get 

   𝒚∗ = −
3

4
+

x

2
+

1

10
(cos x + 3 sin x)   

The general solution is  

   𝑦 = 𝑦𝑐 + 𝒚∗ = c1e−x + c2e−2x −
3

4
+

x

2
+

1

10
(cos x + 3 sin x)   

 

V. RESULTS AND DISCUSSION 
This study examined the analytical methods such as characteristic equation method and method of 

undetermined for solving second order linear ordinary differential equations with constant coefficients. The 

characteristic equation method provides a direct and elegant solution for equations with constants coefficients, 
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but becomes less convenient when non-homogeneous terms are complex. Equations that result in separate and 

actual solutions are represented as combinations of exponential functions, which can be described in clear and 

analytical form. The method of undetermined coefficients is a simple method, only requiring skills in 

differentiation and algebra. However, its use is limited because it required that the non-homogeneous term has 

functions that have a finite family of derivatives. This is only applicable to algebraic, sinusoidal and exponential 

functions. Additionally, when predicting for particular solution, one may encounter difficulties when assuming 

its appropriate form. This happens while non-homogeneous term is a solution of the differential equations itself. 

 

VI. CONCLUSION 
In conclusion, the solution of linear ODEs with constant coefficients of second order is an important 

topic, since they occur very frequently in many branches of applied mathematics. This class of equations arises 

in many fields of study and has a wide range of applications in physical system and engineering. While the 

method of undetermined coefficients provides a systematic and efficient technique for solving non-

homogeneous linear differential equations with constant coefficients, its effectiveness depends on the existence 

of finite families of derivatives of non-homogeneous term. This method remains an essential tool in applied 

mathematics, physical system, and engineering, as it not only simplifies the solution but also deepens the 

understanding of the behavior of differential systems. Higher-order differential equations involve more complex 

algebra and differentiation. Therefore, determining if the method of undermined coefficients is suitable for a 

given differential equation is crucial for accuracy of solution. 
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