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Abstract
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I.  Introduction
The well-known Sobolev inequality is one of the fundamental inequalities connecting analysis and
geometry. The Sobolev inequality basically improved a number of mathematical branches such as the
theory of partial differential equations, geometric measure theory. algebraic geometry. convex geomeiry,
calculus of variations and other analytic areas. The Sobolev inequality was originated and developed from
the classical isoperimetric inequality. Which determine a plane figure of the largest possible area whose
boundary has a given length. The solution to the isoperimetric problem is given by a circle and shine in the
19th century. The generalized isoperimetric problem used to determine a geometric object of the largest
possible volume whose boundary has a fixed surface area in the Euclidean space R**2€,
For K be a compact convex set in R'*2€, Then the surface area S(K) and volume V(K) of K satisfy
S(K)1*2€ = (1 + 26)1*2€w ...V (K)?E, (1.1

1+2€
2 . . . . ~ . .
where w;,,, = rfzg”e) is the volume of the unit ball in R'*2¢ and I'(+) is the Gamma function. Equality

2

holds in (1.1) if and only if K is a ball in R1*2€
The isoperimetric inequality (1.1) for sufficiently smooth domains is equivalent to the Sobolev
mequality with optimal constant,

_2e
1 142¢ 1+2e
(1+26)tw, 12 f Z|Vﬁ(x]|dx2 f Z If;()] 2¢ dx (1.2)
Rl+2e j Ri+2e j
for all f; € WL1(R'*2€), the usual Sobolev space of real-valued functions of R'*2€ with L, partial

derivatives.
The classical sharp L, . Sobolev inequality states that (see [2.8.19.25]):

For f; € C§° (R'*%), be the set of smooth functions with compact support on R**?€ and for € > 0. we
have
1
1+e
1+e
| 2@l ) = ey 15 , (13)
Ri+2e j j (1+e)(1+2¢)

€
where }; |Vf;(x)| is the Euclidean norm of the gradient of f}, ||‘|la+e)as+2e is the usual Luteoa+2e NOrm

€ €
of f; on R'*2¢_and
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1/(1+2€)

1 1+ 2¢ 1+ 2e + 2€?
Crizesre = (1+2655% | 0y () —= =) /ra+20)

The extremal functions for inequality (1.2) are the characteristic functions of balls and equality holds
1+€ €
in (1.3) when f;(x) tends to (@ + (a + €)|x — xo[ ¢ ) 1+ with € > 0 and x, € R'*?,
So. the sharp Li4e Sobolev inequality has been extended in several important directions. [29]

established the sharp affine Sobolev-Zhang inequality which is invariant under all affine transformations of
R*2€ The affine Sobolev-Zhang inequality is significantly stronger than the classical L; Sobolev

inequality. Moreover, the affine Sobolev-Zhang inequality is equivalent to the generalized Petty projection
inequality. The affine Sobolev-Zhang inequality is a cornerstone of affine geometric analysis. [17] extended
the affine Sobolev-Zhang inequality to the L. case for € > 0, and they proved that the sharp affine L,
Sobolev inequality is the functional version of the L, . affine isoperimetric inequality in [14]. A new proof
of the sharp affine Sobolev type inequalities was givenin [11].

[9] proved the asymmetric affine L, . Sobolev inequality that is stronger than the sharp affine L,
Sobolev inequality. A general case of the affine L, , . Sobolev inequality which constitutes a bridge between
the affine L, . Sobolev inequality and the asymmetric affine L, , . Sobolev inequality was obtained in [28].
[5] proved the affine Morrey-Sobolev inequality. An asymmetric affine Polya-Szego principle was
established by [10]. and the equality cases and stability for the affine Pdlya-Szegd principle were
established in [27]. Moreover, Wang extended the affine L; Sobolev inequality to BV (R'*2¢) in [26].

Another important development with respect to the original L,,. Sobolev inequality (1.3) is the
following Lorentz-Sobolev inequality [1.12]:
If f; € C5(R'™2¢) and € = 0. then

1+e

Z vf; > (1+E)‘(1+EJ(E)E(1+ ZE)wi}%‘EJZ Vv ([E]E)TEZE dt'*e | (1.4)
0 J

1 1+e
where [,":,]r = {x € RM2% |f;(x)| = t} is the level set of f;.

Using Lorentz integrals of the L,, . convexification of level sets (see Section 5) instead of level sets,
[12] obtained the following sharp convex Lorentz-Sobolev inequality:
If f; € C&(R'™2¢) and € = 0, then

1+e

o0
1+€ €
‘Z V}j- =1+ 26)(011:22:[ Z vV ({)G.>t)l+2€ dt . (1.5)
j 1+e 0 J
Equality holds in (1.5) as f; tends to the characteristic function of an origin-centered ball for € = 0 equality
1+€ €

is attained when f;(x) tends to (a + (a + €)[x| ¢ ) 1+, with positive constants a, (a + €).

[12] showed that the inequality (1.5) is the functional analogue of the following L,.. isoperimetric

mequality of [131.
l+e

€
Sipe(K) = (1 + 26)w 128 V(K)T+2e (1.6)
where K € R*2€ is an origin-symmetric convex body and S, ,(K) is the Ly, . surface area of K for e = 0.
The authors in [31] establish a new sharp convex mixed Lorentz-Sobolev inequality for the L,¢
convexification of level sets and the L, . projection body of the L, . convexification of level sets.

Sharp convex mixed Lorentz-Sobolev inequality. Let f;, g; € CE(RY™?€). Ife = 0, then

| 01560 - voredndy

Ri+2e pi+2e j

= € o 1+€
= (1426,1+€ j Z 14 ((fj)t)“zs de V{H1+5(Q;’>5)HZE ds, (1.7)
o 7 0
. _ (14+26) % w1406tz

where “ - " denotes the standard inner product and @y 42¢ 14 = . Equality holds in (1.7) as

Waldre_1We
f; and g; tend to characteristic functions of dilates of centered polar ellipsoids for € = 0 when f;(x) tends
1+€ € 1+€ €
to (a;+ [h(x —xg)[ e ) e and g;(y) tends to (az+ [ty + %) [ e ) e with a; > 0(i =
1,2),%, € R*2€ andp € GL(1 + 2¢).
We show that the sharp convex mixed Lorentz-Sobolev inequality (1.7) is the functional inequality
corresponding to the following L, , . Minkowski inequality (see [31]):
Let K,Q < RY2¢ be origin-symmetric convex bodies. If € = 0, then
Viee(K, 1,eQ)%€ = V(K)V(I114.Q)' (1.8)
Here Vi, () denotes the Ly, . mixed volume aof convex bodies.
Note that the L., isoperimeiric inequality (1.6) follows from (1.8) when @ is a ball and the sharp
convex Lorentz-Sobolev inequality (1.5) implies the L, . - isoperimetric inequalitv (1.6). Motivated by these
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facts, we prove that the sharp mixed convex Lorentz-Sobolev inequality (1.7) implies the sharp convex
Lorentz-Sobelev inequality (1.5). and hence also implies the L,, . Sobolev inequalities (1.2) and (1.3) (see
[31]).

We collect some basic concepts and facts that will be useful in the sequel. We recall some facts on the
L, Petty projection body. the L, ;. Minkowski problem that are central tools in the proofs of the main
theorems. We intrduce some results on L, . John ellipsoids and prove a special L, . Minkowski inequality
which will be used latter.

2. Preliminaries

For K1*2¢ denote the set of convex bodies (compact, convex subsets with nonempty interiors) in the
Euclidean space R*2¢. We write K2 +2¢ and K2*2¢ for the set of convex bodies containing the origin in
their interiors and the set of origin-symmetric convex bodies in R'*2€, respectively. We assumed that all
convex bodies have the origin in their interiors. Let V(K) denote the (1 + 2¢)-dimensional volume of the

convex body K. For B = {x € R'*2%:|x| < 1} denote the standard unit ball in R**2¢_and its volume is
1+2¢

T

denoted by V(B) = wq4p. = F(?_—fzf) Let $2¢ = {x € R!*2¢:|x| = 1} denote the unit sphere in R*2¢.
Tz
We write GL(1 + 2¢) for the group of general linear transformations in R'*2€, For ¢ € GL(1 + 2¢)

write @* and @~ for the transpose and inverse of ¢ respectively, and ¢~¢ for the inverse of the transpose
(contragradient) of . and let det ¢ denote the determinant of . Let SL(1 + 2¢) = {@ : |detp| =1, €
GL(1+2e)}.

If K € H1*2€, then its support function, (R;)x () = h;(K,) : R1*2€ — R, is defined by

hi(K,x) = max{x - y:y € K}, x € RI+2e,
A convex body K is uniquely determined by its support function h;(K,-). It is obvious that for 4 > 0, the
support function of the convex body AK = {Ax : x € K} satisfies
hj(AK,") = Ah;(K,).

Forreale = 0,K,L € X1*2¢ andreal ¢ > 0, the Minkowski-Firey L, , . combination K +,, . - L1is

the convex body whose support function is given by
(K +14ee - L, = (KM + ely(L)Me
The L, mixed volume V;, (K, L) of convex bodies K and L is defined by

1+e | V(K +i4ee - L) — V(K)
Viee (K0 1) = 750 im, e :
The existence of this limit was proven in [13]. In particular,
Viee(K,K) = V (K) (2.1)
for K € K1*2€ By [13], there exists a unique finite positive Borel measure S, , . (K,-) on $2€ such that
o 1 1+€
Viee(K, L) = T Z hi(Lw)  dSie(Kw) , (2.2)
s2€ ]

for L € K}*?¢. The measure S,,.(K,) is called the L,,. surface area measure of K. The measure
S1(K,) = S(K,") = Sg(+) is the classical surface area measure of K. It was shown in [13] that the measure
Si+e(K,+) is absolutely continuous with respect to Sk (+) and the Radon-Nikodym derivative is
dS:HE(KJ') _ h(K .)*E

ds(k,) 0
If the boundary K of K is C? with positive curvature, then the Radon-Nikodym derivative of Sx with
respect to the Lebesgue measure on $2€is the reciprocal of the Gaussian curvature of 9K (when viewed as
a function of the outer normals of 3K).

IfK,L € K1*2€ then

Viee(tK, L) = tVioo(K, L)  for t > 0, (2.3)
VoK, tL) = t¥<V,, (K,L) for t > 0, (2.4)

and
Vipe(@K, L) = Vi, e(K,97'L)  for ¢ € SL(1+ 2e). (2.5)

The L, . Minkowski inequality was proven in [13]:
IfK,L € K2*2¢ and € = 0. then
Vise(K, L)12€ > V (K)V (L), (2.6)
with equality if and only if K and L are homothetic when € = 0. and K and L are dilates when € > 0.
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A star body M is a compact set in R*2€ which is star shaped with respect to the origin. i.e.. if x € M.
then the line segment joining the origin to x is contained in M. The radial function. py, (1) = p(M,") :
R*26\{0} — R, of M is defined for x # 0 by

p(M,x) = max{d = 0: Ax € M}.
The radial function is positively homogeneous of —1. that is
p(M,ax) = alp(M,x), a=>0.
Let M be a star body in R1*2€, Its polar body M is defined by
M*={x eRVY2€: x.y <1 for all y € M}
Let K € K1*2¢. The well-known Blaschke-Santalé inequality [24] states that:

V(K)V(K*) < w?,,,, (2.7)
with equality if and only if K is an ellipsoid.
In particular, if K € Ky %€, then
1 1
(K*)) =—, hi(K) = ——.
P kD p(K.)
IfK,L € K 2 and A > 0, then
1.
K <AL = K~ QEL", (2.8)
and
1
K =1L — K’ =§L*. (2.9)
We will frequently apply Federer’s co-area formula [7]. We state a version that is sufficient for our
purposes.
If f;: R'*2€ — R is locally Lipschitz and g;: R**2¢ — [0, o0) is measurable. then. for any Borel set
A CR,
i(x
g;()dx = f f > 950D e yay, 2.10)
5]

I fi AN [7F -0} AT fi o)
where H2€ is the (2€)-dimensional Hausdorff measure.

Let Aff(1 + 2¢) denote the group of invertible affine transformations of R*2€, that is. every map ¥
EATFf(1 + 2¢) is a general linear transformation followed by a translation. There is a natural left action of
R\{0} x Aff(1 + 2¢) on functions f;: R™*2¢ — R, given by

i = ko ¥
for each (k. ') in R \{0} X Aff(1 + 2¢). An inequality L[f;] = R[f;] for a class of functions R**2¢ —» R
is called affine if
Llkf o w71 _ LIf]
Rlkfy = #=*]  R[fj]

(2.11)

for each (k. ¥) € R \{0} x Aff(1 + 2¢).
3. Ly, projection body and L, Minkowski problem
3.1. Ly, projection body

The classical projection body was introduced by Minkowski. For K € K 1*2¢_ the classical projection
body I1K of K is defined as the origin-symmetric convex body in R1*2€ with support function:

h(NMK, ) = Voe(K|uft),  uy € S%. (3.1)

Here VZE(K |ujl) is the 2¢ dimensional volume of K projected to the hyperplane passing through the origin
with the normal direction u;.

Interest in projection bedies see [4]. [20] and [23]. The fundamental inequality for projection bodies
is the following Petty projection inequality [21]:

IfK € K1%%¢, then

w1+26)l+26 (3 2)

V (K)*V (II'K) < ( -
2e
with equality if and only if K is an ellipsoid. Here I1*K denotes the polar body of the projection body J1K.
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The Petty projection inequality (3.2) has been studied widely. In particular, Lutwak. Yang and Zhang
[14] extended the Petty projection inequality (3.2) to the L, -projection body. They defined the L, .-
projection body as follows:

For K € K}*2€ and € = 0, the Ly, -projection body 1T, ;K of K is the origin symmetric convex body
with support function h; (1T;,.K,) : R™*2€ — (0, ),

1
Z WK y) = | G 2wt |2ty

1
1+€

€
dSy (K, v)) ;€ 5%, (3.3)

1+

J s52€ j
where
- Wae
¢ = —_— 3.4
1+2€,14€ Wy Wge1 e ( )
The constant ¢; 5. 14 is chosen such that
II,,cB = B. (3.5)
For A > 0and K € K2*2¢, one has
3
My, (AK) = ATs 1T, K, (3.6)
and
H1+E(()DK) = @7tH1+eK fOT P € SL(l + ZE)- (3'7)

3.2. The L, .. Minkowski problem

The Minkowski problem is a central problem in integral geometry, convex geomefric analysis and
PDE. The classical Minkowski problem asks for necessary and sufficient conditions for a Borel measure
on the unit sphere to be the surface area measure of a convex body in RY*2¢. The classical Minkowski
problem was solved by Minkowski when the given measure is either discrete or has a smooth density. It
was extended to arbitrary measures independently by Alexandrov. and Fenchel and Jessen. The solution to
the Minkowski problem states:

For each Borel measure p on $2€ that is not supported on a great hemisphere, there exists a unique (up
to translation) convex body K so that

S(K,Y =1

fz vidu(v;) = 0.

|
[13] extended the Minkowski problem to the L, version, which is a central problem in the L,
Brunn-Minkowski theory.
Ly, Minkowski problem. For K € X'*?¢, find necessary and sufficient conditions for a finite Borel
measure u on the unit sphere S2¢ so that u is the L, ,.-surface area measure of convex body K.

A Borel measure on S*¢ is even if for each Borel set w < §%¢ the measure of @ and the measure of
—w = {—x:x € w} are equal. In [13]. the following solution to the even case of the L;,. Minkowski
problem was given (see [31]):

Theorem 3.1. Suppose [l is an even positive measure on S2€ that is not supported on a great hvpersphere
of SZ€. Then for real € = 0 such that € # 0 there exists a unique origin-symmetric convex body K in R112€
whose Ly surface area measure is (L, that is,

if and only if

= Sie(K,). (3-8)

4. Ly, John ellipsoids

Ellipsoids are important objects in the Brunn-Minkowski theory and the dual-Brunn-Minkowski
theory. The celebrated John ellipsoid. associated with each convex body K, is the unique ellipsoid JK of
maximal volume contained in K. Two important results concerning the John ellipsoid are John’s inclusion
and Ball’s volume-ratio inequality [3]. The John ellipsoid is within the classical Brunn-Minkowski theory
and is extremely useful in both convex and Banach space geometry [3.22].

The authors in [15] introduced the LYZ ellipsoid I'_, K whose radial function is defined by

- 1
Z Pr_zK(“j) ’ :m IZ |uj-vj|2d52(f(,vf),
]

J s52€ j
for K € Ky**¢ and u; € S
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It was proved in [ 15] that the properties of the LY Z ellipsoid are analogous to that of the John ellipsoid.
such as the volume of the LYZ ellipsoid is dominated by the volume of K. there is an inclusion identical to
John’s inclusion, and a version of Ball’s volume-ratio inequality for the LYZ ellipsoid also holds. Unlike
the John ellipsoid, there is an analytic formulation for the LYZ ellipsoid. The domain of the LYZ ellipsoid
was extended to star-shaped sets in [16]. The LYZ ellipsoid for log-concave functions was introduced in
[6].

The Ly, cwrvature (f;);4¢(K,) of a smooth convex body K is an important notion in convex
geometry:

(Free(®) = ()R (K.
Here f;(K,-) denotes the reciprocal of the Gaussian curvature of dK (when viewed as a function of the outer
normals of @K). Tt is the core of the integral formula of L, . mixed volume and related inequalities. In [18].
the authors studied minimizing the total L;,.-curvatmure of a convex body under SL(1 + 2¢)-
transformations.

For a smooth convex body K € F1*2¢, and a fixed real € = 0, find

im0 ek sy,
526

By using the integral formula of L. mixed volume V;,.(K, E) of a convex body K and an origin-
centered ellipsoid E. minimizing the total L, -curvature can be formulated in the following equivalent
ways [18]:

Problem S;,..Given a convex body K € X2*2¢ find an ellipsoid F. amongst all origin-centered
ellipsoids. which solves the following constrained maximization problem:

1 1
V(E) )1+2£ (V1+5(K: E))ue
max subject to |——m = 1. 4.1

(wl+2£ : V(K) 1

A maximal ellipsoid is called an Sy, ¢ solution for K.

The following problem is dual to S, .:

Problem S, . .Given a convex body K € K¢, find an ellipsoid E, amongst all origin-centered
ellinsoids. which solves the following constrained :1Ln'111imizarion problem

1
. V1+E(K.E))1+f . (V(E))“z'f_
min | —————— subject to = 1. 4.2

( V(K) : Wi42e (42)

A minimal ellipsoid is called an S;,. solution for X.

The existence of solutions of problem S, , . and problem S, , . was given by Lutwak, Yang and Zhang.
Theorem 4.1. ([18, Theorem 2.2]). Suppose real € = 0 and K € K+?€. Then Sy, as well as Sy, has a
unique solution.

By Theorem 4.1. Lutwak, Yang and Zhang define L. John ellipsoids [18]:

Definition 4.1. Suppose K € K27?€ and 0 < € < 0. Amongst all origin-centered ellipsoids. the unique
ellipsoid that solves the constrained maximization problem

1 1

V(E) \1+2¢ V. K, E)\1+e

max( ( )) subject to (M) < 1. (4.3)
Wiyze V(K)

is called the L, John ellipsoid of K and is denoted by E; ;K. Amongst all origin-centered ellipsoids, the
unique ellipsoid that solves the constrained minimization problem

1 1

V. K’ E)\1+e V(E 1+2¢

min (M) subject to ( (&) ) = 1. (4.4)
V(K) Wi2e

is called the normalized Ly, . John ellipsoid of K and is denoted by Ey, K.
L,,. John ellipsoids provide a unified treatment for several fundamental objects in convex geometry.
If the John point of K, the center of John ellipsoid /K, is at the origin, then E K is precisely the classical
John ellipsoid JK. The L, John ellipsoid E, K is the LYZ ellipsoid I, K. The L, ellipsoid E; K is the Petty
ellipsoid.
IfK € X1*2€and 0 < € < oo, then for ¢ € GL(1 + 2¢),
Ei+epK = @E, K. (4.5)

This means that if £ is an ellinsoid centered at the origin. then
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E,..E = E. (4.6)
If K € }*2€ and real € = 0. the star body I_ (12K is defined as the body whose radial function. for
u; € S*€ is given by [18]:

—(1+€) 1 1+€e
Z Pr_ ek () 709 fz [y - v dSyi e (K, vp) (4.7)
j

52€
We will need the following results (see [31]):
Lemma 4.1. ([18, Corollary 4.5]). If K € K2%2¢, then

-1
Ep K 2 (110K 2 (1+26)T+ E,, K when 0=e=1,
€
0

Ex4 K © I (306K © (1 + 26)zve E5, K when
Lemma 4.2. ([18, Theorem 5.2]). If K € Kg "> and 0 < € < oo, then
V (B, K) < V (K),

with equality for € > 0 if and only if K is an ellipsoid centered at the origin, and with equality fore = 0
if and only if K is an ellipsoid.

We can prove the following L,,. Minkowski inequalities, where ¢, 5,14, is the constant defined in
3.4).
Lemma 4.3 (see [31]). Let K, L € K2+2€.

(1) When 0 < € = 1, then
1
T+ze

E €
L) = — iz V(K)T+ze V(L) T+2¢, (4.8)
(1 +2€)C142¢14e

with equality when € = 1 and K and L are dilates of polar ellipsoids centered at the origin.
(ii) When 0 < € < o, then

Viee(K, Ih1e

1
1+2¢

-1 e—1

Vore(K, I, L) = zl:EZE V(K)T+2e V(L) T+2¢, (4.9)
(1+ ZE)TEI+ZE,2+E

with equality when € = 0 and K and L are dilates of polar ellipsoids centered at the origin.

Proof. Let F_*(Z +e)L denote the polar body of I” 54 L. By (3.3) and (4.7). we have

1
. (1+26)C112e2+eW1426\2€
avol = ) M. (4.10)

(1) For0<¢e < 1.by(2.9), (4.10) and Lemma4 1, we obtain

1
(1+26)¢49e14e@ri2e) TFE _,
( e ) Muel = Tl € Euel.
Then by (2.8) we have
1
1+ 2¢e)c w Ite
(( ];Ei;lﬁ 1+2e) M.l 2 E.,.L (4.11)

By (2.2), (4.11), the Blaschke-Santal¢ inequality (2.7) and Lemma4.2, we have
V(L)

T (14 26)C 001 4eWri2e
V(L)

= —~
(1 + 26)€1 426 14eWr42¢
1
V(L)(U1+ZE e _1+_E
= L2 Y (K)TF2e V(E,, L) T#2e
(1 +26)C142e14€
1
Ttz

(3 €
= 1+2e V(K)T+ze V(L)T+ze (4.12)
(1+2€)Cri2e14¢

V1+E(KJ Hl+EL) V1+E(KJ EI+EL)

€ 1+e€
V(K)T+ze V(E’l"+EL)1+25
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When € =1,I",L = E,L. there is an equality in (4.11). By the equality condition of L,,. Minkowski
inequality (2.6) and Lemma 4.2. we conclude that equality holds in (4.8) when ¢ = 0 and K and L are
dilates of polar ellipsoids centered at the origin.

(i)  Fore = 0.by(2.9).(4.10) and Lemma4.1, we have

((1 + 2€6)C112e2+eW1+426

1
T2ve €
T ) Ml = Mol € (L4207 By L

which implies

1
e /(1+26)c @ 2+€ .
(1 + 2€)2+e (( );’E;M 1+2"‘) Myyel 2 E5, L. (4.13)

By (2.2). (4.13), the Blaschke-Santal¢ inequality (2.7) and Lemma 4.2. we have

. V(L) .
V2+E(K’H2+EL) = 2+€ V2+E(KJ E2+£L)
(1 +26) 2 CrygerseWisze
V(L) 1 2+e
> T V(K)1+2e V(E;+€L)1+2e
(1+26) 2 Clipe24e@Wis2e
3te
V(L wltze e—1 24€
= ( ;“25 V(K)T#2¢ V(E,, L) T+2e
(1 + 26) 2 El+2£,2+e
3+€
0;—:226 e—1 e—1
> 2+Ef V(K)1+2e V(L)1+2e,

(1+2€) 2 Clipense

When € = 0. since [_,L = E,L. then equality holds in (4.13). By the equality conditions of the Ly,
Minkowski inequality (2.6) and Lemma 4.2, equality holds in (4.9) when ¢ = 0 and K and L are dilates of
polar ellipsoids centered at the origin.

5. Sharp convex mixed Lorentz-Sobolev inequality

The L,, . convexification was introduced in [29] for ¢ = 0 and in [12] for € > 0. Refer to [5] and [17]
for more detailed information on L, . convexification.
Given any measurable function f;: R*2¢ — R, the level set [ff]r of f; is defined by:
[jf,]t = {x e RM*?; |fj(x)| = t}, t > 0. (5.1)
In this paper. we always assume that all functions are such that the level sets [ f,]t are compact for all ¢t >
0.
Assume € = 0. Suppose f; € C¢° (R1*2€), by Sard’s Lemma, for a.e. t > 0,
{|f;l > t} isabounded open set with a C* boundary, (5.2)
olfsl = g ={lfil = t} (5.3)

vfi(x)= 0, for x € {|f;| =t} (5.4)

and

Suppose t > 0 and f; satisfies (5.2). (5.3) and (5.4). Let A.(f;,") be the even positive Borel measure on
52¢€ such that
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jz o(v))dAc(f;vp) = J Z (x) |'17'f](x)| dH € (x) (5.5)

s2€ j E; |f]| t} J

vrix)

o Since for fixed u; € $*¢,

for every even Borel function ¢ : $2¢ — R, where v;(x) =

H2E({x: |f;(0)| =t and w; - v;(x) # 0}) > O,
we have

D Iy - el e > o. (5.6)
{5 1ryl=t} J

Hence
f Z lyy - v|d2(Fv) > 0, (5.7)
s2e

foru; € S%¢. Hence. the measure A,(f},) is not supported in the intersection of §2€ with any subspace. By

the solution to the even L;, . Minkowski problem (Theorem 3.1). there exists a unique origin-symmetric
convex body {f;), such that

SUe Iy (o)™ = 2e(F5)- (5.8)

We remark that the convex body (f;), is called the Ly, . convexification of the level set [ff]r For our
aims, some properties of (f;), will be listed.

Lemma 5.1. ([12. Lemma 8]). If K € K}!**¢ and f;(x) = ¢(1/pg(x)), where ¢ € C1(0, ) is strictly
decreasing, then for t > 0 and € = 0, the convex bodies of the Ly, convexification of the level sets of f;
are dilates of K, that is

(fj)t = c14e(DK,
and ¢, (1) = |P'(s)[€52¢, where t = p(s).

Lemma 5.2. ([12. Lemma 13]). Let € = 0. If f; € C(R***¢) and Vf;(x) # 0 on a[fj]t fort >0, then

1 1+e
(kfio 770 = k€ P(fider
fork > 0 and ¥ €A1 + 2€) given by ¥(x) =x + y where ) € GL(1 + 2¢€) and y € R**2€.
The next result has been proved in [17].

Lemma 5.3. Let f; € Co*(R"¥2€). If € = 0, then

o0

jz V(f:a )1+2E dt = (1+2¢)” 1+2ECI+2€1+EZ ”f}"éfff)(lﬂf) (5.9)

o

Here

1
Crazeire = (L +26)W1150) TH26C  pe 146
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The following results will be used later.

Lemma 5.4 (see [31]). Let f; € C5° (R 2).
(i) If fj tends to the characteristic fimction Yqg of the ball aB with a > 0, then (f;); converges to aB
(up to translation) in Hausdorff metvic when 0 < t < 1, and the surface area measuve of {fj); converges

weakly to zero when t = 1.
€

1+€ _:
(if) Ife > 0 and f;(x) = (@ + (a+ x| ) " with € >0, then

(}j)t = «a(t)B, (5.10)
where
1+2e
1+€eY 1+e
1 — at e
at)=|——— )
(a + e)1+2¢

and t € (0, 4+) such that a(t) is meaningful depending on a and (a + €).
Proof. (1) We will prove this statement by approximation argument in Zhang [29]. We set
0 dist(x,aB) = g,

(Fie(x) = dist(x, aB) .
1 E— dist(x,aB) < ¢,

for small ¢ > 0 and a > 0. Here dist(x,aB) = Hlil; |x —y|,x € R™?€ It is clear that (f7) tends to
VEQ

the characteristic function y,z of the ball aB as ¢ — 0.
If £ is small and 0 < dist(x,aB) < &. then there exists a unique x' € d(aB) such that

dist(x,aB) = |x' — x|.

Let
V(') = x' —x
lx' — x|
From the definition of level sets (5.1) yields
_ ({x e RY™2¢: dist(x,aB) < (1 — t)e} 0<t<1,
[(j})s]t - Q} f- == 1.

Therefore, from (5.5) we have

f > 0()dr((Fervy) = f ¢ (v (0) drcze (o) = 0,
sz J & 1 pel=t}
for every even Borel fumction ¢ : $2¢ - R and ¢ > 1. This deduces that the surface area measure of
((fj)e)e converges weakly to zero when t = 1.
We assume that 0 < t < 1. We note that

V(f)e(x) = e v(x)

for x € [(fj)e], By (5.5). we have
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f D 2()ar((e ) = f o (1y00) dr(x)
s {55 [Fel=t)

- | o (1) aree)

{xeRI*F2E xi€d(aB): |xr—x|=(1—-t)&}

for every even Borel function ¢ : §2¢ - R. Therefore, as ¢ — 0. we have

[3 wtanmm = [ o(yon)anzce)

526 | a(aB)

for every even Borel function ¢ : §*¢ — R. This means that the measure 4,((f;),,-) converges weakly to
the surface area measure of the ball aB as ¢ — 0.By the continuity of the solution to the classical
Minkowski problem (see, e.g., [30]), we conclude that {f;), converges to aB (up to translation) in Hausdorff

metric as f; tends to the characteristic function 5 of the ball aB.
3

1+€ _?
(iii)) Whene > Oand f;(x) = ((1 + (a + E)leT) " with e > 0. by a direct calculation, we have
Lo\ TR 1 x
Vfi(x)| = —(a+e) (a +(a+e€)|x| e ) [x]e Ik (5.11)
€
1+€

1+e
Let h(t) = (t s _a) , where t € (0, +0) such that «(t) is meaningful. Then, by (5.5) and (5.11) we

(a+e)

have

IZ (’D(U,")dﬁr(ﬂ,taj)
c2€ }
- f E ¢ (v(0) |70 d# < (x)
{EJ" |fj|=f'} j
1+e  (1+2e)(e)

—@ror [ o(5) @r@rold e kdie )
{lxl=w(t)}

for every even Borel function ¢ : §%¢ — R. Let x = (t) w; foru; €5 %€ Then

(1+2€)(€)
1+e 1+e
1—at e
fz @(v;)dA(fr.vy) = (@ +©)F T J Z @ (up)dS (uy).
5'26 _,l SZE J
Therefore
(1+2€)(€)
1+~ 1+e
W) = (a+ e =2 SO
e a+e '

Combining with (5.8) and the uniqueness of the L; . Minkowski problem, we deduce that

{fi)e = a(OB
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1+2¢

1+€ 1+€
with a(t) = (a + €) (ﬂ) .

+E

We are now in the position to prove our sharp convex mixed Lorentz-Sobolev inequality.

Theorem 5.1 (see [31]). Suppose € = 0. If f;,g; € Cq” (RY*%€), then

| 217560 vasnlaxdy

Rrit2e gi+2e j
o0 fes]

€ 1+e
> Cszense | ) VUG dt [ V(llclg)o) ds, (5.12)
0o J 0

where y12e14e = (1 + 26)2W142eC142e14e. For € =0, equality holds as fi and g; tend to the
characteristic fimctions of dilates of centered polar ellipsoids. For € > 0 equality holds when f;(x) tends
3

E

ﬁ _m 1+¢€
to (a+ 1Pl —x)[=) ™ and g;(y) tends to (az+ [P~y +x0)[ =) e with a; >0 (i =
1,2),x0 € R"2€ and € GL(1 + 2¢).

Proof. The proof consists of several steps.
Step 1. Inequality.
Let f;, g; € C° (R™2€). By the co-area formula (2.10). (5.4). v;(x) =

vgjlx)
[Pg ;)

Vf;(x)
£l

the Fubini theorem., co-

area formula (2.10), w;(x) =

(5.5).(5.8) and (3.3). we have

[ > wica- rayol dxay

Rlt2e gl+2e
oo

- f f f Z V£ - 7g, 0] VG| dre () dtdy

R1+2€ {Z |fJ| I.'}
[s4]

B jf f Z o) - Tg; 0[P 00| a2 (x)dtay

R ETITE

| Z 7 j | Z 55 I[Py aze ) dsaze*
&l ® {los[=s} 7

f f Z vhG| ffz vy o) - 5| d s (g, up)dsd 2 () dt

Qk___ﬁs

ZJ |fj‘ t (’25 J
:f f Z |7f; 0| f fz |v,) - | ({900 1) dS((g,)s0 1) dSAFZE (x)dlt
0 {E; f}| t s2€ j

= (1 +26)wy42:Cra2e11e j J j h; (Hue{gj}s. Irj(x))ue |Vﬁ(x)|sdsdﬂze(x))dt. (5.13)
° {5 lrsl=ef® 7

By the Fubini theorem, (5.5). (5.8) and (2.2), we have
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| > 1750+ vyl “axay

Rl+2e pl+2e j

~ 1+e
= 1 2000nnctinnanre | || D iy hactopon)  da v )asde
00 )

L

=(1+260)w142eC142e14¢ f j fz h; (H1+e (gj)s vj ) (f,z Yot ;) d5( (fiten ;) dsdt
I

0 0 K2€

= (142001 ctrinenre | | ) VasellBherMselgpo)dsde (5.14)
0

o J
By (2.6) and (5.14). we have

f Z |P’f),(x) ng(y}lHEdXdy > a1+2511+ef f Z V{{f)T t)1+25 V(Hue{gj} )1+2edsdf
00 J

R1+2€ gl+2€

Step 2. The inequality (5.12) is affine, that is

a1+
Jgreze Jgneae 2y |V (kS 0 @8) - V(kg; o W) dxd
o0 € o0 i
Iy 25 VUkfy o wt)TZE dt [ V(T (kg o ¥1) ) To2eds
1+€

_fml+2€ _[R1+ze Ej |ij()() N ng (}’)‘ dXdy
I Zy VWUpOTEE dt [ V(I g))s) +9/429)ds

fork > 0, W €Aff(1 + 2¢), ¥(x) = Y¥x + 2z, € GL(1 + 2¢) and z € R**2¢
By Lemma5.2. (3.6) and (3.7). we have
(kfjo¥t), = k¥ YN and
Mysellgy © =), = k| det YIT+e Ty el (5.15)

By (5.15), (2.3), (2.4) and (2.5) we obtain

VHE((;{}? ° )t’H”f(k‘gJ o T l) ) = kz(HE]Vﬁe((f} tr H1+e<9}) )
V ((kfjo ¥, )1+2£ = Ji*e|det | Tezey ((f;) )1+26 J

1+e 1+e

174 (H:L+e<kgj ° ql—l)s)1+2£ - k1+f|detlf)|1+26V (HHE(f})t)HZE

The desired property follows from the above three formulas and (5.14).
Step 3. Equality conditions of (5.12).

If e = 0. and f; and g; tend to the characteristic functions of the unit ball. by Lemma 5.4 (i). we infer
that {f;), and (g;), converge to the unit ball when 0 < t,s < 1, and their surface area measures converge
weakly to zero when t,s = 1. Therefore

| X 1@ vg 0l drdy - @+ 2670 nctinzen

Elt2e pl+2e
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and

o0

e dt [ V({9 eds = (142608 nelsszen:

0

(1+ 26}2w1+2651+251 _T Z V(ch)t)
0o J

By the affine invariance of inequality (5.12). we conclude that equality holds in (5.12) if f; and g; tend to
Xyp—x, a0d Jy-tg, . Withx, € R™?€ and Y € GL(1 + 2€), respectively.

1+€ _% 1+€
If €e>0 and fij(x) = (al + (a, + E)|x|T) ' ,gi(¥) = (az+ (az +e)|y| ¢ ) 1+¢ with €>
0,(i = 1,2). by (ii) in Lemma 5.4 (f;), and (g;) are balls for every t,s > 0. Then

Viee((de Tselg))s) = V(U}>t)1f2€v(nl+e(gj>s)%'

By the affine invariance of inequality (5.12). equality holds in (5.12) for f;(x) tends to

1+e € 1+€ E

(ay +|P(x —xo)[ € ) < and g;(¥) tends to (az + [P~ (y + xo)[ ¢ ) e witha; >0 (i = 1,2),x0 €
R*2€ and y € GL(1 + 2¢).

Next, we will show that the analytic inequality (5.12) implies a special case of the L;,. Minkowski
inequality.

Remark 5.1 (see [31]). The analytic inequality (5.12) implies the following geometric inequality
Vite(K, 114 Q)12 = V(K)V(IT;,.Q)'*, (5.16)
where K,Q € K2*2¢ ande = 0.
Proof .Let ¢ € C1(0, ) be strictly decreasing and
fi(x) = ¢(1/pg(x)) and  g;(y) = ¢(1/pe(¥)), (5.17)
for K,Q € K2"2€ and e = 0. By (5.14). Lemma 5.1, (3.6) and (2.3). the left hand side of (5.12) is
| > 15+ vg,00) axdy

R1+2e pl+2e

= Q142e14€ f jz V1+e f,r e 111 4e <9; )dS dt
oo J

= fruze,HsVHf(K,HHsQ)fIfi)'(S)I“ESZEdé‘f|¢’(1‘-)|”Ef“df- (5.18)
0 0

The right hand side of (5.1

2)is
s 1+€

“1+2£.1+5J j V( )1+2€V(H1+E 9;)5)1+2€d5dt (5.19)
00

1+€
— Qg (K)TEV (11, Q)T55¢ f 16/ (s)|+es?eds f |6/ (Dt d.

0 0
Therefore the analytic inequality (5.12) implies the geometric inequality (5.16).
The sharp convex mixed Lorentz-Sobolev inequality (5.12) implies the sharp convex Lorentz-Sobolev
inequality (1.5) of [12].
Corollary 5.1 (see [31]). If f; € Co”(R*™*€) and € = 0, then
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o0
1+€ €
1+e T —
D IThle = a+ 200l [ Y v )T, (5.20)
] o J
with equality as f; tends to the characteristic fimction of a ball for € = 0 equality is attained when f;(x)
1+¢ €

tends to (a + (a + €)|x| e ) e withe > 0.
Proof. If ¢ = 0 and g; tends to the characteristic function of the unit ball B, then by (i) of Lemma 5.4,
(3.5). (5.14) and the definition of (f;),, we have

f z |'7f;(x) V.gj(}’)l dxdy — (1 +2€)2w1+2ef1+2e.1j Z Vi ((f;)rB) dt
j

Rl+2e pl+2e 0
oo

=(1+2¢) “)1+2e‘51+2e,1f Z S((ﬁ'>f) dt
J

0
0

= (1+20) @ysactivze | d702€(x)dt
0 (%5 F5l=t}

= (1+2¢) W1426C14261 f Z |'7f;(x)| dx,
mi+2e
and

o0 oo

1+ 25)2(U1+2551+25,1f Z V((ff)t )mdtf V(H (Qf)s)mds
j

0

2(1+€) @

0
2
- (1+ Zejzwli-gif 5“_26'1] V((f_,r)t )1+25 dt
0o J

It follows that (5.12) implies (5.20) when € = 0.
€

Fore > 0. let p(t) = (1 + tlg)il* and g;(y) = ¢(1/p(y)). Then

B 1+2¢

1+e\ Tre e\ T1ie, 1y
Vg;(y)=17(1+lylf) =7(1+\y|f) nym-

The left hand side of (5.12) can be written as

f Z |7£;C) - ng(}’)|1+e dxdy

R1+2e pl+2e

— [ ' +ep2e (). | TFE . .
!w) ()| +et2ede J jz |7f;(x) - wj| " dudx (5.21)

R1+2€ g2 j

From Lemma 5.1. we have

(9})5 = c14¢(5)B,

1+EN " 11 e
where ¢;,.(5)€ = |@"(t)|t%¢and s = ¢p(t) = (1 + tT) "¢, Therefore. the right-side of (5.12) is
co Co

1+e

“1+2£,1+Ef f Z V((fj>t)mV(HHe(Qj}s)mdet
a0 J

1+e b *® €
= GnenvewlZZE [ 19/ OP e [ ) (e o (522)
0 0o
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From Theorem 5.1, (5.21) and (5.22), we have

1+€ = €
1+e ii3e e
fi |7/ (0 - ) dudx:zammfwllj;gf § V((f;)e )1+2edt. (5.23)
R1+2€ g2 0 j

By a direct calculation, one has

J’Z |'.7f}(x) ulefdu-dx: j JZ ‘(11)0 __ Hfdu f Z |'7fj(X)|Hde

R1+2€ g2 R1+2€ g2 Rr1l+2e j
(1+26)wy45.@ 1+
- Lzc®se fz £ (0] dx. (5.24)
Wolge_qWe

R1+2€

Inequality (5.20) follows from (5.23) and (5.24).
The equality condition of the sharp convex Lorentz-Sobolev inequality (5.20) comes from Theorem
5.1

By Lemma 4.3and (5.14). we obtain the following results.

Theorem 5.2 (see [31]). Let f;, g; € C5° (R™**) and € = 0.
(i) If € =2 0, then

| Dl 17500 vgm] e dxay

Rl+2e gpl+2e
0
2(1+€)

> (14 26)w, 1720 f D V() yrzear f V(g F7eds. (5.25)
(i) If €=0, then ° ’
Z 70 - 7g;00] > dxay

R2(1+€) R2(1+5

2—€ 2+€

=(2(1+¢€)) 2 wzlaﬁrE)J Z V((f; )2(1+6)dtj V((g)s )2(1E+E)ds. (5.26)

2+€ €
Each equality holds when € =0 and f;j(x) tends to (a; + [h(x — xg)|i+€) 2+¢,g;(y) tends to
2+€ €

(ap + [Pt (y + xp)|14¢) zre witha; > 0 (i = 1,2),x0 € R2A*9) andp € GL(2(1 + €)).

Proof. (i) For 0 < ¢ < 1. by (5.14) and Lemma 4.3(i), we have

| D0 17560 7as] " axay

R1+2€ pl+2€ j

_ 2 =
= (1+2e) W142eC14261+4€

Q'-.__.ﬁg

jz Vl+6(f_,l e Thye .9'; )det
o

2(1+€) ¢

>+ 200,52 [ Y V(i) )T j V(lg)), JFds.
o J

0
Similar to the proofin Theorem 5.1, the equality condition follows immediately from the equality condition
of Lemma 4.3.
(iii) Fore = 0. by (5.14) and Lemma 4.3 (ii). we have

> 1P - 70| * dxdy

R2(1+€) g2(1+e) |
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=21+ E))2w2(1+e_]52(1+e),2+ef f Z V2+e[<fj>t. I, e (gj)s) dsdt
o0 J

2-€ %(%% _€ €
= (2(1+e)z cusz)f V({(fj)e )2(1+f)dtj V((g;)s )F@*9ds.

0 0

Similar to the proof in Theorem 5.1, the equality condition follows immediately from the equality condition
of Lemma4.3.

Remark 5.2. The functional inequality (5.25) implies the L,,. Minkowski inequality (4.8) and the
functional inequality (5.26) implies the L,, . Minkowski inequality (4.9).

The following analytic inequalities are direct consequences of (5.9) and Theorem5.2.

Corollary 5.2 (see [31]). Suppose € = 0. Let f;, g; € Cg°(R'*?9).
(1) If 0 <e <1, then
1+
| 2 1750 7g,o0] dxdy

Rl+2e gl+2e j
1+e 1+e

= (1420 lci(:;:;ﬁz I IS anszellgs lragme (5:27)

(i) If € =0, then

Z I7£,G) - 7gy ()| ™" dxdy

®m2(1+€) m2(1+€)

2t
= (2(1+9) 2 sz((i?),mz ”f;||§1++EeJ(1+zEJ||9;||?1++651(1+ze) (5.28)
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