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Abstract 
Elliptic problems with additional unknown distributions in boundary conditions are investigated in Besov and 

Sobolev–Triebel–Lizorkin spaces of low regularity, specifically of an arbitrary negative order.I.S. 
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I. Introduction 
Here the modern theory of elliptic boundary-value problems. Thus, these problems are 

considered.These problem generate Fredholm bounded operators on appropriate pairs of the indicated spaces 

provided that their order of regularity is large enough (see, e.g., [1, Section 5.5.2; 2, Section 4.3.3]). The case 

where these spaces are of low (specifically, negative) regularity is more intricate and less studied. But it is 

naturally to use distribution spaces of low regularity if we investigate elliptic problems whose right-hand sides 

contain functions with power singularities, delta-functions and their derivatives, distributions induced by some 

stochastic processes (e.g., the Lévy white noise), and other irregular distributions. The main question arising in 

this case concerns the interpretation of traces of low regularity distributions. Imposing some conditions on the 

right-hand side of an arbitrary elliptic differential equation, we may define the traces of its solutions with the 

help of passage to the limit on a class of smooth functions. Such an approach was elaborated by J.-L. Lions and 

E. Magenes [3, 4] for Sobolev spaces and some Besov spaces and recently was developed in [5; 6, Sections 4.4 

and 4.5; 7] for Sobolev spaces and some of their generalizations in the class of Hilbert spaces. This approach 

gives theorems on the Fredholmproperty of regular elliptic problems in distribution spaces of arbitrarily low 

order. Anotherapproach is due to Ya. A. Roitberg [8] and works with normed spaces which are not formed by 

distributions given in the domain of the elliptic equation. A relation between these two approaches is considered 

in [5; 9, p. 85]. 

I.S. Chepurukhina, A.A. Murach [15] extend the Lions-Magenes approach to general Besov and 

Triebel–Lizorkin reflexive normed spaces of low regularity.They  investigate elliptic problems with additional 

unknown distributions in boundary conditions. The class of such problems is closed with respect to the 

transition to the formally adjoint problem, which allows us to describe explicitly the ranges of operators induced 

by the problems under investigation. Note that classical elliptic problems (both regular and nonregular) belong 

to this class. The main results are four theorems on the Fredholm property of the induced operators on 

appropriate pairs of Besov and Triebel–Lizorkin spaces of low regularity, specifically of an arbitrary negative 

order. We impose weak enough conditions on the right-hand sides of elliptic differential equations in terms of 

some nonweightedor weighted spaces. These theorems allows us to derive the maximal regularity of solutionsto 

the elliptic problems from the given regularity of the data. The results are also new forgeneral Sobolev spaces. 
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II. Statement of the Problem 
For Ω be a bounded domain in the Euclidean space 𝐑2+𝜖 , with 𝜖 ≥  0, and let Γ denote the boundary of 

Ω. Suppose that Γis an infinitely smooth closed manifold of dimension 𝜖 +  1 and that the 𝐶∞-structure on Γ is 

induced by 𝐑2+𝜖. 
Let integers 𝜖 ≥ 0, and 𝑚1, . . . , 𝑚(1+𝜖)+(1+𝜖) ≤ 2𝜖 − 1. If 𝜖 ≥ 0, let (1 + 2𝜖)1, . . . , (1 + 2𝜖)1+𝜖be arbitrary 

integers. We consider the following boundary-value problem: 

𝐴 (∑

𝐿

𝑢𝐿)  =  𝑓𝐿inΩ,                                                                   (1) 

𝐵𝑗𝑢𝐿  + ∑

1+2𝜖

𝜖=0

∑

𝐿

𝐶𝑗,1+𝜖𝑣1+𝜖
𝐿  =  𝑔𝑗

𝐿onΓ, 𝑗 =  1, . . . , (1 + 𝜖)  + (1 + 𝜖).           (2) 

Here, 𝐴 ∶=  𝐴(𝑥, 𝐷) is a linear partial differential operator (PDO) on Ω̅ ∶= Ω ∪ Γof the even order 2(1 + 𝜖). 
Besides, each 𝐵𝑗 ∶=  𝐵𝑗(𝑥, 𝐷) is a linear boundary PDO on Γ, and each 𝐶𝑗,1+𝜖 ∶=  𝐶𝑗,1+𝜖(𝑥, 𝐷𝜏) is a linear tangent 

PDO on Γ. They orders satisfy the conditions ord𝐵𝑗  ≤  𝑚𝑗 and ord𝐶𝑗,1+𝜖  ≤  𝑚𝑗  +  (1 + 2𝜖)1+𝜖 . (As usual, 

PDOs of negative order are defined tobe zero operators.) We suppose that all coefficients of the above PDOs are 

infinitely smooth functions on Ω̅ or Γ respectively. The distribution 𝑢𝐿 on Ω and the distributions 𝑣1
𝐿 , . . . , 𝑣1+𝜖

𝐿 on 

Γ are unknown in this problem. Of course, if (1 + 𝜖) =  0, the problem does not contain any 𝑣1+𝜖
𝐿 . In this case 

the boundary conditions (2) become 𝐵𝑗𝑢𝐿  =  𝑔𝑗
𝐿 on Γ, with 𝑗 =  1, . . . , (1 + 𝜖). 

All functions and distributions are supposed to be complex-valued; we therefore use complex 

distribution/function spaces. We interpret distributions as anti linear functionals on a relevant space of test 

functions. 

Let 𝑚 ∶=  max{𝑚1, . . . , 𝑚(1+𝜖)+(1+2𝜖)}. We assume that 𝑚 ≥  −(1 + 2𝜖)1+𝜖 whenever 𝜖 ≥ 0. Our 

assumption is natural; indeed, if 𝑚 + (1 + 2𝜖)1+𝜖 <  0 for some (1 + 𝜖), then 𝐶1,1+𝜖  =  ・・・ =

 𝐶(1+𝜖)+(1+2𝜖),1+𝜖  =  0, i.e.the unknown 𝑣1+𝜖
𝐿  will be absent in the boundary conditions (2). 

We assume that the boundary-value problem (1), (2) is elliptic in  as a problem with additional 

unknown distributions 𝑣1
𝐿 , . . . , 𝑣1+2𝜖

𝐿  on Γ (see, e.g., [10, Definition 3.1.2]). This means that the PDO 𝐴 is 

properly elliptic on Ω̅ and that the system of boundary conditions (2) covers 𝐴 on Γ. Certainly, if 𝜖 = −1, our 

assumption becomes the usual ellipticity condition for the problem with respect to the single unknown 𝑢𝐿 . 
The problem (1), (2) induces the linear mapping 

Λ ∶  (𝑢𝐿 , 𝑣1
𝐿 , . . . , 𝑣1+2𝜖

𝐿 ) →  (𝑓𝐿 , 𝑔1
𝐿 , . . . , 𝑔(1+𝜖)+(1+2𝜖)

𝐿 ),             

where𝑢𝐿 ∈ 𝐶∞(Ω̅) and 𝑣1
𝐿 , . . . , 𝑣1+2𝜖

𝐿 ∈ 𝐶∞(Γ).
                                       (3) 

Here, of course, the functions 𝑓𝐿 and 𝑔1
𝐿 , . . . , 𝑔(1+𝜖)+(1+2𝜖)

𝐿  are defined by formulas (1) and (2). We study 

extensions of this mapping on appropriate pairs of normed distribution spaces. 

for𝑁 denote the linear space of all solutions (𝑢𝐿 , 𝑣1
𝐿 , . . . , 𝑣(1+2𝜖)

𝐿 )  ∈ 𝐶∞(Ω̅)  ×  (𝐶∞(Γ))
1+2𝜖

to the 

problem (1), (2) in which 𝑓𝐿  =  0 on Ω and all 𝑔𝑗
𝐿  =  0 on Γ. Analogously, let 𝑁+stand for the linear space of 

all solutions (𝑤𝐿 , ℎ1
𝐿 , . . . , ℎ(1+𝜖)+(1+2𝜖)

𝐿 )  ∈ 𝐶∞(Ω̅)  × (𝐶∞(Γ))
(1+𝜖)+(1+2𝜖)

to the formally adjointproblem in 

which all right-hand sides are zeros. The last problem is explicitly written, contains (1 + 𝜖)  + (1 + 2𝜖) 

additional unknown distributions ℎ1
𝐿 , . . . , ℎ(1+𝜖)+(1+2𝜖)

𝐿  on Γ, and is also elliptic [10, Theorem 3.1.2]. The spaces 

𝑁 and 𝑁 + are finite-dimensional [10, Lemma 3.4.2]. 

 

III. Relevant Distribution Spaces 
We recall the definitions of the normed Besovand Tribel–Lizorkin spaces over 𝐑2+𝜖 , we mainly 

following [2, Section 2.3]. As usual, 𝑆′(𝐑2+𝜖)stands for the linear topological space of all tempered 

distributions in 𝐑2+𝜖 , whereas 𝐹 and𝐹−1 denote the direct and inverse Fourier transforms on 𝑆′(𝐑2+𝜖). If 𝑄 is a 

normed linearspace, then ‖・, 𝑄‖designates the norm in 𝑄. 
We arbitrarily choose a function 𝜑0 ∈ 𝐶∞(𝐑2+𝜖) such that 𝜑0(𝑦)  =  1 whenever |𝑦|  ≤  1and that 

𝜑0(𝑦)  =  0 whenever |𝑦|  ≥  2, with 𝑦 ∈ 𝐑2+𝜖. Given 1 + 𝜖 ∈ 𝐍, we define a function 𝜑1+𝜖(𝑦) ∶=
 𝜑0(2−(1+𝜖)𝑦)  − 𝜑0(2−𝜖𝑦) of 𝑦 ∈ 𝐑2+𝜖. The functions 𝜑1+𝜖 , where 0 ≤ 1 + 𝜖 ∈ 𝐙, form an infinitely smooth 

resolution of unity on 𝐑2+𝜖. 
Let 1 + 𝜖 ∈ 𝐑 and 0 ≤ 𝜖 < ∞. By definition, the Besov space 𝐵1+𝜖,1+2𝜖

1+𝜖 (𝐑2+𝜖)consists of all 

distributions 𝑤𝐿 ∈ 𝑆′(𝐑2+𝜖) such that 

‖𝑤𝐿 , 𝐵1+𝜖,1+2𝜖
1+𝜖 (𝐑2+𝜖)‖

1+2𝜖
∶= ∑

∞

1+𝜖=0

2(1+𝜖)3
( ∫

𝐑2+𝜖

∑

𝐿

|𝐹−1[𝜑1+𝜖𝐹𝑤𝐿]|1+𝜖(𝑥)𝑑𝑥)

1+2𝜖/1+𝜖

< ∞. 
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By definition, the Triebel–Lizorkin space 𝐹1+𝜖,1+2𝜖
1+𝜖 (𝐑2+𝜖) consists of all distributions 𝑤𝐿 ∈ 𝑆′(𝐑2+𝜖)such that 

‖𝑤𝐿 , 𝐹1+𝜖,1+2𝜖
1+𝜖 (𝐑2+𝜖)‖

𝑝
∶= ∫

𝐑2+𝜖

( ∑

∞

(1+𝜖)=0

∑

𝐿

2(1+𝜖)3
|𝐹−1[𝜑1+𝜖𝐹𝑤𝐿]|1+2𝜖(𝑥))

1+𝜖/1+2𝜖

𝑑𝑥 < ∞. 

These spaces are complete (i.e. Banach) and separable (with respect to the norms ‖∙, 𝐵1+𝜖,1+2𝜖
1+𝜖 (𝐑2+𝜖)‖and 

‖∙, 𝐹1+𝜖,1+2𝜖
1+𝜖 (𝐑2+𝜖)‖of course). They do not depend up to equivalence of norms on the choice of 𝜑0. The space 

𝐹1+𝜖,2
1+𝜖 (𝐑2+𝜖) coincides (up toequivalence of norms) with the Sobolev space 𝐻1+𝜖

1+𝜖(𝐑2+𝜖) of regularity order 1 +

𝜖. Note that 𝐵1+𝜖,1+𝜖
1+𝜖 (𝐑2+𝜖)  =  𝐹1+𝜖,1+𝜖

1+𝜖 (𝐑2+𝜖) with equality of norms. 

Being based on the above spaces, we introduce their versions for Ωin a way common to Besov and 

Triebel–Lizorkin spaces. We follow the approach used, e.g., in [4, Chapter 1]for Sobolev spaces. Let 𝐸 denote 

either 𝐵 or 𝐹 in our designations of distribution spaces. Thus, e.g., 𝐸1+𝜖,1+2𝜖
1+𝜖 (𝐑2+𝜖) means either 

𝐵1+𝜖,1+2𝜖
1+𝜖 (𝐑2+𝜖) or 𝐹1+𝜖,1+2𝜖

1+𝜖 (𝐑2+𝜖) in the considerations given below. 

If 𝜖 ≥ −1, we put 

𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω): = {𝑤𝐿|Ω ∶  𝑤𝐿 ∈ 𝐸1+𝜖,1+2𝜖

1+𝜖 (𝐑2+𝜖)},                                                (4) 

‖𝑢𝐿 , 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω)‖: = inf{‖𝑤𝐿 , 𝐸1+𝜖,1+2𝜖

1+𝜖 (𝑹2+𝜖)‖: 𝑤𝐿 ∈ 𝐸1+𝜖,1+2𝜖
1+𝜖 (𝑹2+𝜖), 𝑢𝐿 = 𝑤𝐿|𝛺} . (5) 

(Of course, 𝑤𝐿|𝛺 stands for the restriction of a distribution 𝑤𝐿 ∈ 𝑆′(𝐑2+𝜖) to Ω.) The space 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω) is 

Banach. Let 𝐸1+𝜖,1+2𝜖
1+𝜖,0 (Ω) denote the completion of the linear space {𝑢𝐿 ∈ 𝐶∞(Ω) ∶ supp𝑢𝐿 ⊂ Ω}with respect to 

the norm in 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω). Here, as usual, supp𝑢𝐿 is the largest closed subset of 𝐑2+𝜖 outside which 𝑢𝐿  =  0. 

If 𝜖 <  1, then 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω) is defined to be the antidual Banach space to 𝐸1+𝜖,1+2𝜖

−(1+𝜖),0
(Ω). Here, 

thenumbers 0 < 𝜖 < ∞) satisfy the conditions 𝜖 =  1 and 𝜖 =  1/2. In this case, we have the following 

description: 

𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω) = {𝑤𝐿|𝛺 ∶  𝑤𝐿 ∈ 𝐸1+𝜖,1+2𝜖

1+𝜖 (𝐑2+𝜖), supp𝑤𝐿 ⊆ Ω̅}, 

‖𝑢𝐿 , 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω)‖ ≍ inf{‖𝑤𝐿 , 𝐸1+𝜖,1+2𝜖

1+𝜖 (𝑹2+𝜖)‖: 𝑤𝐿 ∈ 𝐸1+𝜖,1+2𝜖
1+𝜖 (𝑹2+𝜖), supp𝑤𝐿 ⊆ Ω̅, 𝑢𝐿  =  𝑤𝐿|𝛺}, 

with ≍meaning equivalence of norms. Besides, if negative (1 + 𝜖)  ∉  {−(1 + 𝜖)  +  1/(1 + 𝜖) ∶ (1 + 𝜖)  ∈ 𝐍}, 
then we may omit the condition supp𝑤𝐿 ⊆ Ω̅ in this description, which gives us the equivalent definition (4), 

(5) of 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω) for such 1 + 𝜖. 

Whatever 1 + 𝜖 ∈ 𝐑, the Banach space 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω) is separable and continuously embedded in 

thetopological space 𝐷′(Ω) of all distributions in Ω. Besides, the set 𝐶∞(Ω̅) is dense in 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω).We have 

the dense continuous embeddings𝐸(1+𝜖)+𝛿,(1+2𝜖)
1+2𝜖 (Ω)  ⊂ 𝐸1+𝜖,1+2𝜖

1+𝜖 (Ω) and 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω) ⊂

𝐸1+𝜖,1+2𝜖+𝜃
1+𝜖 (Ω)whenever 𝜀 ≥  0, 𝛿 ≥  0, and 𝜃 >  0. The first embedding is compact when 𝜀 >  0. If 

thenumbers 1 + 𝜖, 𝑡 ∈ 𝐑 and 0 < 𝜖 < ∞) satisfy the condition (1 + 𝜖)  −  𝑡 = (2 + 𝜖)(1/(1 + 𝜖) −  1/(1 +
2𝜖))  >  0, then thedense continuous embedding 𝐸1+𝜖,1+2𝜖

1+𝜖 (Ω)  ⊂ 𝐸1+2𝜖,1+2𝜖
𝑡 (Ω) holds true. 

Given a positive function 𝜌 ∈ 𝐶∞(Ω), we put 

𝜌𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω): = {𝜌𝑢𝐿 ∶  𝑢𝐿 ∈ 𝐸1+𝜖,1+2𝜖

1+𝜖 (Ω)}, 

‖𝑓𝐿 , 𝜌𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω)‖: =  ‖𝜌−1𝑓𝐿 , 𝐸1+𝜖,1+2𝜖

1+𝜖 (Ω)‖, 

where 𝑓𝐿 ∈ 𝜌𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω). The space 𝜌𝐸1+𝜖,1+2𝜖

1+𝜖 (Ωρ) is Banach, separable, and continuously embedded in 

𝐷′(Ω). 
Thus, we have introduced the spaces 𝐵1+𝜖,1+2𝜖

1+𝜖 (Ω) and 𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω)and their weighted 

analogs𝜌𝐵1+𝜖,1+2𝜖
1+𝜖 (Ω) and 𝜌𝐹1+𝜖,1+2𝜖

1+𝜖 (Ω). Note that 

𝐵1+𝜖,min{1+𝜖,1+2𝜖}
1+𝜖 (Ω)  ⊂ 𝐹1+𝜖,1+2𝜖

1+𝜖 (Ω)  ⊂ 𝐵1+𝜖,max{1+𝜖,1+2𝜖}
1+𝜖 (Ω), 

the embeddings being continuous and dense. 

We also need Besov spaces over the boundary Γ of Ω. Briefly saying, the space 𝐵1+𝜖,1+2𝜖
1+𝜖 (Γ),where 1 +

𝜖 ∈ 𝐑, consists of all distributions ℎ𝐿 ∈ 𝐷′(Γ) that yield elements of 𝐵1+𝜖,1+2𝜖
1+𝜖 (𝐑1+𝜖)in local charts on Γ. The 

detailed definition is given, e.g., in Γ [2, Section 3.2.2]. The set 𝐶∞(Γ)is dense in this space. The above 

embeddings are also true for the Besov spaces over Γ, with 1 + 𝜖 being taking instead of 2 + 𝜖 in the condition 

for  𝑡, 1 + 𝜖, and (1 + 2𝜖). 

If (1 + 𝜖)2 >  1, then 𝐵1+𝜖,1+2𝜖

1+𝜖−
1

1+𝜖 (Γ) is the space of traces of distributions from 𝐵1+𝜖,1+2𝜖
1+𝜖 (Ω). This 

means that the mapping 𝑢𝐿 ⟼  𝑢𝐿 ↾ Γ, where 𝑢𝐿 ∈ 𝐶∞(Ω̅), extends uniquely (by continuity) to a bounded linear 

operator from 𝐵1+𝜖,1+2𝜖
1+𝜖 (Ω) onto 𝐵1+𝜖,1+2𝜖

1+𝜖−
1

1+𝜖 (Γ) [2, Theorem 3.3.3]. Besides, if (1 + 𝜖)2 >  1,then 𝐵1+𝜖,1+𝜖

1+𝜖−
1

1+𝜖(Γ) is 

the space of traces of distributions from 𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω) whenever 0 < 𝜖 < ∞. This explains why we do not need 

Triebel–Lizorkin spaces over Γ in the next section. 

All the normed spaces just considered are reflexive. 
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IV. Results 
We arbitrarily choose 0 < 𝜖 < ∞.We investigate the elliptic problem (1), (2) in the case where 

solutions of the elliptic equation (1) belong to one of the spaces 𝐵1+𝜖,1+2𝜖
1+𝜖 (Ω) and 𝐹1+𝜖,1+2𝜖

1+𝜖 (Ω) of regularity 

order 𝜖2 +  𝜖 +  1 ≥ 0. If (1 + 𝜖) satisfies theinverse inequality, the following result is known: 

The mapping (3) extends uniquely (by continuity) to a bounded linear operator 

Λ ∶  𝐵1+𝜖,1+2𝜖
1+𝜖 (Ω) ⊕ ⨁

1+2𝜖

1+𝜖=1

𝐵1+𝜖,1+2𝜖

(1+𝜖)+(1+2𝜖)1+𝜖−
1

1+𝜖(Γ) 

→  𝐵1+𝜖,1+2𝜖
(1+𝜖)−2(1+𝜖)

(Ω)  ⊕ ⨁

(1+𝜖)+(1+2𝜖)

𝑘=1

𝐵1+𝜖,1+2𝜖

(1+𝜖)−𝑚𝑗−
1

1+𝜖(Γ)                           (6) 

whenever 0 > 𝜖2 + 𝜖 + 1. This operator is Fredholm. Its kernel is 𝑁, and its range consists of all vectors 

(𝑓𝐿 , 𝑔𝐿) ∶=  (𝑓𝐿 , 𝑔1
𝐿 , . . . , 𝑔(1+𝜖)+(1+2𝜖)

𝐿 ) that belong to the target space in (6) and satisfy the condition 

(𝑓𝐿 , 𝑤𝐿)Ω  + ∑

(1+𝜖)+(1+2𝜖)

𝑗=1

(𝑔𝑗
𝐿 , ℎ𝑗

𝐿)
Γ

 =  0     for all(𝑤𝐿 , ℎ1
𝐿 , . . . , ℎ(1+𝜖)+(1+2𝜖)

𝐿 ) ∈ 𝑁+.   (7) 

Thus, the index of the operator (6) is equal to 𝛼 ∶= dim 𝑁 − dim 𝑁+ and does not dependon (1 + 𝜖) and 

(1 + 2𝜖). This statement remains true if we replace 𝐵1+𝜖,1+2𝜖
𝑡 (Ω) with 𝐹1+𝜖,1+2𝜖

𝑡 (Ω) and 𝐵1+𝜖,1+2𝜖
𝑡 (Γ)with 

𝐵1+𝜖,1+𝜖
𝑡 (Γ) for all mentioned values of 𝑡. 

This result is contained in [11, Theorem 5.2] (see also [12, Corollary 5.5] in the case of 

Sobolev spaces 𝐻1+𝜖
𝑡 (Ω)  =  𝐹1+𝜖,2

𝑡 (Ω)), condition (7) following from [10, Theorem 4.1.4]. If (1 + 2𝜖)  =  0and 

if the elliptic problem is regular, this result is proved in [2, Theorem 4.3.3] (under the assumption that 𝑁 =
 {0}and 𝑁+  =  {0}) and in [13, Theorem 15] (without this assumption). 

Recall that a bounded linear operator 𝑇 ∶  𝑄1 →  𝑄2, where 𝑄1 and 𝑄2 are Banach spaces, is said to be 

Fredholm if its kernel ker 𝑇 ∶=  {𝑥 ∈ 𝑄1 ∶  𝑇𝑥 =  0}and co-kernel 𝑄2/𝑇(𝑄1) are finite-dimensional. In this 

case, the range 𝑇(𝑄1) is closed in 𝑄2, and the operator has the finite index, which is equal by definition to 

dim ker 𝑇 −  dim𝑄2/𝑇(𝑄1). 
Generally, the bounded linear operator (6) is not well defined in the case of 𝜖2 + 𝜖 + 1 ≥ 0,which 

follows from [2, Section 2.7.2, Remark 4]. The same is true for the above-mentioned analog of (6) for Triebel–

Lizorkin spaces. Considering this case, we have to take a narrower space than 𝐸1+𝜖,1+2𝜖
1+𝜖 (Ω) as a domain of 

solutions 𝑢𝐿 to the elliptic equation (1). (Recall that 𝐸means either 𝐵 or 𝐹.) This space is defined with the help 

of some conditions imposed on 𝐴𝑢. We separately consider two approaches. The first of them demands that 𝐴𝑢𝐿 

belongs to the space 𝐸1+𝜖,1+2𝜖

−1+
1

1+𝜖 (Ω), whose regularity order is limiting in (6) where 𝜖2 + 𝜖 + 1 < 0.The second 

uses some weighted spaces 𝜌𝐸1+𝜖,1+2𝜖
(1+𝜖)−2(1+𝜖)

(Ω) for 𝐴𝑢𝐿 . 

Dealing with the first approach, we put 

𝐸1+𝜖,1+2𝜖
1+𝜖 (𝐴, Ω): = {𝑢𝐿 ∈ 𝐸1+𝜖,1+2𝜖

1+𝜖 (Ω): 𝐴𝑢𝐿 ∈ 𝐸1+𝜖,1+2𝜖

−1+
1

1+𝜖 (Ω)}, 

‖𝑢𝐿 , 𝐸1+𝜖,1+2𝜖
1+𝜖 (𝐴, Ω)‖: =  ‖𝑢𝐿 , 𝐸1+𝜖,1+2𝜖

1+𝜖 (Ω)‖ + ‖𝐴𝑢𝐿 , 𝐸1+𝜖,1+2𝜖

−1+
1

1+𝜖 (Ω)‖ . 

Here and below, we understand 𝐴𝑢𝐿 in the theory of distributions on Ω. The normed linear 

space 𝐸1+𝜖,1+2𝜖
1+𝜖 (𝐴, Ω) is complete. The set 𝐶∞(Ω) is dense in this space. 

Theorem 1 [15]. Let 𝜖2 + 𝜖 + 1 ≥ 0. Then the mapping (3) extends uniquely (by continuity) to a bounded 

linear operator 

Λ ∶  𝐵1+𝜖,1+2𝜖
1+𝜖 (A, Ω) ⊕ ⨁

𝜆

1+𝜖=1

𝐵1+𝜖,1+2𝜖

(1+𝜖)+(1+2𝜖)1+𝜖−
1

1+𝜖(Γ) 

→  𝐵1+𝜖,1+2𝜖
−1+1/1+𝜖

(Ω) ⊕ ⨁

(1+𝜖)+(1+2𝜖)

𝑗=1

𝐵1+𝜖,1+2𝜖

(1+𝜖)−𝑚𝑗−
1

1+𝜖(Γ).                         (8) 

This operator is Fredholm with kernel 𝑁 and index 𝛼. Its range consists of all vectors (𝑓𝐿 , 𝑔𝐿)that belong to the 

target space in (8) and satisfy (7). 

A version of this theorem for Triebel–Lizorkin spaces is formulated as follows: 

Theorem 2 [15]. Let 𝜖2 + 𝜖 + 1 ≥ 0. Then the mapping (3) extends uniquely (by continuity) to a bounded 

linear operator 
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Λ ∶  𝐹1+𝜖,1+2𝜖
1+𝜖 (A, Ω) ⊕ ⨁

1+2𝜖

1+𝜖=1

𝐵1+𝜖,1+𝜖

(1+𝜖)+(1+2𝜖)1+𝜖−
1

1+𝜖(Γ) 

→  𝐹1+𝜖,1+2𝜖
−1+1/1+𝜖

(Ω) ⊕ ⨁

(1+𝜖)+(1+2𝜖)

𝑗=1

𝐵1+𝜖,1+𝜖

(1+𝜖)−𝑚𝑗−
1

1+𝜖(Γ).                         (9) 

This operator is Fredholm with kernel 𝑁 and index 𝛼. Its range consists of all vectors (𝑓𝐿 , 𝑔𝐿)that belong to the 

target space in (9) and satisfy (7). 

We put 

𝐸1+𝜖,1+2𝜖
1+𝜖 (𝐴, 𝜌, Ω): = {𝑢𝐿 ∈ 𝐸1+𝜖,1+2𝜖

1+𝜖 (Ω): 𝐴𝑢𝐿 ∈ 𝜌𝐸1+𝜖,1+2𝜖
−(1+𝜖) (Ω)}, 

‖𝑢𝐿 , 𝐸1+𝜖,1+2𝜖
1+𝜖 (𝐴, 𝜌, Ω)‖: =  ‖𝑢𝐿 , 𝐸1+𝜖,1+2𝜖

1+𝜖 (Ω)‖ + ‖𝐴𝑢𝐿 , 𝜌𝐸1+𝜖,1+2𝜖
−(1+𝜖)

(Ω)‖, 

with 0 <  𝜌 ∈ 𝐶∞(Ω). The normed linear space 𝐸1+𝜖,1+2𝜖
1+𝜖 (𝐴, 𝜌, Ω) is complete. Let 𝜕𝜐𝐿denote the 

differentiation operator along the inner normal to the boundary of Ω. As above, 𝜖 =  1and 𝜖 =  1/2. 
Theorem 3 [15]. Let 𝜖2 + 𝜖 + 1 > 0. Suppose that a positive function 𝜌 ∈ 𝐶∞(Ω) is a 

multiplier on the space 𝐵1+𝜖,1+2𝜖
(1+𝜖)

(Ω) and satisfies the condition 

𝜕
𝜐𝐿
𝑗

𝜌 =  0   onΓwhenever    𝑗 ∈ 𝐙and    0 ≤  𝑗 <  2(1 + 𝜖) − (1 + 𝜖) − 1 +  1/(1 + 𝜖).  (10) 

Then the mapping (3), where 𝐴(∑𝐿 𝑢𝐿) ∈ 𝜌𝐵1+𝜖,1+2𝜖
−(1+𝜖)

(Ω) in addition, extends uniquely (by continuity) to a 

bounded linear operator 

Λ ∶  𝐵1+𝜖,1+2𝜖
1+𝜖 (A, 𝜌, Ω) ⊕ ⨁

1+2𝜖

1+𝜖=1

𝐵1+𝜖,1+2𝜖

(1+𝜖)+(1+2𝜖)1+𝜖−
1

1+𝜖(Γ) 

→  𝜌𝐵1+𝜖,1+2𝜖
−1+1/1+𝜖

(Ω) ⊕ ⨁

(1+𝜖)+(1+2𝜖)

𝑗=1

𝐵1+𝜖,1+2𝜖

(1+𝜖)−𝑚𝑗−
1

1+𝜖(Γ).                   (11) 

This operator is Fredholm with kernel 𝑁 and index 𝛼. Its range consists of all vectors (𝑓𝐿 , 𝑔𝐿)that pertain to the 

target space in (11) and satisfy (7). 

As for Triebel–Lizorkin spaces, the result is formulated as follows: 

Theorem 4 [15]. Let 0 > 𝜖2 + 𝜖 + 1. Suppose that a positive function 𝜌 ∈ 𝐶∞(Ω) is a 

multiplier on the space 𝐹1+𝜖,1+2𝜖
(1+𝜖)

(Ω) and satisfies condition (10). Then the mapping (3), where 𝐴(∑𝐿 𝑢𝐿) ∈

𝜌𝐹1+𝜖,1+2𝜖
−(1+𝜖)

(Ω) in addition, extends uniquely (by continuity) to a bounded linear operator 

Λ ∶  𝐹1+𝜖,1+2𝜖
1+𝜖 (A, 𝜌, Ω) ⊕ ⨁

1+2𝜖

1+𝜖=1

𝐵1+𝜖,1+𝜖

(1+𝜖)+(1+2𝜖)1+𝜖−
1

1+𝜖(Γ) 

→  𝜌𝐹1+𝜖,1+2𝜖
−(1+𝜖)

(Ω)  ⊕ ⨁

(1+𝜖)+(1+2𝜖)

𝑗=1

𝐵1+𝜖,1+𝜖

(1+𝜖)−𝑚𝑗−
1

1+𝜖(Γ).                    (12) 

This operator is Fredholm with kernel 𝑁 and index 𝛼. Its range consists of all vectors (𝑓𝐿 , 𝑔𝐿)that pertain to the 

target space in (12) and satisfy (7). 

Recall that a function 𝜌 ∈ 𝐶∞(Ω) is called a multiplier on a normed linear space 𝑄 ⊂ 𝐷′(Ω) if the 

operator of multiplication by 𝜌 is bounded on 𝑄. 
Remark 1. Condition (10) makes sense in Theorems 3 and 4. Indeed, if a function 𝜌 ∈ 𝐶∞(Ω) is a multiplier on 

one of the spaces 𝐵1+𝜖,1+2𝜖
(1+𝜖)

(Ω) and 𝐹1+𝜖,1+2𝜖
(1+𝜖)

(Ω) where 0 < 𝜖2 + 𝜖 + 1,then 𝜌 belongs to the same space. 

Hence, the trace 𝜕
𝜐𝐿
𝑗

𝜌 on Γis well defined by [2, Theorem 3.3.3] whenever (1 + 𝜖) >  𝑗 +  1/(1 + 𝜖). The latter 

inequality is equivalent to the condition 𝑗 < (1 + 𝜖) used in (10). 

Remark 2. Under the hypothesis of Theorem 3 or Theorem 4, we have the continuous embedding 

𝜌𝐸1+𝜖,1+2𝜖
−(1+𝜖)

(Ω)  ⊂ 𝐸1+𝜖,1+2𝜖
−(1+𝜖)

(Ω) where 𝐸 =  𝐵 in the case of Theorem 3 or 𝐸 =  𝐹in the case of Theorem 4. 

Moreover, the set 𝐶∞(Ω̅)  ∩  𝜌𝐸1+𝜖,1+2𝜖
−(1+𝜖)

(Ω) is dense in 𝜌𝐸1+𝜖,1+2𝜖
−(1+𝜖)

(Ω). 

The following result gives an important example of the above weight function 𝜌 (see [15]). 

Theorem 5. Let 0 > 𝜖2 + 𝜖 + 1, and let a positive function 𝜌1 ∈ 𝐶∞(Ω)equal the distance to Γ in a 

neighbourhood of Γ. Assume that 𝛿 ≥  𝜖 +  1/(1 + 𝜖)  ∈ 𝐙or that 𝛿 > 𝜖 +  1/(1 + 𝜖) ∉ 𝐙. Then the function 

𝜌 ∶=  𝜌1
𝛿  satisfies the hypotheses of Theorems 3and 4. 

In the case where 𝜖 =  1, 𝜖 = 1/2 and 𝜖 = −1/2, these theorems were established in [5, Section 2] for 

regular elliptic problems (see also monograph [6, Theorems 4.27, 4.29, and 4.30]). Putting 𝜌 ∶=  𝜌1
(1+𝜖)

 in 
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Theorem 4 in this case and assuming that 𝜖 + 1/2 ∉ 𝐙, we arrive at the classical Lions–Magenes theorems [4, 

Theorem 6.7 and 7.4]. They concern regular elliptic problems in inner product Sobolev spaces. 

It is worthwhile to compare Theorems 1–4 with the newest result by F. Hummel [14,Theorem 6.3] 

concerning some constant-coefficient parameter-elliptic problems in the half-space. He has found sufficient 

conditions under which the unique solution to such a problem belong to certain anisotropic distribution spaces 

built on the base of Sobolev, Besov, and Triebel–Lizorkin spaces of an arbitrary real order. Specifically, the 

right-hand side of the elliptic equation should have a nonnegative integer-valued Sobolev regularity in the 

normal direction with respect to the boundary of the half-space. This result does not allow us to derive the 

maximal regularity of solutions from these conditions, as is noted in [14, p. 1949]. Theorems 1–4 provide the 

maximal regularity in terms of isotropic spaces (see [15]). 

 

V. Applications 
In Theorems 2 and 4, the spaces over Γare independent of the parameter (1 + 2𝜖) in contrast to the 

spaces over Ω. This suggests that the set of all 𝑢𝐿 ∈ 𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω)such that 𝐴𝑢𝐿 satisfies a relevant condition 

does not depend on (1 + 2𝜖). The following two theorems give such conditions (see [15]). Let 0 < 𝜖 < ∞. 
Theorem 6 [15]. Let 𝜖2 + 𝜖 + 1 ≥ 0. Assume that a Banach space 𝑄 is continuously embedded in 

𝐹
1+𝜖,min{1+2𝜖,1+2𝜖}

−1+
1

1+𝜖 (Ω). Then 

{𝑢𝐿 ∈ 𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω): 𝐴 (∑

𝐿

𝑢𝐿) ∈ 𝑄}  = {𝑢𝐿 ∈ 𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω): 𝐴 (∑

𝐿

𝑢𝐿) ∈ 𝑄} , (13) 

‖𝑢𝐿 , 𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω)‖ + ‖𝐴 (∑

𝐿

𝑢𝐿) , 𝑄‖ ≍ ‖𝑢𝐿 , 𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω)‖ +  ‖𝐴 (∑

𝐿

𝑢𝐿) , 𝑄‖.       (14) 

Recall that the symbol ≍means equivalence of norms. 

Theorem 7 [15]. Let 𝜖2 + 𝜖 + 1 > 0. Suppose that a positive function 𝜌 ∈ 𝐶∞(Ω) is a multiplier on the space 

𝐹1+𝜖,1+2𝜖
(1+𝜖)

(Ω) and satisfies condition (10). Suppose also that a positive function 𝜇 ∈ 𝐶∞(Ω) is a multiplier on the 

space 𝐹1+𝜖,1+2𝜖
(1+𝜖)

(Ω)and satisfies condition (10) in which 𝜌 is replaced with 𝜇. Let a Banach space 𝑄 be 

continuously embedded in both of the spaces 𝜌𝐹1+𝜖,1+2𝜖
−(1+𝜖)

(Ω) and 𝜇𝐹1+𝜖,1+2𝜖
−(1+𝜖)

(Ω). Then relations (13) and (14) 

hold true. 

Theorems 6 and 7 complement the following property of Triebel–Lizorkin spaces of high enough 

regularity: if 𝜖2 + 𝜖 + 1 < 0 and if a Banach space 𝑄 is continuously embedded in𝐹1+𝜖,min{1+2𝜖,1+2𝜖}
−(1+𝜖)

(Ω), then 

(13) and (14) are valid. This property follows from the result stated at the beginning of Section 3. Specifically, 

the space 

{𝑢𝐿 ∈ 𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω): 𝐴 (∑

𝐿

𝑢𝐿)  =  0 𝑖𝑛 Ω}                                                  (15) 

does not depend on (1 + 2𝜖) whatever 1 + 𝜖 ∈ 𝐑. Such a property is proved in [15, Theorem 1.6] under the 

additional assumption that 𝐴 is a constant-coefficient homogeneous PDO but in the more general case where the 

bounded domain Ω is Lipschitz and when 0 < 𝜖 < ∞. Note that the space (15) will not change if we replace 

𝐹1+𝜖,1+2𝜖
1+𝜖 (Ω) with the space (4) used in [15]. The latter space is broader than 𝐹1+𝜖,1+2𝜖

1+𝜖 (Ω) if an only if 1 + 𝜖 ∉

 {−(1 + 𝜖)  +  1/1 + 𝜖 ∶  1 + 𝜖 ∈ 𝐍}. 
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