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Abstract

Following L. Chen, G. Lu and C. Zhang [64] we show the existence of extremals for sharp weighted Trudinger—
Moser—Adams type inequalities with the Dirichlet and Sobolev norms. We follow the method based on level-sets
of functions and Fourier transform to generalize the weighted Trudinger—Moser—Adams type inequalities with

1+2€

the Dirichlet norm in W2‘+T(IR{1+ZE) and W2+€‘2(IR{2(2+6)) respectively. When the mentioned first order and its
existence of extremal functions was obtained by using a quasi-conformal type transform, such a transform does
not valid for the Adams inequality involving higher order derivatives. Through the compact embedding and
scaling invariance of the subcritical Adams inequality, we estimated the best constants. We also follow the
method developed the supremums of the critical and subcritical inequalities and show the existence of extremals
for weighted Adams’ inequalities with the Sobolev norm. Now using the Fourier rearrangement inequality, we
reduce the problem to the radial case and then show the existence of the extremal functions for the non-
weighted Adams inequalities. We derive new results on high-order critical Caffarelli-Kohn—Nirenberg
interpolation inequalities for more parameters and show the relationship between the best constants of the
weighted Trudinger—Moser—Adams type inequalities and the above inequalities as applications.
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1. Introduction

We study and treat higher order on Sobolev spaces Wz’%(]l%“ze) and W2+€2(R2(+9) the
maximizer joint the singular Adams inequality. The known Sobolev embedding theorems established on
bounded domain raised that WOLHG(Q) c L**€(Q) for € > 0 which improve the exponent. When e = 0, this
exponent tends to infinite so WOLHZG(Q) c LM*¢(Q) for 0 < e < oo, but WOLHZE(Q) Z L”(Q). (see for
instances [59], [19], [55] and [54]). The growing process of the embedding. Hence named the Trudinger-Moser
inequality and stated as.

Theorem A [54,59] Let Q be a bounded domain in R?*€, e > 0. Then there exist a positive constant C,,, and a
1

sharp constant a,,. = (2 + €)w; 1< such that

1 2+e
HLZ exp (aluj|1+6> dx < Cyye,
j

for any a < a,,. and u; € C°(Q) with fn ¥ IVu;|**€dx < 1, where wy4, stand for the surface area of the
unit ball.

The authors of [6] establish the existence of extremal functions of Trudinger-Moser inequality when Q is a ball
in R?*€, Extended results of [14] to bounded domains in R? and by [41] in R?*€ for € > 0. [49] investigated the
blow-up of a sequence of the Trudinger-Moser functionals on the planar disk.

Also for more extensions of Theorem A, see [5], [10] and [1], etc. We state from [1] the following:
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Theorem B [1] For e >0 and 0<a < a4 there exists a positive constant C,,., such that

142¢
ey li+z
ujewtit ef 142e2j [Vuy| " dxs1 ”uJ”L1+ze

1 1+2¢
sup Z rze W (a0 %) dx < Cryzea (1.1)
R1+2€

i
where W;(1+¢€):= e - ¥, (1;!6) . Hence, the constant a, . is sharp if @ = a,,, then the supremum will

tend to infinite.
When approaching the singular Trudinger-Moser inequality in R?*€. The authors in [18] investigated the scaling
invariant form of the singular Trudinger-Moser inequality for radially symmetric functions and showed the

existence of a maximize. Then:
1

1+€

Theorem C [18] Assume € > 0,—0<s<14+e<2+4+€ and 0 <a < ay = ‘*2>1++:’ then there exists a

positive constant C = C(2 + ¢, s 1 + e a) such that the inequality
2+e
) () 1+ :

2 + € ) |uj(x)|2+6 2+€-s
meZ i dx < CZ ( fmm I , (1.2)
j

holds for all radially symmetrlc sequences of functions u; € L2*€(R?*€; |x|~Sdx) N W2*€(R?*€) with ||
Vi llz4e< 1, where W12+€(R?%€) denotes the class of functions u; which are locally integrable and Il Vu; Ii54.¢
are in L*+€(R?*€). The constant @, ¢ 1+ is sharp for the inequality.

They also showed that when s = 0, the constant € has an infimum and could be attained by some functions u; €
WL2+e(R2*€). However, when s # 0, they only verified inequality (1.2) and the existence of extremals on the
class of radial functions. A natural problem is whether we can remove the radially symmetric condition for
functions u; in inequality (1.2). [13] gave an answer.

Theorem D [13] Assume € > 0,—0 <s<14+€<1+2¢ and 0 < a < a,,,, then there exists a positive

constant C = C(2+¢€,5,1+ ¢, a) such that the inequality
2+e

1

f Z 2 F e) |uj(x)|1+f> < Cz f |u](x)|2+6 i 2+e—s
R2+€ x|t +e - R2+€ |x|s

holds for all functions u] € L2T¢(R?*¢; |x|~Sdx) n W12+€(IR§2+E) with || Vu; ll;4.< 1. Moreover, the constant
Q54 18 sharp in the sense that if @ > a,, . then the above inequality cannot hold with a uniform C independent
of U.j.

By using the change of variables of quasi-conformal type in [13], and let the gradient norm less than 1 and
eliminated the weights of integral. They also established the existence of the maximizers associated in (1.2). For
example, this change of variable method has also been used by [30] and [12] to obtain the existence for more
parameters (see [9]).

It is clear that (1.1) doesn't hold in @ = a,,.. To obtain the Trudinger-Moser inequality in the critical case, see
[56] (in the dimension € = 1) and [39] (in the dimension € = 0 ) used the Sobolev norm to replace the Dirichlet
norm, i.e.

Il w; ||3;1€,3+5(R3+e)=f Z (v [3*€ + |uj|3+6)dx
0 R3+e€ ;

and obtained the inequality with sharp constant @5, .. They also find the maximizer at ¢ = a3, by carrying out
the blow-up procedure. When € = 1 and @ = @, = 4m, the maximizer was considered in [56] and [17]. At e =
—1 and a is very small, the non-existence of the maximizer be in [17]. [13], [21-23], [12], and [33] established
more result of extremal functions for weighted Trudinger-Moser inequalities on R3*€ and proved the radial
symmetry. For more related results, see [3, 4, 8, 38, 48-50]. For the proofs of the critical and subcritical
Trudinger-Moser inequality in [39,56] and in [1,10] use the Polya-Szegé inequality and a symmetrization
argument. A symmetrization-free argument was developed by [29] (see also [28]) for using the level sets of
functions under consideration see [24] ([37,63] and also in the concentration compactness principle, see [31, 34,
43, 58)).

The first order derivatives were extended to higher order derivatives by [2]. To show his result, we use V2+Euj

to denote
2+€
A2, if2+ eiseven
2+€ — 1]
\% u}' =

€
VAz, if 2 + €is odd.
Then:
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Theorem E [2] Let Q be an open and bounded set in R3*€. If 2 + € is a positive integer less than 3 + €, then

3te

2+6,
there exists a constant C; = C(3 + €,2 + €) > 0 such that for any u; € W 2+€(()) and 1%, V¥ ul| s+e <

L2+e(Q)
1, then
1
—f Z exp(Blu;(x)|**€)dx < C, (1.3)
12 Jg ;
forall § < B(3 + €, 2 + €) where
(3 N r 33622"'5{‘(3;6) 3+e
€lm
1 , where 2 + € is odd.
“rel T(3)
BB +e€2+€) =1 ] sre 5 3te
34e|mz2er (55
1 , where 2 + € is even.
Ve r(z)
Hence, the constant §(3 + €, 2 + €) is best possible for any 8 > (3 + €, 2 + €), the integral may be as large as

possible.

For improved Hardy-Trudinger-Moser inequalities on different domains see [60], [46], [61], and Hardy-Adams
inequalities using Fourier analysis on hyperbolic spaces see [36,45] (and [62]). For (1.3) on bounded domain in
€ = 1,e = 0 see [47]. And for the entire space case. [20], [57] for even integer 2 + € and [26,27] for odd integer
2 + €. Indeed, [29] used a symmetrlzatlon free approach to establish the singular Adams inequality of any

fractional order y on the Sobolev space Wy 2 (IR{3+E ) (see [29]). In particular, when y = 2 + € we have:
Theorem F [29] Let 2 + € be a positive integer less than € > 0. Then there holds

1+2€
f (1)1+26,2+e (.81+e,1+26,2+6|uj| €1 )
R1+2€ j

dx < o,

sup
2+€
quW 2+E HZJ ((1+e)-A) 2 u1||1+ <1

2+€

|x|1+6

where
=2
J1+2e
2+€ .
. 1+42¢ (1+¢€)
jze=m fj ez and byl mexp 1+ = )
2+e L :
=0
142 1+2¢ '
t26 2+ e\]e1
1+ 2e 22+E7T2F( 2 ) €
Biizea+e = e - (E — 1) and Biie1+2e2+e = Brezez+e (m)
2

When € = 0, they gave another form.
Theorem G [29] There exists a positive constant C, ,,. such that

x|ive dx < Ciy2e, YU

€ 1+2€
f Z D122 (.31+26,2 (m) |uj|2€_1)
]R1+2€ ]

1+2€ | 1+2€

€ C(R1*2€) with Z (X et u,-|T) dx <1, (1.4)
R1+2€ >

1+2€

14261507
1+2€ | 4 2
} and ,81+25,2 = [F(Ze—l_)]
2

wW2e
[32], estabhshed the following sharp second-order Adams inequality with the Dirichlet norm.
Theorem H [32] For 0 < f8 < ,81+262 and € > 0 then there exists a positive constant C(1 + 2¢,1 + €) such

1+2¢

where]1+ze = min {] EL:j=

that for all functions u; € W (R1+25) n L 2 (R1+25) with || Au; ||1+26— 1, the following inequality holds.

1+26

142¢
Di12¢2 <B m) |uj|25'1) 1+2¢
,[]R1+2€ Z

i dx < C(1+261+¢€) jmmez |z dx| (L5
j

, 1t2e ,
where W2 (]R{““) = {u} € Li,c (R'™2€) | Au; € L2 (R“Ze)}. Hence, the constant B, , is sharp when
the inequality fails if the constant f = f;5¢ 5.
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A natural question is whether there exist extremal functions for the above inequality. [64] extending [13] to
1+2€
second-order Sobolev space W* 2 (R'*2€). We use the method combining the scaling invariance of the

. 142€
Adams  inequality —and the new compact imbedding W?* 2z (R'*%€) n LI*E(R*2€) o6
LYe(RM™2€; x| ~(*9dx), for all € >0 to show the weighted Adams inequality with Dirichlet norm in

1+2€
W* 2 (R*2€). (see [64], also see [18] for the first order weighted subcritical Trudinger-Moser inequality, and
Trudinger-Moser and Adams inequalities with exact growth by [16], [51-53], [42] and [44]. Now we state the
following result (see [64]).
Theorem 1.1 For € > 0, the best constant C(1 + 2¢,1 + €) is achieved.

3 2 3+€ 3 2 3+€ 3+€ 3+€ 1+4€
Replacing  ®g.cz (8 (=) hylive) with exp (B (=) fwlt5e) [z and exp (B (=) hwlwve) | 2
respectively, we establish the following stronger Adams inequality and existence of their extremals (see [64]).
Theorem 1.2 For € = 0,0 < 8 < f3,¢,, then there exists a positive constant C(1 + 2¢,1 + €) such that

€ 1+2€ 1+2€
f Z eXp< (r2¢) w171 1)'“1' 2
R1+2€ |X|1+€

€
1+2€
1+2€
<C(1+261+¢€) f Z wl z dx| (1.6)
R1+26 &

holds for all functions u; € W22 (]R”ZE) n L (]R“ZE) with || ¥; Au; II1+25— 1. The constant B 4,¢ is

sharp when the inequality fails if the constant f > f;,.,. Moreover, in the case € = 0, the best constant C(1 +
2€,1 + €) is determined.

Theorem 1.3 For € = 0,0 < f < B3¢, and € = 0, then there exists a positive constant C(1 + 2¢,1 + €) such
that

€ 1+2€ 1+4€
f Z eXp ( 1+Ze)|uf|26_1) Iyl 2
R1+2€ |x|1+€
€
1+2€
1+4€
<C(1+261+¢) J z | 7 dx 1.7)
R1t+2€

holds for all functions u; € W? 2 (]R“Ze) nNLz (]R”Ze) with || Au; ||1+ze— 1. The constant By, is sharp

when the inequality fails if the constant f > f;.,.,. Moreover, in the case € > 0, the best constant C(1 +
2€,1 + €) is determined.
Remark 1.4 (see [64]) In the proof of (1.6) and (1.7), the rearrangement-free argument by considering the level

2’1+ZE
sets of the functions and the weighted Trudinger-Moser inequality in W, 2 (Q) play a wide role.
[32] gave an asymptotic estimate for the Adams inequality with the Dirichlet norm. They proved

€ 1+2¢
1 D262 <3 (m) |uj|25‘1>
i o
R1t+2€

|x|1+6

ATA(f,1+€):=  sup

IAujll+2e<1
2

Iy W25
2

Q

1 l

(-2 )

with 0 < B < B112¢, and € = 0. Furthermore, they also show some relation of weighted Adams inequalities
with Dirichlet norms and Sobolev norms. Hence, foranye > 0,0 < 8 < [5’1+2€‘2, we have

A1+251+6J+e(ﬂ) - 142 1+
IIAu]II1+2§+IIu]II1+§€

€ 1+2€
q)1+252 (1 ¥ 26) |uj|2€_1)
Z f dx
<1 ]R1+26

|x|1+€

They proved that
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_€
<S>26_1 2(1+€)
B
Arizentenre(B) = sup | ——— ATA(s, 1+ €).
s€(0,8) (S)1+26(1+e)
B

We employ the method developed by [33] (see also [21]).
Theorem 1.5 [64] For € > 0, and 0 < 8 < B, ,, then there exist extremal functions for A;i;¢14e1+e(8) In

the case of ([)’ < Pii2e2, €2 0) or ([)’ = Pri2e2 € < 0).
Remark 1.6 For the first result for the existence of weighted Adams inequality with the Sobolev norm on the
whole space. (see [64], see also [33] and [21]. When combining the equivalence of subcritical and critical

weighted Adams inequalities in WZ‘%(R”“), and the existence of extremal functions for subcritical Adams
inequalities, we can construct the maximizers of the critical weighted Adams inequalities.

To establish the Adams inequality with the Dirichlet norm in W2*+€2(R22%€) for any € > 0. Since the idea of
level-sets is not efficient to deal with the weighted Adams inequality in W22 (R2G+€) for € > 0, we use the
methods based on Fourier transform to establish the following results (see [64]).

Theorem 1.7 For 0 < B < B524¢)2+¢ and € = 0, then there exists a positive constant C(2 + €, 1 + €) such that
3+e

3+¢€
f Z Dy 246),2+€ ( (2(2 T 6)) |uj|2) 2(2+e)
R2(2+€)

i dx<CQ2+e1+e€) ij(m) Z |2 dx (1.8)
J

holds for all functlons u; € We2(R2Z*9) n [2(R*Z*9) with || V3*ey, ||2 = 1, where W2+€2(R2(2*9)) =
{wj € L}, (R2Z*9)||v2+eqy; |€ L2(R*Z¥))}. The constant Baz4¢)2+e is sharp when the inequality fails if the
constant 8 = B5(z4¢)2+¢- Hence, € > 0, the best constant C(2 + €, 1 + €) is determined.

Remark 1.8 ([64]) In the case € = —1, the validity and the sharpness of inequality (1.8) were established by

1+2€ 1+2€
[25]. See also [15], and [53] for more general subcritical and critical Adams inequality in W are (]R 1+s) for

general € > 0.
In W2+€2(R2(2+9)), we prove the following (see [64]):

Theorem 1.9 For 0 < f < 32(2+€) 2+¢ and € > 0, there exists a positive constant C(2 + €, 1 + €) such that
3+e

3te 3t
f Z | dx<C2+e1+e€) J Z | dx (1.9)
R2(2+€) [x|1te R2(2+€) ;

holds for all functlons u; € We2(R22+9) n [2(R*Z*9) with ||3; VZ‘LEuj”2 = 1. The constant B5;1¢) 2+ is
sharp when the inequality fails if the constant § = B(34¢)2+¢. Hence, if € > 0, the best constant C(2 + €,1 +

€) is determined.
Remark 1.10 In the proof of getting the attainability of Cpycqie W2T2(R2Z9)) 0 [HHE(R2(49) o

[1+2€ (R2(2+e)

above compact imbedding fails in the case € = —1. However, if 1; is a radial function, we are in a position to
show that W2+€2(R22+E)) n [1+€(R2(Z*9)) can be compactly imbedded into L1*2¢(R2(+€) for any € > 0.
Using the Fourier rearrangement inequality established by [35], we can reduce (1.8) and (1.9) to the radial case.
Combining these facts, by modifying the proof of Theorems 1.7 and 1.9, we can obtain the following results
(see [64]).

Theorem 1.11 In the case € = —1, the best constant C(2 + ¢, 0) in inequalities (1.8) and (1.9) is achieved.

As an application of the above theorems, we obtain the higher order Caffarelli-Kohn-Nirenberg (CKN)
inequalities in the critical case which was not in [40] and investigate the asymptotic behavior of the best
constants. The existence of extremal functions for higher order CKN inequalities have been established by [11].
We show the following results (see [64]).

Theorem 1.12 Suppose € =0, there exists a constant c(1+2¢,1+¢1+€) and for any u; €

273 (]R”ZE) n L (]R”ZE) there holds

II?) for any € > 0 and € > 0 plays an important role. It is also well-known to us that the

2+€

I Z Uj llpare(parze-Gr0 )< €1+ 26,1+ €1+ e)z Il ||§(+12+:)|| A ||§(+12+:) (1.10)
j j
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26—
1+2¢

Furthermore, if we assume 1+ € > (ﬁ1+2e2 (1+625) e’) then there exists a sharp constant (14 €)(1 +

26,1+ €1+ €) > 22 such that for u; € W e (IR“ZE) nNEz (R1+25) and € = 0, there holds
2+3€

1
I Z U llpreze(gatae -Gre g < 1+e@@+ 25)1+2€Z Il ||2(1+2€)|| A "i(+12+626) (1.11)
J
Theorem 1.13 Suppose € > 0, there exists a constant c(2 + €, 1+E 1+26) such that for any u; €

W2+e2(R2@+9)) n [2(R2(G*9), there holds
I Z U Ml 1+2e(pare), -1+ gy

3+e 3+€

<cQ+el+els ZE)Z Iy ”g1+2€)(2+6) [v2+eu ” T 2e)2+e) (1.12)
J
_1
Furthermore, if we assume 1 + € > (32(2+€) ate (2(32++E )) Ze) ?_ there exists a sharp constant (1 + €)(2 +¢€,1 +

€,) > 2 and for any u; € W2+¢2(R2+€)) 0 [2(R?2(*9)) and € > 0, there we have
Il Z Uj ”if“e(]Rz(2+é);|x|_(1+e)dx) (1
Jj

3+e€ 3+e

+e)(1+26)1+262n w (T |pzrey | GROE,  (1.13)

j
We define the sharp constant fiy, i, i, 1+¢ 5 (R¥1¥2) by

kikay. — E
.uklkz,kz,1+e,ﬁ(R 2): = ) sup“ ] Fklkz.k2,1+6,ﬁ(uj)'
ujewkaki(Rk1kz) |5 vk2uj||k1=1 7

k1
D iy ks <ﬁ|uj|k1_1)
dx

kalkz X [x[TFe
Fi kg dep 146, (W) = Kiky—(11€)

ko
%5

Here [64] show a new compact imbedding theorem. By applying the rearrangement-free argument in [29] and
1+2€

the weighted Adams' inequalities in WN' 2 (), he establish inequalities (1.6) and (1.7). We also employ the
scaling invariant form of the weighted Adams inequality and a new compact imbedding to establish the
existence of extremals for inequalities (1.6) and (1.7). With the help of the weighted Adams' inequalities with
Dirichlet norms (subcritical case) and Sobolev norms (critical case) in [32], we derive the first result for the
existence of the Adams inequality with the Sobolev norm. We devoted to obtaining the Adams inequalities with
the Dirichlet norm and the existence of their extremals in Sobolev space W2*€2(R22*€). As an application of
Theorems 1.1 and 1.7, we deduce the relation between the critical higher order Caffarelli-Kohn-Nirenberg
inequalities and the weighted Adams inequality in the asymptotic sense.

where

II.  The proof of Theorem 1.1
We use the attainability of sharp constant C(1 + 2¢,1 + €) for Adams inequality (1.5) which equipped
with the Dirichlet norm. We need the following compact imbedding lemma (see [64]).

1+2e 1t2e .
Lemma 2.1 Let €>0, then W?*z (R'™2¢)nL7z (R'™*2?€) can be compactly embedded into
1+4€

L7z (RY2€, |x|~(*9)dyx) for € > 0.

Proof To begin with, we show that W* 2 (R'*2€) n L™z (R'*?¢) can be continuously imbedded into

L%(]Ri“ze,lxl‘(“f)dx). For —fi€ > 1*2%¢

- (]1+26—1) the continuous embedding is a direct result of

inequality (1.5). For € = 0, one can employ the following inequality
1+2€

lu;| 2 1+2¢
J e deJ- Z [u;| 2 dx
R1+2€ 7 |x| R1+2€ 7
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1 1
+Z f [T f EEEPAL 2.1
é B,(0) |x|T+e x B,(0) |x|1+e x (2.1)

1+ZE 1+4€ 1+2€
< 2

interpolation inequality. Next it suffices to verify that the above contmuous embedding is compact, i.e. for any

to obtain the desired continuous imbedding. For

(]1+ze - 1), it follows from the general

1+2€
sequence ((u]) k) bounded in W% 2 (R*2€), there exists a subsequence which we still denote as ((uj) k) such

that [|(u;)x — w| 1+ 2 e i) — 0 as k — o0. We conclude it through two steps.

Step 1 We show that there exists a subsequence still denoted by ((uj) k) such that (u;), — y; for almost X €

R*2¢, Through Sobolev interpolation inequalities with weights (see Lin's work [41]) and the L5 (R“Ze)
boundedness of Riesz transform, we have
1

||Z vy ||1+2€<Z 1% e fiac Iy || > iy el vy 12,
2

7 2

1v2e 1+2e
[ (|\7u,.| | 2 )deC(Q)
77

1+2€
Due to the classical Sobolev compact embedding W'z (Q) ©& L*€(Q) for € > 0 and the diagonal trick, one
can obtain that there exists a subsequence (we still denote by ((u]-)k) ) such that
(u)(x) = u;(x), strongly in Lij (R**2€)

(1) (x) = u;(x), for almost everywhere x € R'*+2€

which implies that

1+4€
Step 2 We claim that for any € > 0,%, (uj)k = u;in LT(R“ZE; |x|—(1+€)dx)_ For any R > 0, by applying the
Egoroff theorem, one can find that for any Bz (0) and § > 0,
AEs5 < Bg(0) satistying m(Es) < 6,
such that (u;), uniformlyconvergesto u; in B (0) \ Ej.
Thus, we split the integral into three parts.

1+4e
o |(uj)
lim lim lim z
R—>+008-0k—+0 Jpit2e |x|1+€
1+4e 1+4E
o |(u]) o |(u])
= lim lim lim Z dx + lim lim lim Z dx (2.2)
R0000kc+00 |x|1+f R0 20k Jy o)\, |x|1+€ -
1+4e
. 6, — ]
+ Rler glrrékllrJrn z |x|—1+€dx
]R1+Ze\BR(O) ]
=. 11 + 12 + 13.
For I, the Holder inequality and the classical Sobolev continuous embedding lead to
1
1+4es, s
|(uJ
I, <lim lim f ldx f Z dx
5-0k—+00 ; |x|(1+e)s
(2.3)
1
s i Es))S
lim (m(E))
=0
where s > 1and s’ < —< ( " As for I, it follows from the uniform convergence of (), in Br(0) \ E; that
1+4e
U — U
I, = lim lim lim Z |( 4= 7 J| dx
R—>+0§>0k—>+o |_x|1+E

BR(0O)\Es
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1+4€

o |(u]) |
=Jimim | D im P —d @4

BR(0)\Es 7

For I, using continuous imbedding W%z (R”Ze) o L 2 (R”ze) for € > 0, we obtain that

1+4€
I; < lim lim lim ! f Z |(u])
R—+008-0k—+00 R1+€ R1+2€\BR(0)
1 (2.5)

S lim ——
R+ R1+€

~

=0.
Combining (2.3), (2.4) and (2.5), we get the following result

1+4€

U, — Uj| 2
lim Z 10—y 2 L Rt I (2.6)
R1+2€ |x| te

k—+0o0

Thus the proof of Lemma 2.1 is hold.
We have the following (see [64]):

Lemma 2 2 For e >0 and 0 < B < Prrzezs let (u)y) € WZ_(]R“ZE) nLe (IR%”ZE) satisfying (u;)y =

u; in W2 2 (IR“ZG) nNLz (IR“ZE) as k — +o0. Then, we have the following convergence.

}1tfe 1

1+2€

J- Z D¢ (,8 (TEZE) |(uj)k m) — (B (1 + 26)) 26 1(11+25 1> dx
R1+2€ -

(j1+25— 1)! |( }) |x|t+e
2

2.7)

€ Ji42e-1
f Z ® ( ( € ) ;“i) (B (1 + 26)) ’ —;”j ( 1) dx .
- _ |2e-1 | — |2e= — —_ — 00,
Ri+2€ : \ 1+2¢,2 ﬁ 1 + 26 |u]| |u]| ]1+226 / |x|1+5 as

(j1+26 - 1) !
2
Ji+ ze

Proof For simplicity, we define (W¥j)142¢2(1+€):=exp(1+¢)— Z

24¢;
%forp()keNu{O}

where € = 0 and 0 < 8 < f54¢,. Then we can rewrite (2.7) as

s [ 2 e (2 (8 () el )
JRH Z (W)“”(ﬁ <2+e>| 1|2+6)|xc|l—1x+e- (2.8)

Hence, it follows from the mean Value theorem and the convexity of the function (¥;),, that

2, [t (ﬁ ) |(“’)"|2+6> = aeea 8 (532 10l )
j

<D unea (08 (52 Nl ©

€ +(1—9)/3( )lujlz—?)(lujle+l(u,)kl )I(uﬂk—ujl
J

s> (I(u,-)k|+|uj|)§<cbz+e,z< ()l = >+(ly)2+sz(ﬁ(2—ie> |u,~|2—?s)>|(uj)k—uj|
J

where 6 € [0,1].
Added to singular Adams inequality (1.4) give

3 (O (G 1000) - s )
= (|(uj)k|+|u"|)g<(%)2”'2( G )|(“f>k|2+e>+(%)2+e,z (¢ (z52) |u,-|2¥>>|(uj>k
J

dx
—u]-| |x|1+e

(2.9)
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2
< D lla) + e
J

x> 1®),,., (ﬁ (2 ¢

j

2+6)

1 2te _
+ (l}’j)2+€'2 <ﬁ <m) |Uj| € ) ” L1+€(R2+E;Ix|'(1+5)dx)|| (uj)k — U e (R2+€; |x| (1+€)dx)

"(uj)k - uj||LC(R2+E-|x|_(1+E)dx) (2.10)

where the constants € > 0 sufficiently close to 1 and H + ? + - = 1. Moreover, by the compact result of

Lemma 2.1, we obtain (2.7).
We are in a position to prove Theorem 1.1 (see [64]).

. 2+€
Proof of Theorem 1.1 Let ((uj)k ) be a bounded function sequence in >z (R?*€) such that lAu)k|zse =
2

1 and F2+51211+Elﬁ((uj)k) = Upse21+ep(R?T€) as k — co. Denote a new sequence ((v)x ) by (vj)k(x) =

@), (6,

F
2+€

x> for x € R2*€. Then it is easy to check that

1), e =1 wpillzse = 1
2 2

and

F2+e,2,1+e,ﬁ((vj)k) = F2+e,2,1+e,[s’((uj)k) = U24e2,1+€8 (R?*€) as k — oo
Thus we obtain a new maximizing sequence for u2+6‘2‘1+E‘B(R2+E) satisfying that ((vj)k) is bounded in

WZ'%(IRZH) n L%(IR{“‘). As a consequence, there exists a subsequence (still denoted by ((vj) k) ) such that
(V)i = vy in W = (]R{”E) n L 7 (]R”E)
By the weak semi-continuity of the norm in W22 (]R”e) n LT(R2+E), we derive that
1) oy, lase< 1, >y lases 1. 2.11)

Up to a sequence, we can apply Lemmas 2.1 and 2.2 to obtain that
Hz+e2,1+¢€p (R**€) = lim Z Faveza+ep ((Uj)k)

k—oo

- ;11-{2) fm{“ez ( 1)2+ez( (2+€>| >|x|1+e
2 ) (2.12)
f Z (z+2) 1) |2§ . dx
U, (Jﬁ - 1)?
R2+€E > ]2+E _ 1) 2 |x|
2+€
(o ) )
JRMZ 2re2 2+e€ Iyl e |x|1*e’
which implies that
#2+e,2,1+e,ﬁ(R2+e) < Fz+e,2,1+e,ﬁ(vj)- (2.13)

On the other hand, through the definition of ;¢ 14 (R?*€) and (2.11), we can write
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v.
J
/-42+e,2,1+e,ﬁ(]R2+6) ZZ F2+e,2,1+e,,8 r

Vj llzte
2
1 2+€,
I Av; 112, v 5.
3 J 26 ﬁ_z ] Ti(lR2+E:|x|_(1+E)dx)
- 1 il 2+€.
7 2 = iose— ) e !
Ty I3, izt I Av; ll55
2 2

1 \
= Z Forez14ep(V)) + ( ST oTe 1 Frre214ep(W)),
Jj

I AUJ "25—5( 2 ) 2_ 1
2€
which implies that || v; llz+e=Il Av; ll2+e= 1 and u2+6,2,1+6,5(R2+6) = Fy1e2,1+¢,4(Vj). Then we end the proof of
2 2

Theorem 1.1.
Now we have the following (see [64]):

Corollary 2.3 For € > 0, there exists a constant C ( 243¢

,2 4+ €,1+ €) such that

2+3€ 2+€
|u]| 2 2+€
R2+€ |x|1+6 ]R2+ez Iyl 2 dx (214
j

., 2+€
holds for all functions u; € W*72 (R**€) n LT(IR{“E) with [| Awj llz+e= 1
2

2+3€ 2+e€

Proof For > —<jz+s - 1), inequality (2.14) is a direct consequence of Theorem 1.1. We only need to

verify that 1nequallty (2.14) holds for € = 0. We can split the integral in inequality (2.14) into two parts.

| lﬁ | lzi | lzﬁ
f u]' 2 f u]- 2 j u]- 2
dx = dx + dx.
1+e 1+e€ 1+e
R2+€ ; [x| ac(u;) ; [x] o) ; [x] (2.15)
= [1 + 12,
where Q(u;) = {x | wj(x) > 1}. For I, by dividing the integral into two parts, one can obtain that
2+e 2+e
| 2 |z
I =f dx+f dx
actupnfiistityd G4 PP Jnctupofotomig, f G4 T
2+e
ff Z dx+f Z ﬂdx
et 2 ||+ c(u;) & 2 (2.16)
I'x' gl } ) Ty 02,
=z
1
2+€

24¢
J z |z dx
]R2+é ]
2+€

As for I, by setting |u;| = v; + 1, it follows from the singular Adams inequality in WZJT(Q(uj)) that

2+€

1 2+e€
I, sz 10(u) |7 < j Z | zdx| . 2.17)
Jj

Then the proof of Corollary 2.3 is completed.

III.  Proofs of Theorems 1.2 and 1.3
We use the arrangement-free argument in [28,29] with singular Adams inequality and Navier boundary
condition to show inequalities (1.6) and (1.7). By the scaling invariant form of singular Adams' inequalities, we
show the existence of their extremals (see [64]):
We proof Theorem 1.2. We first show that inequality (1.6) holds. By splitting the integral in inequality (1.6) into
two parts, we have
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2+e\  24e
[ Zexp (8 (o) ol e ) i
dx
]R2+E

|x|1+6

L i(2+€) 2+€ 3.1
) L

1 2+€ 2+€ Jz+s 2
avea (B (32) byl ) Iyl = (7=
= d
fuwez x| +e Z Z [x|T+e x
J Jj

i=0
= 11 + 12.
For I, choose € > 0 sufficiently close to 1 and (1 + €)f < B4, then it follows from the Holder inequality,
Theorem 1.1 and Corollary 2.3 that
1
1te (to@ie)  \Tie

1 2+e +e
[y Paren (1 + OB (52 Iyl e )dx [ Z e
reve & |x|1+e 2+e |x|1+e

1
24e
[ meor
R2t+€ ]

2+€
For I,, note the fact that I, consists of jz+e — 1 terms and the power of every term is larger than % Thus we
2

firg)
IA

(3.2)

IA

can apply Corollary 2.3 to employ that

J2te—2 i(2+€) 2+€

ZZ <ﬁ (2+e)) fRZ il |x|117:’| " ix

I, =
i=0
oY (LT o) e
i=0
2+E

N

2+€
[ weorFax
R2t+€ ]

This together with (3.1) and (3.2) yields inequality (1.6).
In order to obtain the sharpness of (1.6), we use the test sequence ((uj) k) introduced in [32]. Its definition is
given by

€ 1
1 2+e (2+¢€ 7ve x|? 2+€ 75 1 1\Z+e
<ﬁ2 “In k) ! Z)B““ =l . i Z)ﬁ“” — ifOSlxlS(—) ;
te In k\2+€ In k\2+e
()i = ( k ) ( k ) )
2 1 1\2+e
+ € n 2+eln —, if |- <|x| <1,
2 2+2+€1 k)77+en =, if 1
St if x| > 1,

where ¢, is a smooth function satisfying supp (Ck) c {|x| <23}
0% 2 2

Sljx=1 = O,E =2+ 6)ﬁzf:§(lnk) 2+€ Sk = <(1nk)2+5>:A§k =0 <(1nk)2+5>-

Jix|=1

Directly computations yield that

2+E

1

, we derive that

Z ()

J

~ Uk
Let V; =
ke = Tty lase

2 2+€
2+€

||A(17j)k||22£ = land Z ”A(u])k"2+e <A(n k)~ + B(In k)z—

2+e€
2
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Then we calculate as follows:

1 ex - (v]) (1) L
Z ”(ﬁj)k"%f . p<ﬁ (2 ¥ )||x|1+€| )| |
e, |2”

exp| S c (v
N N4 I Ll (“)le "

e o (8 () [ ©
> (o) 21 [ p(ﬁ(zlﬂ( ),

1 2+E
IXI

os.ca (£ (50) [

2+€
€ €
Gt P ON = )
> Ink Z 5, f dx
ﬁ2+e,2 : ”( 1)k||22j |x|s(1)2i+e |x|1+e
1
€ 2+e
>< ! lk)2 ! (3.4)
= n —_— .
ﬁ2+e,2 1_ :8
2+€,2

> 0asf = Boyieo

which completes the proof of the sharpness of (1.6).

The proof of the attainability of the best constant C(2 + €,1 + €) for inequality (1.6) is similar to that of
Theorem 1.1. In fact, by the scaling invariant form of the weighted Trudinger-Moser inequality, we can choose a

. 2+€
maximizing sequence ((vj)k) for C(2 +¢€,1+ €) satisfying that ((vj)k) is bounded in W?*7z (R?*¢) n

2+€
L™z (R2%€). Following the same procedure as that of Lemma 2.2 and Theorem 1.1, we can obtain
2+e

1 2te 2te
. <exp ( 2+€)|(vj)k| € >_1)|(vj)k| 2
’11—{2’ fR2+e z [x]|1te dx

2+e 2+e
g ») (o0 (8 Gt ©) 1)t

dx
R2t€

|x|1+6

and || Y; Av; llz+e=X; |l v; llz+e= 1, which 1mphes the attainability of the best constant C(2 +€,1 + €).
2 2

We now prove Theorem 1.3. We first apply the arrangement-free argument introduced in [29] and the weighted
2+€

Adams inequality in W, ? (Q) to obtain inequality (1.7). Indeed, by dividing the integral into two parts, we have

2+€ 2+3¢ 1 2+€ 2+3¢
f Z exp 2+e)|“f|e)|”f| e f 5 exp (8 (73) il < )yl 2
R2+eE ujitest &=

|x|1+€ |x|1+6

|x|1+€

2+e 2+3e
exp ( (750wl * )'”J" ’
J Z dx
u]|>1

=L +1 (3.5)
For I, setting |u;| = v; + 1 and using an elementary inequality

2+€ 2+e
luj| e < (1+s)v € +C., Ve >0,

one can obtain
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exp (1 () 0+ 0 Jew (8 () ) ™™

I Sf Z Tre dx
lujl>1 45 |x|

1

ex [i’( 1 )(1 + o)1+ g)j% e (2+36)(1+€) Tre
p 2+ € J p f (yj +1) 2€
X
Jujl>1
1

= ( =
Z f|u,-|>1 |x|**e / ;

(2+3€)(1+€) 1+e
(2+e)1(1+e) v 2
<D > ) [ et

|uj|>1

|x|1+6

1 1+e
Z > DIESE > 1y +z |{|u,|>1}|<2+€><1+€><f Wt“)
|uj|>1

1
2+e
2+3€
f Z w7 dx| . (3.6)
]R2+E ]

For I;, direct computations show that

zHey  243¢
[ Zexp( B () lwl e )yl 2
dx
|u]|<1

|x|1+6

2+3€ 2+3€

|u;| 2 |u;| 2
J J 3.7
f ( 2+23s\ x[i7e dx + 2+3e x[i7e dx 3.7)
243e} j wils1ind |x|>Nu;l Zie j
{|uj|s1}n |x|5||uj||2+23e {l j| } ] 2+235
2
= .111 + 112.
We can estimate I;; as follows
2+3€
lu;| 2
2+3€ |x|1+f dxdx
(ljlst)n] Ixlshu i35 ¢ 5
2
243¢ | IxI70+O 2+3€
202+ 202+
j Z {lxl <l ||25r3:)} dx =l 115352 (3.8)
p)
Similarly, we also derive that
|u.|2+23€ (2+3(E)(1)+E) 2436 2(+3€)
] 2(2+e€ — _ 2(2+€
f prers) de = Z Il II2+3 J lu;[ 2 dx =1l u; 545 (3.9)
fujlstind xlzii e b 5 7 {lujl=1} 2
2

Combining inequalities (3.5), (3.6), (3.8) with (3.9), we obtain the required inequality (1.7). Next, we show the
sharpness of inequality (1.7). Using the same test function sequence ((uj) k)k as that of Theorem 1.2, one can

easily calculate that
€(24+3¢)

2+3€ 2+3¢ (In k)2G+9 (In k)_22+—+3:
||(v1)k||2+3e <A(n k) Tre 2 +B - L

A O

”( ) ” 2(2+e) X
2+3e R2+€ |x|1+e

Then, it follows that
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2+e 2+3€
W ONE2] Rl OO
J 2+3e " < 1 2—+6 |x|1+e
2+€
€
: )
d

X

€(2+3€) _1
1 2@2+0 @2+3¢) exp (ﬁ (2 ¥ e)
() T 2N [

2+€,2 x|5(%)m x[t*e

( €(2+3¢) eXp( (2 + e) (5

2(2+¢€) )
In k) Z 15, ||z;ef m PR dx (3.10)
> 0asf > Boyes

Then, we show the attainability of the sharp constant C(2 +¢€,1+ €) for inequality (1.7). We need the
following compact imbedding (see [64]).

.o 1+2€ 2+3€
Lemma 3.1 For e>0,W* 2z (R"™*2)nL 2z (R™*?) can be embedded compactly into
L1+E(R1+26; |x|'(1+€)dx).
For the continuity of the proof, we postpone the proof of Lemma 3.1. With the help of Lemma 3.1, applying the
same method in Lemma 2.2, we can derive the following required convergence.

(exp (5 () 60,7 = 1) e, | 7

’11—{1; R1+2€ [x|t+e dx
¢ 142 243¢
EXP( 5z |”f|26‘1> - 1) Iyl ™2
fRMe Z i dx. (3.11)

Then, we can use the same procedure as Theorem 1.1 to obtain the attainability of the best constant. At last, we
focus on the proof of Lemma 3.1.

The continuity of the embedding is a direct result of inequality (1 7) and the Holder inequality. Then it is
sufficient to show that for any bounded sequence ((w);) in W* 2 (IR%”ZE) N LY (R*2€), there exists a
subsequence which we still denote as ((u])k) such that

,12?0 Z ”(uj)k - uj"L1+25(R1+26;|x|—(1+e)dx) =0ask —> oo fore =0.

j
Similar to the proof of Lemma 2.1, we carry out the process of proof by two steps.
Step I We first show that there exists a subsequence still denoted by ((uj) k) such that (u;), — u; for almost

x € R*2€_In fact, through Sobolev interpolation inequalities with weights (see Lin's work [41]), we can obtain
1 1

||Z Vi ||2(1+€)_Z I8 W 1

Then it follows from the Holder mequahty that
1+2€ 1+2€
f Z (V| z + |uj|—z )dx <C@)
Q =
j

According to the classical Sobolev compact embedding W'z(Q) < L1+2€(Q) for € > 0 and the diagonal trick,

one can obtain that there exists a subsequence (we still denote by ((uj)k)) such that (u;)(x) = u;(x),

strongly in LijZ€(R**2€), (u;), (x) = u;(x), for almost everywhere x € R'*2€,

Step 2 We claim that for any € > 0, (), = u; in L**2¢(R**2€; |x|~("*9)dx). Since the process of the proof is
similar to that of Lemma 2.1, we omit the details.

IV.  Proof of Theorem 1.5
We use the relationship between the supremums of the subcritical and critical inequalities in [33] to
establish the existence of maximizers for the singular Adams inequality with the Sobolev norm. We need the
following lemmas whose proofs can be found in [21], and [33].
Lemma 4.1 For € > 0, then ATA(*,t) is continuous on (O, [5’1+2€‘2).
Lemma 4.2 If € > 0, then
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€
2(1+€)

1 (1 + e>1+25(1+6)
B
14¢€ 1+25(1+6)
(559
Lemma 4.3 Fore = 0, if([? < Pii2e2 €= 0) or (ﬁ = P112¢2,0<1+e< 1+TZE), then

lim
1+e-0

ATA(l+¢e1+€)=0

€
2(1+€)

L (1 + 6)1+26(1+E)
B

(1 + e)1+26(1+6)

B
Proof of Theorem 1.5 (see [64]) With the help of Theorem 1.1, Lemmas 4.1,4.2 and 4.3, we establish the

existence of extremals for the singular Adams inequality with the Sobolev norm. We only need to prove that

lim
1+e-p

ATA(1+€,1+¢€) =0.

there exists an extremal function for A;,¢11e14e(f) in the case of (ﬁ’ < Piizep €2 0) or (,B = Piize 1+

€< —) It is easy to check that

1
2(1+e)

2e-1
L (1 + 6)1i26(1+€)
B

lim ATA(B, 1+ €) < Aiieire+e(B)

1+€-0 <1 + E>i+26(1+6)
B
and
1 <1 1+25(1+€)
lim

1+e—>1+€ (1+E) \ ATA('B’ 1+ E) < A1+6,1+6,1+6(,8)
\ (1 1+25 /

On the other hand, we also have

€
1+e¢ 1+2€(1+6) 2(1+¢€)
gl
i)
Aiierrenre(B) = sup ATA(1+€,1+é).
1+€€(0,8) (1 +e 1+2E(1+6)
i)

This together with Lemma 4.2 and Lemma 4.3 yields that there exists 1 4+ € € (0, 8) such that
€

2(1+e)

" (1 + e)1+2€(1+€)
B

(1 + 5)1+ze(1+€)
B

Assume that u; € w2 (IR{HZG) with || ¥; Au; ||1+ze< 1=%; lly ||1+ze is the maximizer for ATA(1 +
€,1+ €). Define

ATA(1+€,1+€) = Aiicrve14e(B)

2e—-1
1+ e\1+2¢
vj(x) = (—— u; (Ax),
B
Jj
_1
(1 + € i+2€(1+6) 2(1+e)
)
A= Ze—1
L (1 + e)1+26(1+€)
B

then it follows that
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(1+e) (1+€)

1+¢€ 1+ZE 1+¢€ 1+25
||Z v, I ( ; ) Dy s (T)
- 2

J
1+¢€ 1+ZE
||Z v 15 = ( ; )

1 1+¢€ 1+26
e My liEe= 1 5 )
- 2
1+€ 1+€

J
which implies that || Av; ||1+25 +l v ||1+25< 1. Hence,

(1+e) (1+e)

2(1+€)

—_— —_(1+€) 1+2€
1— (1 + e)1+2€ D 0er ((1 +¢€) ( ) |w; |m)
B ’ 1+ 2e/'
A1+e,1+e,1+e(ﬁ) = Z . do
1+¢€ 1+25(1+5) / Ri+2e &= |x|
(%)
_€
2(1+€)
1+¢€ 1+2 2e(1+6) 142e
1- ( B ) Dy yae2 ((1 +¢€) (1 T e ) lu; (ﬂx)|26—1>
) Troe j ). Tre d(Ax)
1+¢€ 1+26(1+E) R1+2€ |/1x|
)
1+ e\trze+e) 2079 e
_ 1_< B ) j‘ Z cD1+262( 1+26)|v]| )dx
R1+2€ |x|1+6

1+e€ 1+25(1+6)
\ () (1)
€ 1+2e
f z D262 (B < 1+ 26) |Vj|26‘1)
]Rl"-zé

|x|1+e

dx.

This implies that v; is actually a maximizer for A; ¢ 14¢14+¢(B)-

V.  Proofs of Theorems 1.7, 1.9 and 1.11
We show inequalities (1.8) and (1.9) which equipped with the Dirichlet norm and the existence of their
extremal functions. The arrangement-free argument in [29] is a useful tool in dealing with the Trudinger-Moser
and the second-order Adams inequalities. This method may fail when we come to consider the higher order
inequalities. We use the method based on Fourier transform to establish (1.8) and (1.9). We need the following
(see [64]).
Lemma 5.1 For any 8 € (0, ,32(24,6),24,6), there exists a positive constant Cg such that

dx < Cg, (5.1)

3+¢€
J Z q)2(2+e)2+e( (2(2 ¥ 6)) |u]|2>
R2(2+€)

|x|1+E

where u; € W€2(R*+9), |3, v2*reu|| <1 and Iy ll,=1
Proof We first claim that for any fixed § € (0, ,82(24,6)‘24,6), there exists sufficient small € > 0 such that for all
€ W2+e?(R22+9) 0 [2(R2Z+9)) with ||V2+Euj||2 < 1and |l u; ll,= 1, there holds

‘ 2
Indeed, by Fourier transform, we have

Z ((1+e) — A)¥u]
Jj

.82 (2+€),2+€

@+ar-n7 ) | <= 52)

J

2+€
Z Z Czjﬂ’re(l + 6)2+E—j°||Vj°uj||§.
. ;

Thanks to the Sobolev interpolation inequalities, one can derive that for every € > 0, there exists a positive
constant C, > 0 such that

Z A+l - 1)y,
Jj

2
<@+ Y I ull+ca+e Y I,

2 Jj Jj

which implies inequality (5.2). With the help of Theorem D in [29], we derive that
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3+¢€
¢2(2+e)2+e< <2 2 )|uj|2)
f Z (2+¢) dx
R2(2+€)

|x|1+6

Py24e)2+¢ | B (2(32%) ”((1 +e)l— A)zziuj || |((1 N 6)[ _ A)Zu] ”

= dx
fR2<2+e) Z |x|*+e

2

3+4+e€ Uj
Dy246)2+€ ﬁz(z+e)2+e 22 +¢) ||((1 f ol A)%u "
j
< 2L dx < Cp, 5.3
- J-]RZ(2+€)Z ||t +e - (>3)

which finishes the proof.
With the help of Lemma 5.1, we start the proof of inequality (1.8). In fact, for any u; € W2*€2(R*(2%9)
1

satisfying  [|X; V2*eu]|. <1, we define (u);(x) =u;(Ax) with A= u; 19", Through direct
ying j jll, j j j il

calculations, we derive that
2

— 1—2(2+6)Z I u} ”2_

2
Z Y | Z 72+l =
j

J_ Z ¢2(2+e),2+e (.3 (%) |(uj)/1|2)
R2(2+€)

|x|1+6

(u])l

dx

dx.

3+e€ 2
— 1—2(3-{-6)] Z q)2(2+6)'2+€ ('B (2(2 + E)) |u]| )
R2(2+€)

|x|1+6

Then it follows from inequality (5.1) that

3+¢€ 3+¢€ 2
f Z Dy216)24€ ( <2(2 ¥ E)) |u] ,13+€j Z Di24e)24€ ( (2(2 ¥ E)) |(uj)l| )
R2(2+€) ; R2(2+€)

[x|tHe |x|T+e

dx

< AS+EC
3+e ) (5.4)

_ Cﬁz I, 2(2+e)
Next, we show the sharpness of inequality (1.8).
We will modify the idea of constructing test functions for the Adams inequality on domains of finite
measure in Euclidean spaces [2]. Let ¢ € C5°([0,1]) such that

$0) =¢'(0)=-=9¢"*0)=0,¢(1)=0¢'(DH=1
$"(1) = =¢Me1) =0
For0<£<§,set

1+e€
eqb( ), if0<l4+e<e¢

&
H(1 + €): = 1+e, ife<l4+e<1-¢
' —€
1—s¢(?), ifl-e<l+e<1
1, ife > 0.

For any fixed € > 0 sufficiently small, we define
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1
log IEd]
(¢j)1+e(|x|): = H£(1+e) - 1
log 1+e€

. Obviously, ())14c € Wy “*(B;) and

(¢j)1+e =1lon Bl+e

where e(1 +€) = . ! I
og—

1+€

It was proved in Adams [2] that

D V@
J

2 -1

1
< 2@+ Bagrozre (108 1) Avve

2
where

Appei=1+40

l0g1+6

Moreover, direct computations show

1
I ssell, s ——

log 1+e
Define
)1
(uj)1+e:= Jre T
" (e +eyp (1o L)_lA :
2(2+€),2+€ g 1+¢€ 1+€
By direct calculations, one can obtain that
D V)| <1
) 2
and
2
) I el !
"(uj)1+e”2 ~ Z 1 1 = 1
7 (log 75) Ave B TE
Let 14+ € — 0, it follows that
3+e -
lim z fR2(2+e) CI)2(2+€) 2+€ (B2(2+e) 2+€ <2(2 +E)) |( 1)1+ | )lxl (1+€)dx
1+e-0 =T
, I, )
3+€ 3
2(2+e€) +€ 2
B i —(1+¢€)
2 tim (log—— ) BZ exp (Bacrozee (507 55) |(8),e] ) 1170+ 9ax
1 2(2+e) 1
— I -1 —(1+€)
1136“-1»0 (log T e) LHE exp <(3 + ¢€) log T €A1+6) [x] dx (5.5)
3+€
i 1 1 \2z+e 1 34e 3 1 1 A1
2 i (o) 0 e (@ tog Ak
3+e
S 202+e) 1 1
2 tim (log— )" exp (22 + © ~ (1 + ) log g (AT~ 1)
3+€
> i 1 1 \2(2+e)
~1+lerr—l>o(og1+6> o

which completes the proof of sharpness.

At last, we show the attainability of {45(24¢)2+¢,14¢,5- Just as what we did in Theorem 1.1, we need the following
compactness lemma (see [64]).

Lemma 5.2 For €>0, then W?2*¢?(R*%*9)n[2(R*?*9) can be compactly embedded into
L2+E(R2(2+6)’ |x|—(1+e)dx).
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Proof The proof is similar to that of Lemma 2.1 once we prove the equivalence between the space
W2tez(R22+9)) 0 [2(R*?%9) and the standard Sobolev space W2*t€2(R*2+9). Indeed, it suffices to show
that
lot*ew |2 <l w; 13+ |V2*u|)”, Vi1 +e| < 2 +e. (5.6)
We first prove the
Ve ll2 sl w 13+ [V2*ew|’,  ve=01+e€N. (5.7)
In fact, by the Fourier transform, we have

2
f Sy, - f > e
R2(2+€) > R2(2+€) 7

2(2+€))|4y. 2
SLZMZ (1 + 1§12 |8(9)17dg

[ Y werd| Y
R2(2+€) &= R2(2+€) b=
] )
2
=f > |uj|2dx+f > e[
R2(2+€) i R2(2+€) 7

Combining this result, in order to obtain the equivalence result, we only need to show that

2
Z 9% sz 71l | (5.8)
7 , 7

One can derive it by induction. For |a| = 2,a = (@, ay, *, @142¢), there exist a; + a;4 = 2 such that 9% =
62
0xj0x14¢

de

0;(§)|°dg

9P . Hence, it follows from the Fourier transform and the Riesz transform that

A
E aa’” Z '”.
‘ J fRZ(Z €) | (a'xy ax +€ ])

B fR2(2+e) Z ! 4n2€j€1+663u175|2d§

fR2(2+E)Z |<_lﬁ) ilae) (41%|€]) 9P, (:

= [ oo 20 |(BRusca(@ru)) @l a
J

Then, with the help of the induction and the definition of V?*€, one can get

A 2 2 2 2

| o2 [RRa@ ) @ de <) 0@l < ) IV syl = Y 19,
R - - - -
] J J J

which proves the required equivalence.
Now we show that the best constant fy(z4e)2+e1+¢p could be attained by a function in W2+&?(R2(*)) n

L2(R?+9)). Assume that ((w))14¢) © W2H2(R22+9) 0 [2(R2(2+9) satisfying

2
g

df

Z V2+€(uj)1+eH = 1and F2(2+e),2+e,1+e,[>’((uj)1+e) - H2(2+e),2+e,1+e,ﬁ(RZ(HE)) as1l+ e — .
J 2
1
Constructing a new function sequence ((v)14¢) defined by (V))14¢(X):= (U)14¢ (||(uj)1+e||?x) for x €

R2(2*€)_ one can easily verify that
172" @sell, = L N@W1ell, =
and
F2(2+e),2+e,1+e,/3((Vj)1+e) = F2(2+e),2+e,1+e,ﬁ((uj)1+e) = HU2(2+€),2+€,1+€,8 (R2(2+6)) asl+e—o oo
Hence, ((v})1+¢) is also a maximizing sequence for fiy(z4e)2+e1+6,8(RZ?*). Note that ((v})1+¢) is bounded
in W2*t€2(R22+9)) n [2(R?(+9), thus up to a sequence, we may assume that
(Uj)1+g N Uj in W2+€,2(R2(2+6)) n LZ(R2(2+6))_
It follows from weak semicontinuity of the norm in W2*¢2(R?+€)) n [2(R2(*+€)) that
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Z v2+6vj Z vj

i 2 J 2
Then, implementing same procedures as we did in Lemma 2.2, we have

<1 <1 (5.9)

’

lim f Z (¢2(2+e)2+e( ( ore )|( 1) ) (ﬁ) |(uj) 2>d—x
e Jpare £ ' 22 +e) 1+e 22 +e) t+el J|x|tte
2 (e () -8 () ) i o
R2(2+€) 2(2+¢€) ] 2(2+¢€) J |x|1+€
Combining (5.10) w1th Lemma 5.2, we derive that up to a sequence,
#2(2+6),2+6,1+6,B(R2(2+e)) = f]RZ(2+e) Z (D2(2+e),2+e (ﬁ (%) |(vj)1+€ 2) % + 0(1)
S v (5 ) o
R2(2+€) > ’ 22+¢€) Yi |x|1+€
which implies v; # 0. Then we can deduce from (5.9) and (5.11) that
R2(2+e) q)2(2+e) 2+€ (ﬁ <2€2-:_EE)) |vj|2> |x6|iic+e
H2(2+e)2+e1+e,8 (R2(2+6)) Z 5 1te
v ll, 2*€
= FZ(Z+6),2+6,1+6,ﬁ(vj)- (5.12)

Therefore, it remains to show that ||V2+€17j||2 = 1. By the definition of fy(4¢)24e14cp(R*?19) and (5.9), we
see that

v.
.Uz(2+e),z+e,1+e,ﬁ(RZ(ZH)) = Z Faa+e)2+e1+ep <W>
j /T2

3+€

0 .
F 2 —2i
=Z Z 7 10 Wzigeare-rveqn)ll 91 1z J2F€ [|v2tey, ||2+e (5.13)
j

i=1
_lte
= Z F2(2+€),2+e,1+e,,8(vj) + Z (”V2+Evj”22+6 - 1) F2(2+e),2+e,1+e,B(vj)

j j
This together with (5.9) and (5.12) implies that [|[V2*€v; ||2 = 1. Then we complete the proof of Theorem 1.7.

The Proof of Theorem 1.9 (see [64]) We first establish inequality (1.9). Just as what we did in Theorem 1.2,
we divide the integral in inequality (1.9) into two parts.

jmazme) Z =~ (ﬁ (2(32—:66)) Iuj|2) |u;|?

|x|1+E dx
3+¢€ 5.14
f Z P2 (2+6)24¢ | B < <2(2 T E)) |y 2 |u] p f |u] G19
: f3
R2(2+€) > |X|1+€ R2(2+€) |X|1+E

= : 11 + 12.
By applying the Holder inequality and inequality (1.8), one can estimate I; as follows
1

3+e Z+e Tre
Dy 246)2+¢ (B(Z +€) (m) |uj|2> Iuj|2(¥) e
L < Z f dx j L LR
! R2(2+6€) R2(2+€)

- |x|1+€ |x|1+6

3+€ 3+€

2(2+€)? 2(2+€)?
< Z f ;|2 dx f |2 dx (5.15)
7 R2(2+e€) R2(2+€)
3+€
fzm ) z |u].|2dx
€
R j

2(2+€)
where € > 0 and B (1 + €) < By246)2+¢- As for I, it is an immediate result of inequality (1.8).
One can deduce the sharpness of inequality (1.9) from the sharpness of inequality (1.13).
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In fact, one only needs to observe the following fact
3+¢
Iu, |u;|?

3+e€ 2
f Z exXp 2(2+6) j " >f Z q)2(2+e)2+e 2(2+E) |uj| 4
X
R2(2+€) |x|t+e R2(2+€)

|x|1+6

For the atta1nab1l1ty of the best constant C(2 + €,1 + €) of mequahty (1.9), one can manage the same steps as
what we do in Theorem 1.7 to obtain the required results.
The Proof of Theorem 1.11 (see [64]) We first employ the Fourier rearrangement tools to prove there exists
radially maximizing sequence for ,uz(zﬂ)yzﬂyoyﬁ(Rz(“e)). In fact, assume that ( (4;)14¢ ) is @ maximizing
sequence for fy 246y 2405 (R* @), that is
2+e
(=8) 2 (W)1+e
j 2 .
Define (4j)}+e by (4j)i4e = F71 {(F((uj)1+e)) }, where F denotes the Fourier transform on R?(+€) (with its
inverse F~1 ) and f* stands for the Schwarz symmetrization of f. Using the property of the Fourier

rearrangement from [35], one can derive that
2+e 4 2+€ #
PIRGIIRACH IE RN [TV CH N I DI CH N IEDI (O
j 2 J J 2 )

> @] 2D @,
J 1+e S

Hence, lim1+e—>ooF2(2+e),2+e,0,[s’((uj)1+e) < 1im1+e—>ooF2(2+6),2+e,0,[?((uj)§+e)a which implies that ((uj)ﬁﬂ;) is
also the maximizing sequence for u2(2+€)‘2+€‘0‘ﬁ(IR{Z(“E)). Constructing a new function sequence ((vj)1+5)

=1, 111€m F2(2+e)2+eo,8((u])1+e) - #2(2+e)2+eoﬁ(R2(2+6))

1
defined by (Vj)14¢(%): = (U)14e (||(uj)1+e||?x ) for x € R*?*9), one can easily verify that ( (v})14, ) is also

a maximizing sequence for p(zieyz+e0p(R*?HE) with ||V2+6(vj)1+f||2 =1 and ||(v]-)1+5||2 = 1. Note

((¥)1+) is bounded in W2*2(R?Z*9)), up to a sequence, we may assume that
(V))14e = v; in W22 (R2(2+9)) 0 [2(R2(249)),

thus v; satisfies that Il v; l,< 1 and ||V2+€vj||§ < 1. Since W2*¢2(R??*9) ) can be compactly imbedded into

L2+€(R2(2+€) ) for any € > 0 (please refer to [7], Lemma 5.3), implementing same procedures as what we did in

Lemma 2.2, one can deduce that

. 2 2
Jm [ Z (®aarerase (Blassel”) - Blavdnal”)

:J Z (P2z402+e(Blui1?) = Blus|?) (5.16)
R2(2+€) 7
Then it follows that
H2(2+€),2+€,0,8 (RZ(ZH)) = z Fyve)2+€0,8 ((Vj)He) +0(1)

-[]RZ(2+€) z Parerzve ('B |(v])1+ | )dx +o(1)

2
* JIRZ(HE)Z ®2(2+E)'2+E ((ﬂ |(vj)1+e ) —B |(U1')1+€
+J Z (®2(2+e).2+e(ﬁlvj|2) —ﬁ|vj|2)dx
R2(2+€) 7

Next, we show v; #0. Indeed, one can pick (w), in W?*4*(R*?+9)) 0 [2(R*?*9)) satisfying
IV2*€(w;)oll, = 1 arbitrarily. Then, we have

(5.17)

2) dx +o0(1)
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2
_ Z f]Rz(z+e) q)2(2+e),2+e (ﬁ|(u]-)0| )dx
- 2
j 1ol
w B’ 2j
el (OO

= Z 0.
ol

j

H22+€),24€,0,8 (R2(2+6)) = F2(2+e),2+e,0,ﬁ((uj)0)

Jo 2
£5-0 B ol

=B+ _ Jo >
Z 165Dl

Hence,

J; @ (Blvj1?) = Blv;|*dx

R2(2+€) 2(24€),2+€ j j

Hz@+e)24e08(RECTD) < B+ Z 2
v 12
fR2(2+€) ®2(2+€)2+6(ﬁ|v] )dx
Z 2 F2(2+e),2+e,o,ﬁ(77j)-
v, I

Therefore, it remains to show ||V2*€v; || - 1 Recall that ||V2*€v; || < 1, it suffices to show that ||V?*€v || >1.

Through the definition of ty(;16)2+¢,0 E(RZ (2+€)), one can obtain that

v.
.“2(2+e)2+60,8(]R2(2+6)) = z Fa2+e)2+€0,8 (”Vz+ejv || )
Z Z ‘310 Il v “2]’0 ”Vz,rev_"z—zj'o
Jo! v 12 T2
_ o || v; 1122
- g4 Iy 13 oo bl + z z prlY 2;) (5.18)
2 v 15 Jo! i3
|‘U "4 -2
Z F2(2+e)2+eoﬁ(v]) 2 z e ”2 | 2+EUj"z - 1)

v I -2
= H2(2+e)2+eoﬁ(R2(Z+E)) + 5 > Z —— "2 (||V2+EUJ I 1)

which implies that ||V2+Ev]-||§ > 1. Thus, v; is a maximizer for y2(2+6),2+6,0,ﬁ (Rz(“f)) which completes the
proof of Theorem 1.11.

6 Proofs of Theorems 1.12 and 1.13

We show some applications of Theorem 1.1 and Theorem 1.7. We first show the higher order critical Caffarelli-
Kohn-Nirenberg inequalities which are not in [40]. We also investigate the relationship between the best
constants of the singular Adams inequality and the Caffarelli-Kohn-Nirenberg inequality in the asymptotic
sense.

Proof of Theorem 1.12 (see [64]) We first give the proof of inequality (1.10). Denoting

14+2€
Dii2e2|B ( |uj|25‘1)

dx
fR1+2s z |9C|1+6

1+2€
1+2€

<C(1+261+€) J Z OOl 2 dx |V € WP T (RI2€) with || A lsse< 1
R1t+2€ 7 2

then for any B < fB,, there exists a constant C(1 + 2¢,1 + €) > 0 such that for u; € W 2 (]R”ZE) and 1+
€ = ji+z2e — 1, there holds
2
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1+2¢
2e—1
Y
€ € Au;
||IH ”1+25 ” ] ”1tf€
C(1+2¢1+e€ Z f Z N
( ) ; Il A ll142e Ay II1+25 R1+2€ e
1+2€
—(1+€)
prre ;i ﬁ(ns)(nguze x|~ gx) e
B ‘ 6.1
(1+e)L I Au; ll1+2e .
7 2

1+2€
which implies that for u; € W* 2z (R*2€) and 1 + € > jasze — 1,
2

2e—-1 €

(1 + e)l\a+2a0+a 2z)are
1 585 s e an0 S <c(1+26,1+e) fiie Dyl
J

+2€
I 2
€
1+2€
2( )(1+e)
I Au; 4,2t (6.2)
—z
1+2€ (. 1+2€
For any 1+€ > m(]ﬂ - 1) there exists 1+ € > ]1+Ze — 1 satisfying —(1 +e)<1l+e <3 ( )
- 2
such that
0
. B < )
II Z u] ”L1+E(R1+2€‘,|x| (1+e)dx)_ Z Il u] "L;:Ef(ue)(R1+26;|x|_(1+5)dx)
1-6
I Uj ”L;:Ei(ﬂé)(R1+25;lx|—(1+e)dx)° (6'3)
Combining (6.2) with (6.3) and the fact 1%5 = 1+2:()1+ 5 1+215229 , one can conclude that
2e—1
2€
— —ﬁ 1 1-:‘26 2(1+2€)
Il u; ”L1+E(1R1+25;|x|'(1+5)dx)S C(l + 26,1+ 6)1+2€ﬁ 1+26((k + 1)) I u u; "1+25
j j
2+€
Il A (120529 (6.4)
=z
since @+e)ze-1) > 1+ €, we have
1+2¢ )
2+ enme < (p(EFOC =D e (6.5)
Ni+e .
« €)) - 1+ 2¢

By (6.4) and (6.5), one can derive inequality (1.10) with estimating c(1 4+ 2¢,1+¢€,1+€) = C(1+ 2¢,1 +
1
1 26-1 _ Tre
€)TreB iee (1‘ (Broe=ny 2))“6.
Next, we claim that there exists € > 0 such that c(1 + 2¢,1 4+ €,1 + €) behaves like c(1 + 26,1+ €,1+€) =

2€—-1
(14 €)(1 + e)1+ze as 1 + € —» 400 which is equivalent to say by recalling Stirling's asymptotic formula, we see

thatas 1+ € — oo,

2e—1
1+2€
F(1+E)(26—1) ) e . . 1+e¢
(i 7)) -arow Jivze
2e —1
Therefore, we derive that
2e—-1
1+2¢ 2¢ 2+€
1+ 2e
n Z  Ipeeguoszeg-nsaanS 1+ o) —e—go ]| D, 1y Gy 157 66)
pe (152¢) J 7z

which accomphshes the claim.
At last, we show the relationship between f and @142¢ 1+,
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e—1
AX142¢1+€ = inf{e 20:31+e=> ]1+2l; Ve =0,ll Z U; ”L1+5(1R1+25;|x|‘(1+5)dx)S aA+e(1+ 26)1+2€Z

j j
2€ 2+€
2(1+2¢ 2(142¢
Iy 150 2l Ay 11552
2 2

where according to the definition of a;.;¢14e, combining inequality (6.6), one can derive that a; ;¢ 146 <
2€—1

1+2€
(ﬁ) . Then it follows from the definition of j, that
BeZe—l S
1 1+2¢
A1t2¢1+e = 17+ 2¢ (6.7)
Boze—1
Then it suffices to show that
2e-1
1+2e
1
Urv2e1+e 2| {1 2¢
026 —1
Pick any a > @147¢ 1+, through the definition of @ 45¢ 14¢, there exists 1 + € > ji+ze such that for any € > 0
26—1 2e 2 2+e
I Z ” ||LHE(Ruze:lxl_(He)dx)s (1 +€)(1 + 2¢)Tr2¢ Z I 12579 Ay ||§(+1:25) (6.8)
2

J J
Then for u; € w2z (R”ZE) and || Au; ||1+2€< 1,

1+2€
Pysaea Byl )

dx
fR1+ZEZ |x|1+€

1+e 142 d
'87 |u-(x)|T—i(1+6) X
~ (1+er’ |x[+e

142
T lt2e ie<ite J

J252e-1

1+e 142 d
+f 2. 2. L e |
R1+2€ & 1+e)! [x|t+e€

1+2¢
26_1(1+€)21+e

=1+ /2 (6.9)
Since J; consists of finite weighted norms and 12 e (1 +€) < 1+ €, one can get

Ui |l 142 _CZ IIu || I I 6.10
||Z i ”Lf—f““)(]}%l”e;lxl_“edx) a J ﬁ(muze |- (“E)dx) Uj L“E(]RHZE x|~ (1+e)dx) ( )

1+2€e
2e-1

(1+e)<1+e,

€

2325
I Z U | ;:25(“‘?)(“&“26 x|~ 1+€ax) CZ I, "” ’ (6.11)
J

where we used the fact that || Au; ll1+2¢< 1. Then it follows from (6 11) that
2

1+€
hsC > b >y 2., (6.12)
i 2

1+ZE 1+2¢ (1 + E)! j
5 S5 1(1+<—:)<1+e
For J,, inequality (6.8) leads to
1+, 14 2¢ 1+e
;:_zi(1+e)21+e J ¢
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1+2€
Then it follows from the Stirling's asymptotic formula that the power in (6.13) converges if 8 g (1+e)ze1<

1 S 1 . 1
= which implies that § € (0, m) Hence, the definition of S, leads to S, = . Tz Moreover,
€2e—1% s (1+e)26T
through the definition of @y ,¢ 14, we get that
1
Bo 2
1426 222

€5 — 1% +2¢e1+€

which is equivalent to
2e—1
. Trze
Uizette 2| T 726 (6.14)
¢2e—1Po

Combining (6.7) and (6.14), we complete the proof.
Remark 6.1 The proof of Theorem 1.13 is similar to that of Theorem 1.12.
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