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Abstract 
Following L. Chen, G. Lu and C. Zhang [64] we show the existence of extremals for sharp weighted Trudinger–

Moser–Adams type inequalities with the Dirichlet and Sobolev norms. We follow the method based on level-sets 

of functions and Fourier transform to generalize the weighted Trudinger–Moser–Adams type inequalities with 

the Dirichlet norm in 𝑊2,
1+2𝜖

2 (ℝ1+2𝜖) and 𝑊2+𝜖,2(ℝ2(2+𝜖)) respectively. When the mentioned first order and its 

existence of extremal functions was obtained by using a quasi-conformal type transform, such a transform does 

not valid for the Adams inequality involving higher order derivatives. Through the compact embedding and 

scaling invariance of the subcritical Adams inequality, we estimated the best constants. We also follow the 

method developed the supremums of the critical and subcritical inequalities and show the existence of extremals 

for weighted Adams’ inequalities with the Sobolev norm. Now using the Fourier rearrangement inequality, we 

reduce the  problem to the radial case and then show the existence of the extremal functions for the non-

weighted Adams inequalities. We derive new results on high-order critical Caffarelli–Kohn–Nirenberg 

interpolation inequalities for more parameters and show the relationship between the best constants of the 

weighted Trudinger–Moser–Adams type inequalities and the above inequalities as applications. 
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I. Introduction 

We study and treat higher order on Sobolev spaces 𝑊2,
1+2𝜖

2 (ℝ1+2𝜖) and 𝑊2+𝜖,2(ℝ2(2+𝜖)) the 

maximizer joint the singular Adams inequality. The known Sobolev embedding theorems established on 

bounded domain raised that 𝑊0
1,1+𝜖(Ω) ⊂ 𝐿1+𝜖(Ω) for ϵ ≥ 0 which improve the exponent. When 𝜖 = 0, this 

exponent tends to infinite so 𝑊0
1,1+2𝜖(Ω) ⊂ 𝐿1+𝜖(Ω) for 0 ≤ 𝜖 < ∞, but 𝑊0

1,1+2𝜖(Ω) ⊈ 𝐿∞(Ω). (see for 

instances [59], [19], [55] and [54]). The growing process of the embedding. Hence named the Trudinger-Moser 

inequality and stated as. 

Theorem A [54,59] Let Ω be a bounded domain in ℝ2+𝜖, 𝜖 ≥ 0. Then there exist a positive constant 𝐶2+𝜖 and a 

sharp constant 𝛼2+𝜖 = (2 + 𝜖)𝜔1+𝜖

1

1+𝜖  such that 

1

|Ω|
∫  
Ω

∑ 

𝑗

exp (𝛼|𝑢𝑗|
2+𝜖
1+𝜖) 𝑑𝑥 ≤ 𝐶2+𝜖 , 

for any 𝛼 ≤ 𝛼2+𝜖 and 𝑢𝑗 ∈ 𝐶0
∞(Ω) with ∫

Ω
 ∑  𝑗 |∇𝑢𝑗|

2+𝜖𝑑𝑥 ≤ 1, where 𝜔1+𝜖 stand for the surface area of the 

unit ball. 

The authors of [6] establish the existence of extremal functions of Trudinger-Moser inequality when Ω is a ball 

in ℝ2+𝜖. Extended results of [14] to bounded domains in ℝ2 and by [41] in ℝ2+𝜖 for 𝜖 > 0. [49] investigated the 

blow-up of a sequence of the Trudinger-Moser functionals on the planar disk. 

Also for more extensions of Theorem 𝐀, see [5], [10] and [1], etc. We state from [1] the following: 

http://www.questjournals.org/
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Theorem B [1] For 𝜖 ≥ 0 and 0 < 𝛼 < 𝛼2+𝜖, there exists a positive constant 𝐶2+𝜖,𝛼 such that 

sup
𝑢𝑗∈𝑊

1,1+2𝜖,∫ ∑  𝑗  ℝ1+2𝜖
|∇𝑢𝑗|

1+2ϵ
d𝑥≤1

∑ 

𝑗

 
1

‖𝑢𝑗‖𝐿1+2𝜖
1+2𝜖 ∫ Ψ𝑗(𝛼|𝑢𝑗(𝑥)|

1+2𝜖
2𝜖 ) 

ℝ1+2𝜖

𝑑𝑥 < C1+2𝜖,𝛼 ,            (1.1) 

 

where Ψ𝑗(1 + 𝜖): = 𝑒
1+𝜖 − ∑𝑖=0

𝜖  
(1+𝜖)𝑖

𝑖!
. Hence, the constant 𝛼2+𝜖 is sharp if 𝛼 ≥ 𝛼2+𝜖, then the supremum will 

tend to infinite. 

When approaching the singular Trudinger-Moser inequality in ℝ2+𝜖. The authors in [18] investigated the scaling 

invariant form of the singular Trudinger-Moser inequality for radially symmetric functions and showed the 

existence of a maximize. Then: 

Theorem C [18] Assume 𝜖 ≥ 0,−∞ < 𝑠 ≤ 1 + 𝜖 < 2 + 𝜖 and 0 < 𝛼 < 𝛼2+𝜖: =
𝜔1+𝜖

1
1+𝜖

2+𝜖
, then there exists a 

positive constant 𝐶 = 𝐶(2 + 𝜖, 𝑠, 1 + 𝜖, 𝛼) such that the inequality 

∫  
ℝ2+𝜖

∑ 

𝑗

Ψ𝑗 (𝛼 (
1

2 + 𝜖
) |𝑢𝑗(𝑥)|

2+𝜖
1+𝜖)

|𝑥|1+𝜖
𝑑𝑥 ≤ 𝐶∑ 

𝑗

(∫  
ℝ2+𝜖

 
|𝑢𝑗(𝑥)|

2+𝜖

|𝑥|𝑠
𝑑𝑥)

1
2+𝜖−𝑠

,                   (1.2) 

holds for all radially symmetric sequences of functions 𝑢𝑗 ∈ 𝐿
2+𝜖(ℝ2+𝜖; |𝑥|−𝑠𝑑𝑥) ∩ 𝑊̇1,2+𝜖(ℝ2+𝜖) with ∥

∇𝑢𝑗 ∥2+𝜖≤ 1, where 𝑊̇1,2+𝜖(ℝ2+𝜖) denotes the class of functions 𝑢𝑗 which are locally integrable and ∥ ∇𝑢𝑗 ∥2+𝜖 

are in 𝐿2+𝜖(ℝ2+𝜖). The constant 𝛼2+𝜖,1+𝜖 is sharp for the inequality. 

They also showed that when 𝑠 = 0, the constant 𝐶 has an infimum and could be attained by some functions 𝑢𝑗 ∈

𝑊1,2+𝜖(ℝ2+𝜖). However, when 𝑠 ≠ 0, they only verified inequality (1.2) and the existence of extremals on the 

class of radial functions. A natural problem is whether we can remove the radially symmetric condition for 

functions 𝑢𝑗 in inequality (1.2). [13] gave an answer. 

Theorem D [13] Assume 𝜖 ≥ 0,−∞ < 𝑠 ≤ 1 + 𝜖 < 1 + 2𝜖 and 0 < 𝛼 < 𝛼2+𝜖, then there exists a positive 

constant 𝐶 = 𝐶(2 + 𝜖, 𝑠, 1 + 𝜖, 𝛼) such that the inequality 

∫  
ℝ2+𝜖

∑ 

𝑗

Ψ𝑗 (𝛼 (
1

2 + 𝜖
) |𝑢𝑗(𝑥)|

2+𝜖
1+𝜖)

|𝑥|1+𝜖
𝑑𝑥 ≤ 𝐶∑  

𝑗

(∫  
ℝ2+𝜖

 
|𝑢𝑗(𝑥)|

2+𝜖

|𝑥|𝑠
𝑑𝑥)

1
2+𝜖−𝑠

 

holds for all functions 𝑢𝑗 ∈ 𝐿
2+𝜖(ℝ2+𝜖; |𝑥|−𝑠𝑑𝑥) ∩ 𝑊̇1,2+𝜖(ℝ2+𝜖) with ∥ ∇𝑢𝑗 ∥2+𝜖≤ 1. Moreover, the constant 

𝛼2+𝜖 is sharp in the sense that if 𝛼 ≥ 𝛼2+𝜖 then the above inequality cannot hold with a uniform 𝐶 independent 

of 𝑢𝑗. 

By using the change of variables of quasi-conformal type in [13], and let the gradient norm less than 1 and 

eliminated the weights of integral. They also established the existence of the maximizers associated in (1.2). For 

example, this change of variable method has also been used by [30] and [12] to obtain the existence for more 

parameters (see [9]). 

It is clear that (1.1) doesn't hold in 𝛼 = 𝛼2+𝜖. To obtain the Trudinger-Moser inequality in the critical case, see 

[56] (in the dimension 𝜖 = 1 ) and [39] (in the dimension 𝜖 ≥ 0 ) used the Sobolev norm to replace the Dirichlet 

norm, i.e. 

∥ 𝑢𝑗 ∥𝑊0
1,3+𝜖

(ℝ3+𝜖)
3+𝜖 = ∫  

ℝ3+𝜖
∑ 

𝑗

(|∇𝑢𝑗|
3+𝜖 + |𝑢𝑗|

3+𝜖)𝑑𝑥 

and obtained the inequality with sharp constant 𝛼3+𝜖. They also find the maximizer at 𝛼 = 𝛼3+𝜖 by carrying out 

the blow-up procedure. When 𝜖 = 1 and 𝛼 = 𝛼2 = 4𝜋, the maximizer was considered in [56] and [17]. At 𝜖 =
−1 and 𝛼 is very small, the non-existence of the maximizer be in [17]. [13], [21-23], [12], and [33] established 

more result of extremal functions for weighted Trudinger-Moser inequalities on ℝ3+𝜖 and proved the radial 

symmetry. For more related results, see [3, 4, 8, 38, 48-50]. For the proofs of the critical and subcritical 

Trudinger-Moser inequality in [39,56] and in [1,10] use the Polyá-Szegö inequality and a symmetrization 

argument. A symmetrization-free argument was developed by [29] (see also [28]) for using the level sets of 

functions under consideration see [24] ([37,63] and also in the concentration compactness principle, see [31, 34, 

43, 58]). 

The first order derivatives were extended to higher order derivatives by [2]. To show his result, we use ∇2+𝜖𝑢𝑗 

to denote 

∇2+𝜖𝑢𝑗 = {
Δ
2+𝜖
2 ,  if 2 + 𝜖 is even 

∇Δ
𝜖
2,  if 2 + 𝜖 is odd. 

 

Then: 
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Theorem 𝐄 [2] Let Ω be an open and bounded set in ℝ3+𝜖. If 2 + 𝜖 is a positive integer less than 3 + 𝜖, then 

there exists a constant 𝐶0 = 𝐶(3 + 𝜖, 2 + 𝜖) > 0 such that for any 𝑢𝑗 ∈ 𝑊0
2+𝜖,

3+𝜖

2+𝜖(Ω) and ∥∥∑  𝑗 ∇
2+𝜖𝑢𝑗∥∥

𝐿
3+𝜖
2+𝜖(Ω)

≤

1, then 
1

|Ω|
∫  
Ω

∑ 

𝑗

exp(𝛽|𝑢𝑗(𝑥)|
3+𝜖)𝑑𝑥 ≤ 𝐶0                                          (1.3) 

for all 𝛽 ≤ 𝛽(3 + 𝜖, 2 + 𝜖) where 

𝛽(3 + 𝜖, 2 + 𝜖) =

{
 
 
 

 
 
 3 + 𝜖

𝜔1+𝜖
[
𝜋
3+𝜖
2
22+𝜖Γ(

3+𝜖
2
)

Γ (
1
2
)

]

3+𝜖

,  where 2 + 𝜖 is odd. 

3 + 𝜖

𝜔1+𝜖
[
𝜋
3+𝜖
2 22+𝜖Γ (

2 + 𝜖
2

)

Γ (
1
2
)

]

3+𝜖

,  where 2 + 𝜖 is even. 

 

Hence, the constant 𝛽(3 + 𝜖, 2 + 𝜖) is best possible for any 𝛽 > 𝛽(3 + 𝜖, 2 + 𝜖), the integral may be as large as 

possible. 

For improved Hardy-Trudinger-Moser inequalities on different domains see [60], [46], [61], and Hardy-Adams 

inequalities using Fourier analysis on hyperbolic spaces see [36,45] (and [62]). For (1.3) on bounded domain in 

𝜖 = 1, 𝜖 = 0 see [47]. And for the entire space case. [20], [57] for even integer 2 + 𝜖 and [26,27] for odd integer 

2 + 𝜖. Indeed, [29] used a symmetrization-free approach to establish the singular Adams inequality of any 

fractional order 𝛾 on the Sobolev space 𝑊
𝛾,
3+𝜖

𝛾 (ℝ3+𝜖 ) (see [29]). In particular, when 𝛾 = 2 + 𝜖 we have: 

Theorem 𝐅 [29] Let 2 + 𝜖 be a positive integer less than 𝜖 ≥ 0. Then there holds 

sup

𝑢𝑗∈𝑊
2+𝜖,

1+2𝜖
2+𝜖 ,

∥∥
∥∥∑  𝑗 ((1+𝜖)𝐼−Δ)

2+𝜖
2 𝑢𝑗∥∥

∥∥
1+2𝜖
2+𝜖

≤1

 ∫ ∑ 

𝑗

 

ℝ1+2𝜖

Φ1+2𝜖,2+𝜖 (𝛽1+𝜖,1+2𝜖,2+𝜖|𝑢𝑗|
1+2𝜖
𝜖−1 )

|𝑥|1+𝜖
𝑑𝑥 < ∞, 

where 

𝑗1+2𝜖
2+𝜖

= m  {𝑗 ∈ ℤ: 𝑗 ≥
1 + 2𝜖

2 + 𝜖
}  and Φ1+2𝜖,2+𝜖(1 + 𝜖) = exp (1 + 𝜖) − ∑  

𝑗1+2𝜖
2+𝜖

−2

𝑖=0

 
(1 + 𝜖)𝑖

𝑖!
,

𝛽1+2𝜖,2+𝜖 =
1 + 2𝜖

𝜔2𝜖
[
22+𝜖𝜋

1+2𝜖
2 Γ (

2 + 𝜖
2

)

Γ (
𝜖 − 1
2

)
]

1+2𝜖
𝜖−1

 and 𝛽1+𝜖,1+2𝜖,2+𝜖 = 𝛽1+2𝜖,2+𝜖 (
𝜖

1 + 2𝜖
) .

 

When 𝜖 = 0, they gave another form. 

Theorem G [29] There exists a positive constant 𝐶1+2𝜖 such that 

∫  
ℝ1+2𝜖

∑ 

𝑗

Φ1+2𝜖,2 (𝛽1+2𝜖,2 (
𝜖

1 + 2𝜖
) |𝑢𝑗|

1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥 ≤ 𝐶1+2𝜖,  ∀𝑢𝑗

∈ 𝐶𝑐
∞(ℝ1+2𝜖) with ∫  

ℝ1+2𝜖
∑ 

𝑗

(|Δ𝑢𝑗|
1+2𝜖
2 + |𝑢𝑗|

1+2𝜖
2 ) 𝑑𝑥 ≤ 1,                           (1.4) 

where 𝑗1+2𝜖
2

= min {𝑗 ∈ ℤ: 𝑗 ≥
1+2𝜖

2
} and 𝛽1+2𝜖,2 =

1+2𝜖

𝜔2𝜖
[
4𝜋

1+2𝜖
2

Γ(
2𝜖−1

2
)
]

1+2𝜖

2𝜖−1

. 

[32], established the following sharp second-order Adams inequality with the Dirichlet norm. 

Theorem H [32] For 0 < 𝛽 < 𝛽1+2𝜖,2 and 𝜖 ≥ 0, then there exists a positive constant 𝐶(1 + 2𝜖, 1 + 𝜖) such 

that for all functions 𝑢𝑗 ∈ 𝑊̇
2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+2𝜖

2 (ℝ1+2𝜖) with ∥ Δ𝑢𝑗 ∥1+2𝜖
2

= 1, the following inequality holds. 

∫  
ℝ1+2𝜖

∑ 

𝑗

Φ1+2𝜖,2 (𝛽 (
𝜖

1 + 2𝜖
) |𝑢𝑗|

1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥 ≤ 𝐶(1 + 2𝜖, 1 + 𝜖)(∫  

ℝ1+2𝜖
∑ 

𝑗

  |𝑢𝑗|
1+2𝜖
2 𝑑𝑥)

𝜖
1+2𝜖

(1.5) 

where 𝑊̇2,
1+2𝜖

2 (ℝ1+2𝜖) = {𝑢𝑗 ∈ 𝐿loc 
1 (ℝ1+2𝜖) ∣ Δ𝑢𝑗 ∈ 𝐿

1+2𝜖

2 (ℝ1+2𝜖)}. Hence, the constant 𝛽1+2𝜖,2 is sharp when 

the inequality fails if the constant 𝛽 ≥ 𝛽1+2𝜖,2. 
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A natural question is whether there exist extremal functions for the above inequality. [64] extending [13] to 

second-order Sobolev space 𝑊2,
1+2𝜖

2 (ℝ1+2𝜖). We use the method combining the scaling invariance of the 

Adams inequality and the new compact imbedding 𝑊̇2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿1+𝜖(ℝ1+2𝜖) ↪↪ 

𝐿1+𝜖(ℝ1+2𝜖; |𝑥|−(1+𝜖)𝑑𝑥), for all 𝜖 ≥ 0 to show the weighted Adams inequality with Dirichlet norm in 

𝑊2,
1+2𝜖

2 (ℝ1+2𝜖). (see [64], also see [18] for the first order weighted subcritical Trudinger-Moser inequality, and 

Trudinger-Moser and Adams inequalities with exact growth by [16], [51-53], [42] and [44]. Now we state the 

following result (see [64]). 

Theorem 1.1 For 𝜖 ≥ 0, the best constant 𝐶(1 + 2𝜖, 1 + 𝜖) is achieved. 

Replacing Φ3+𝜖,2 (𝛽 (
2

3+𝜖
) |𝑢𝑗|

3+𝜖

1+𝜖) with exp (𝛽 (
2

3+𝜖
) |𝑢𝑗|

3+𝜖

1+𝜖) |𝑢𝑗|
3+𝜖

2  and exp (𝛽 (
2

3+𝜖
) |𝑢𝑗|

3+𝜖

1+𝜖) |𝑢𝑗|
1+4𝜖

2  

respectively, we establish the following stronger Adams inequality and existence of their extremals (see [64]). 

Theorem 𝟏. 𝟐 For 𝜖 ≥ 0,0 < 𝛽 < 𝛽3+𝜖,2, then there exists a positive constant 𝐶(1 + 2𝜖, 1 + 𝜖) such that 

∫  
ℝ1+2𝜖

∑ 

𝑗

exp (𝛽 (
𝜖

1 + 2𝜖
) |𝑢𝑗|

1+2𝜖
2𝜖−1) |𝑢𝑗|

1+2𝜖
2

|𝑥|1+𝜖
𝑑𝑥

≤ 𝐶(1 + 2𝜖, 1 + 𝜖) (∫  
ℝ1+2𝜖

 ∑  

𝑗

|𝑢𝑗|
1+2𝜖
2 𝑑𝑥)

𝜖
1+2𝜖

,                                  (1.6) 

holds for all functions 𝑢𝑗 ∈ 𝑊̇
2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+2𝜖

2 (ℝ1+2𝜖) with ∥ ∑  𝑗 Δ𝑢𝑗 ∥1+2𝜖
2

= 1. The constant 𝛽1+2𝜖,2 is 

sharp when the inequality fails if the constant 𝛽 ≥ 𝛽1+2𝜖,2. Moreover, in the case 𝜖 ≥ 0, the best constant 𝐶(1 +

2𝜖, 1 + 𝜖) is determined. 

Theorem 1.3 For 𝜖 ≥ 0,0 < 𝛽 < 𝛽1+2𝜖,2, and 𝜖 ≥ 0, then there exists a positive constant 𝐶(1 + 2𝜖, 1 + 𝜖) such 

that 

∫  
ℝ1+2𝜖

∑ 

𝑗

exp (𝛽 (
𝜖

1 + 2𝜖
) |𝑢𝑗|

1+2𝜖
2𝜖−1) |𝑢𝑗|

1+4𝜖
2

|𝑥|1+𝜖
𝑑𝑥

≤ 𝐶(1 + 2𝜖, 1 + 𝜖) (∫  
ℝ1+2𝜖

 ∑  

𝑗

|𝑢𝑗|
1+4𝜖
2 𝑑𝑥)

𝜖
1+2𝜖

                                   (1.7) 

holds for all functions 𝑢𝑗 ∈ 𝑊̇
2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+4𝜖

2 (ℝ1+2𝜖) with ∥ Δ𝑢𝑗 ∥1+2𝜖
2

= 1. The constant 𝛽1+2𝜖,2 is sharp 

when the inequality fails if the constant 𝛽 ≥ 𝛽1+2𝜖,2. Moreover, in the case 𝜖 > 0, the best constant 𝐶(1 +

2𝜖, 1 + 𝜖) is determined. 

Remark 𝟏. 𝟒 (see [64]) In the proof of (1.6) and (1.7), the rearrangement-free argument by considering the level 

sets of the functions and the weighted Trudinger-Moser inequality in 𝑊𝑁
2,
1+2𝜖

2 (Ω) play a wide role. 

[32] gave an asymptotic estimate for the Adams inequality with the Dirichlet norm. They proved 

𝐴𝑇𝐴(𝛽, 1 + 𝜖): = sup
∥Δ𝑢𝑗∥1+2𝜖

2

≤1
 ∑  

𝑗

1

∥ 𝑢𝑗 ∥1+2𝜖
2

1+𝜖
2

∫  
ℝ1+2𝜖

 
Φ1+2𝜖,2 (𝛽 (

𝜖
1 + 2𝜖

) |𝑢𝑗|
1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥

 ≈
1

(1 − (
𝛽

𝛽1+2𝜖,2
)

2𝜖−1
2
)

1−
𝑙

1+2𝜖

 

with 0 < 𝛽 < 𝛽1+2𝜖,2 and 𝜖 ≥ 0. Furthermore, they also show some relation of weighted Adams inequalities 

with Dirichlet norms and Sobolev norms. Hence, for any ϵ ≥ 0, 0 < 𝛽 ≤ 𝛽1+2𝜖,2, we have 

𝐴1+2𝜖,1+𝜖,1+𝜖(𝛽) = sup
∥Δ𝑢𝑗∥1+2𝜖

2

1+2𝜖+∥𝑢𝑗∥1+2𝜖
2

1+𝜖 ≤1

 ∑  

𝑗

∫  
ℝ1+2𝜖

Φ1+2𝜖,2 (𝛽 (
𝜖

1 + 2𝜖
) |𝑢𝑗|

1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥. 

They proved that 
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𝐴1+2𝜖,1+𝜖,1+𝜖(𝛽) = sup
𝑠∈(0,𝛽)

 

(

 
 1 − (

𝑠
𝛽
)
2𝜖−1

(
𝑠
𝛽
)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

𝐴𝑇𝐴(𝑠, 1 + 𝜖). 

We employ the method developed by [33] (see also [21]). 

Theorem 𝟏. 𝟓 [64] For 𝜖 ≥ 0, and 0 < 𝛽 ≤ 𝛽1+2𝜖,2, then there exist extremal functions for 𝐴1+2𝜖,1+𝜖,1+𝜖(𝛽) in 

the case of (𝛽 < 𝛽1+2𝜖,2, 𝜖 ≥ 0) or (𝛽 = 𝛽1+2𝜖,2, 𝜖 < 0). 

Remark 1.6 For the first result for the existence of weighted Adams inequality with the Sobolev norm on the 

whole space. (see [64], see also [33] and [21]. When combining the equivalence of subcritical and critical 

weighted Adams inequalities in 𝑊2,
1+2𝜖

2 (ℝ1+2𝜖), and the existence of extremal functions for subcritical Adams 

inequalities, we can construct the maximizers of the critical weighted Adams inequalities. 

To establish the Adams inequality with the Dirichlet norm in 𝑊2+𝜖,2(ℝ2(2+𝜖)) for any 𝜖 ≥ 0. Since the idea of 

level-sets is not efficient to deal with the weighted Adams inequality in 𝑊2+𝜖,2(ℝ2(3+𝜖)) for 𝜖 ≥ 0, we use the 

methods based on Fourier transform to establish the following results (see [64]). 

Theorem 1.7 For 0 < 𝛽 < 𝛽2(2+𝜖),2+𝜖 and 𝜖 ≥ 0, then there exists a positive constant 𝐶(2 + 𝜖, 1 + 𝜖) such that 

∫  
ℝ2(2+𝜖)

∑ 

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2)

|𝑥|1+𝜖
𝑑𝑥 ≤ 𝐶(2 + 𝜖, 1 + 𝜖)(∫  

ℝ2(2+𝜖)
 ∑  

𝑗

|𝑢𝑗|
2𝑑𝑥)

3+𝜖
2(2+𝜖)

(1.8) 

holds for all functions 𝑢𝑗 ∈ 𝑊̇
2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) with ∥∥∑  𝑗 ∇

2+𝜖𝑢𝑗∥∥2 = 1, where 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) = 

{𝑢𝑗 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ2(2+𝜖))||∇2+𝜖𝑢𝑗 ∣∈ 𝐿

2(ℝ2(2+𝜖))}. The constant 𝛽2(2+𝜖),2+𝜖 is sharp when the inequality fails if the 

constant 𝛽 ≥ 𝛽2(2+𝜖),2+𝜖. Hence, 𝜖 > 0, the best constant 𝐶(2 + 𝜖, 1 + 𝜖) is determined. 

Remark 𝟏. 𝟖 ([64]) In the case 𝜖 = −1, the validity and the sharpness of inequality (1.8) were established by 

[25]. See also [15], and [53] for more general subcritical and critical Adams inequality in 𝑊2+𝜖,
1+2𝜖

2+𝜖 (ℝ
1+2𝜖

1+𝜖 ) for 

general 𝜖 ≥ 0. 

In 𝑊2+𝜖,2(ℝ2(2+𝜖)), we prove the following (see [64]): 

Theorem 𝟏. 𝟗 For 0 < 𝛽 < 𝛽2(2+𝜖),2+𝜖 and 𝜖 > 0, there exists a positive constant 𝐶(2 + 𝜖, 1 + 𝜖) such that 

∫  
ℝ2(2+𝜖)

∑ 

𝑗

exp (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2) |𝑢𝑗|
2

|𝑥|1+𝜖
𝑑𝑥 ≤ 𝐶(2 + 𝜖, 1 + 𝜖)(∫  

ℝ2(2+𝜖)
∑ 

𝑗

|𝑢𝑗|
2𝑑𝑥)

3+𝜖
2(2+𝜖)

(1.9) 

holds for all functions 𝑢𝑗 ∈ 𝑊̇
2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) with ∥∥∑  𝑗 ∇

2+𝜖𝑢𝑗∥∥2 = 1. The constant 𝛽2(2+𝜖),2+𝜖 is 

sharp when the inequality fails if the constant 𝛽 ≥ 𝛽2(2+𝜖),2+𝜖. Hence,   if 𝜖 > 0, the best constant 𝐶(2 + 𝜖, 1 +

𝜖) is determined. 

Remark 𝟏. 𝟏𝟎 In the proof of getting the attainability of 𝐶2+𝜖,1+𝜖, 𝑊̇
2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿1+𝜖(ℝ2(2+𝜖)) ↪↪ 

𝐿1+2𝜖 (ℝ2(2+𝜖),
𝑑𝑥

|𝑥|1+𝜖
) for any 𝜖 ≥ 0 and 𝜖 ≥ 0 plays an important role. It is also well-known to us that the 

above compact imbedding fails in the case 𝜖 = −1. However, if 𝑢𝑗 is a radial function, we are in a position to 

show that 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿1+𝜖(ℝ2(2+𝜖)) can be compactly imbedded into 𝐿1+2𝜖(ℝ2(2+𝜖)) for any 𝜖 > 0. 

Using the Fourier rearrangement inequality established by [35], we can reduce (1.8) and (1.9) to the radial case. 

Combining these facts, by modifying the proof of Theorems 1.7 and 1.9, we can obtain the following results 

(see [64]). 

Theorem 𝟏. 𝟏𝟏 In the case 𝜖 = −1, the best constant 𝐶(2 + 𝜖, 0) in inequalities (1.8) and (1.9) is achieved. 

As an application of the above theorems, we obtain the higher order Caffarelli-Kohn-Nirenberg (CKN) 

inequalities in the critical case which was not in [40] and investigate the asymptotic behavior of the best 

constants. The existence of extremal functions for higher order CKN inequalities have been established by [11]. 

We show the following results (see [64]). 

Theorem 𝟏. 𝟏𝟐 Suppose 𝜖 ≥ 0, there exists a constant 𝑐(1 + 2𝜖, 1 + 𝜖, 1 + 𝜖) and for any 𝑢𝑗 ∈

𝑊̇2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+2𝜖

2 (ℝ1+2𝜖), there holds 

∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)≤ 𝑐(1 + 2𝜖, 1 + 𝜖, 1 + 𝜖)∑ 

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
2

𝜖
2(1+𝜖)∥ Δ𝑢𝑗 ∥1+2𝜖

2

2+𝜖
2(1+𝜖). (1.10) 
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Furthermore, if we assume 1 + 𝜖 > (𝛽1+2𝜖,2 (
𝜖

1+2𝜖
) 𝑒′)

−
2𝜖−1

1+2𝜖
, then there exists a sharp constant (1 + 𝜖)(1 +

2𝜖, 1 + 𝜖, 1 + 𝜖) ≥
1+2𝜖

2
 such that for 𝑢𝑗 ∈ 𝑊̇

2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+2𝜖

2 (ℝ1+2𝜖) and 𝜖 ≥ 0, there holds 

∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+2𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)≤ (1 + 𝜖)(1 + 2𝜖)
1

1+2𝜖∑ 

𝑗

∥ 𝑢𝑗 ∥𝜋
2

𝜖
2(1+2𝜖)∥ Δ𝑢𝑗 ∥1+2𝜖

2

2+3𝜖
2(1+2𝜖). (1.11) 

Theorem 𝟏. 𝟏𝟑 Suppose 𝜖 > 0, there exists a constant 𝑐(2 + 𝜖, 1 + 𝜖, 1 + 2𝜖) such that for any 𝑢𝑗 ∈

𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿‾2(ℝ2(2+𝜖)), there holds 

∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+2𝜖(ℝ2(2+𝜖);|𝑥|−(1+𝜖)𝑑𝑥)

≤ 𝑐(2 + 𝜖, 1 + 𝜖, 1 + 2𝜖)∑ ∥ 𝑢𝑗 ∥2

3+𝜖
(1+2𝜖)(2+𝜖)

∥∥∇
2+𝜖𝑢𝑗∥∥2

1−
3+ϵ

(1+2𝜖)(2+𝜖)

𝑗

.                     (1.12) 

Furthermore, if we assume 1 + 𝜖 > (𝛽2(2+𝜖),2+𝜖 (
3+𝜖

2(2+𝜖)
) 2𝑒)

−
1

2
, there exists a sharp constant (1 + 𝜖)(2 + 𝜖, 1 +

𝜖, 𝛽) ≥ 2 and for any 𝑢𝑗 ∈ 𝑊̇
2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) and 𝜖 ≥ 0, there we have 

∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+2𝜖(ℝ2(2+𝜖);|𝑥|−(1+𝜖)𝑑𝑥)
≤𝑥 (1

+ 𝜖)(1 + 2𝜖)
2𝜖−1
1+2𝜖∑ ∥ 𝑢𝑗 ∥2

3+ϵ
(1+2𝜖)(2+𝜖)

∥∥∇
2+𝜖𝑢𝑗∥∥2

1−
3+𝜖

(1+2𝜖)(2+𝜖)

𝑗

.           (1.13) 

We define the sharp constant 𝜇𝑘1𝑘2,𝑘2,1+𝜖,𝛽(ℝ
𝑘1𝑘2) by 

𝜇𝑘1𝑘2,𝑘2,1+𝜖,𝛽(ℝ
𝑘1𝑘2): = sup

𝑢𝑗∈𝑊̇
𝑘2,𝑘1(ℝ𝑘1𝑘2),∥∥∑  𝑗 ∇

𝑘2𝑢𝑗∥∥𝑘1
=1

 ∑  

𝑗

𝐹𝑘1𝑘2,𝑘2,1+𝜖,𝛽(𝑢𝑗), 

where 

𝐹𝑘1𝑘2,𝑘2,1+𝜖,𝛽(𝑢𝑗): =
∫  
ℝ𝑘1𝑘2

∑  𝑗  

Φ𝑘1𝑘2,𝑘2 (𝛽|𝑢𝑗|
𝑘1
𝑘1−1)

|𝑥|1+𝜖
𝑑𝑥

∑  𝑗 ∥ 𝑢𝑗 ∥𝑘1

𝑘1𝑘2−(1+𝜖)
𝑘2

. 

Here [64] show a new compact imbedding theorem. By applying the rearrangement-free argument in [29] and 

the weighted Adams' inequalities in 𝑊𝑁
2,
1+2𝜖

2 (Ω), he establish inequalities (1.6) and (1.7). We also employ the 

scaling invariant form of the weighted Adams inequality and a new compact imbedding to establish the 

existence of extremals for inequalities (1.6) and (1.7). With the help of the weighted Adams' inequalities with 

Dirichlet norms (subcritical case) and Sobolev norms (critical case) in [32], we derive the first result for the 

existence of the Adams inequality with the Sobolev norm. We devoted to obtaining the Adams inequalities with 

the Dirichlet norm and the existence of their extremals in Sobolev space 𝑊2+𝜖,2(ℝ2(2+𝜖)). As an application of 

Theorems 1.1 and 1.7, we deduce the relation between the critical higher order Caffarelli-Kohn-Nirenberg 

inequalities and the weighted Adams inequality in the asymptotic sense. 

 

II. The proof of Theorem 𝟏. 𝟏 
We use the attainability of sharp constant 𝐶(1 + 2𝜖, 1 + 𝜖) for Adams inequality (1.5) which equipped 

with the Dirichlet norm. We need the following compact imbedding lemma (see [64]). 

Lemma 𝟐. 𝟏 Let 𝜖 ≥ 0, then 𝑊̇2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+2𝜖

2 (ℝ1+2𝜖) can be compactly embedded into 

𝐿
1+4𝜖

2 (ℝ1+2𝜖, |𝑥|−(1+𝜖)𝑑𝑥) for 𝜖 ≥ 0. 

Proof To begin with, we show that 𝑊̇2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+2𝜖

2 (ℝ1+2𝜖) can be continuously imbedded into 

𝐿
1+4𝜖

2 (ℝ1+2𝜖, |𝑥|−(1+𝜖)𝑑𝑥). For 
1+4𝜖

2
≥

1+2𝜖

2𝜖−1
(𝑗1+2𝜖

2

− 1), the continuous embedding is a direct result of 

inequality (1.5). For 𝜖 = 0, one can employ the following inequality 

∫  
ℝ1+2𝜖

∑ 

𝑗

|𝑢𝑗|
1+2𝜖
2

|𝑥|1+𝜖
𝑑𝑥 ≤ ∫  

ℝ1+2𝜖
∑ 

𝑗

|𝑢𝑗|
1+2𝜖
2 𝑑𝑥 
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+∑ 

𝑗

(∫  
𝐵1(0)

 
|𝑢𝑗|

1+2𝜖

|𝑥|1+𝜖
𝑑𝑥)

1
2

(∫  
𝐵1(0)

 
1

|𝑥|1+𝜖
𝑑𝑥)

1
2

            (2.1) 

to obtain the desired continuous imbedding. For 
1+2𝜖

2
<

1+4𝜖

2
<

1+2𝜖

2𝜖−1
(𝑗1+2𝜖

2

− 1), it follows from the general 

interpolation inequality. Next it suffices to verify that the above continuous embedding is compact, i.e. for any 

sequence ((𝑢𝑗)𝑘) bounded in 𝑊2,
1+2𝜖

2 (ℝ1+2𝜖), there exists a subsequence which we still denote as ((𝑢𝑗)𝑘) such 

that ∥∥(𝑢𝑗)𝑘 − 𝑢𝑗∥∥
𝐿
1+4𝜖
2 (ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)

→ 0 as 𝑘 → ∞. We conclude it through two steps. 

Step 1 We show that there exists a subsequence still denoted by ((𝑢𝑗)𝑘) such that (𝑢𝑗)𝑘 → 𝑢𝑗 for almost 𝑥 ∈

ℝ1+2𝜖. Through Sobolev interpolation inequalities with weights (see Lin's work [41]) and the 𝐿
1+4𝜖

2 (ℝ1+2𝜖) 
boundedness of Riesz transform, we have 

∥ ∑  

𝑗

∇𝑢𝑗 ∥1+2𝜖
2
≤∑ 

𝑗

∥∥𝐷
2𝑢𝑗∥∥1+2𝜖

2

1
2 ∥ 𝑢𝑗 ∥𝜋

2

1
2≤∑ 

𝑗

∥ Δ𝑢𝑗 ∥1+2𝜖
2

1
2 ∥ 𝑢𝑗 ∥𝜋

2

1
2 , 

which implies that 

∫  
Ω

∑ 

𝑗

(|∇𝑢𝑗|
1+2𝜖
2 + |𝑢𝑗|

1+2𝜖
2 )𝑑𝑥 ≤ 𝐶(Ω) 

Due to the classical Sobolev compact embedding 𝑊1,
1+2𝜖

2 (Ω) ↪↪ 𝐿1+𝜖(Ω) for ϵ ≥ 0 and the diagonal trick, one 

can obtain that there exists a subsequence (we still denote by ((𝑢𝑗)𝑘) ) such that 

(𝑢𝑗)𝑘(𝑥) → 𝑢𝑗(𝑥),   strongly in 𝐿𝑙𝑜𝑐
1+𝜖(ℝ1+2𝜖)

(𝑢𝑗)𝑘(𝑥) → 𝑢𝑗(𝑥),   for almost everywhere 𝑥 ∈ ℝ1+2𝜖
 

Step 2 We claim that for any 𝜖 ≥ 0,
1

2
, (𝑢𝑗)𝑘 → 𝑢𝑗 in 𝐿

1+4𝜖

2 (ℝ1+2𝜖; |𝑥|−(1+𝜖)𝑑𝑥). For any 𝑅 > 0, by applying the 

Egoroff theorem, one can find that for any 𝐵𝑅(0) and 𝛿 > 0, 

∃𝐸𝛿 ⊂ 𝐵𝑅(0) satisfying 𝑚(𝐸𝛿) < 𝛿, 
such that (𝑢𝑗)𝑘 uniformlyconvergesto 𝑢𝑗 in 𝐵𝑅(0) ∖ 𝐸𝛿 . 

Thus, we split the integral into three parts. 

 lim
𝑅→+∞

 lim
𝛿→0

  lim
𝑘→+∞

 ∫  
ℝ1+2𝜖

∑ 

𝑗

 
|(𝑢𝑗)𝑘 − 𝑢𝑗|

1+4𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 = lim
𝑅→+∞

 lim
𝛿→0

  lim
𝑘→+∞

 ∫  
𝐸𝛿

∑ 

𝑗

|(𝑢𝑗)𝑘 − 𝑢𝑗|

1+4𝜖
2

|𝑥|1+𝜖
𝑑𝑥 + lim

𝑅→+∞
 lim
𝛿→0

  lim
𝑘→+∞

 ∫  
𝐵𝑅(0)∖𝐸𝛿

∑ 

𝑗

 
|(𝑢𝑗)𝑘 − 𝑢𝑗|

1+4𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 + lim
𝑅→+∞

 lim
𝛿→0

  lim
𝑘→+∞

 ∫  
ℝ1+2𝜖∖𝐵𝑅(0)

∑ 

𝑗

|(𝑢𝑗)𝑘 − 𝑢𝑗|

1+4𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 =: 𝐼1 + 𝐼2 + 𝐼3.

   (2.2) 

For 𝐼1, the Hölder inequality and the classical Sobolev continuous embedding lead to 

𝐼1  ≤ lim
𝛿→0

  lim
𝑘→+∞

 (∫  
𝐸𝛿

 1𝑑𝑥)

1
𝑠

(

 ∫  
𝐸𝛿

∑ 

𝑗

|(𝑢𝑗)𝑘 − 𝑢𝑗|

1+4𝜖
2

𝑠′

|𝑥|(1+𝜖)𝑠
′ 𝑑𝑥

)

 

1
𝑠

 ≲ lim
𝛿→0

 (𝑚(𝐸𝛿))
1
𝑠

 = 0

                         (2.3) 

where 𝑠 > 1 and 𝑠′ <
1+2𝜖

(1+𝜖)
. As for 𝐼2, it follows from the uniform convergence of (𝑢𝑗)𝑘 in 𝐵𝑅(0) ∖ 𝐸𝛿  that 

𝐼2 = lim
𝑅→+∞

 lim
𝛿→0

  lim
𝑘→+∞

 ∫  
𝐵𝑅(0)∖𝐸𝛿

∑ 

𝑗

|(𝑢𝑗)𝑘 − 𝑢𝑗|
1+4𝜖
2

|𝑥|1+𝜖
𝑑𝑥 
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 = lim
𝑅→+∞

 lim
𝛿→0

 ∫  
𝐵𝑅(0)∖𝐸𝛿

 ∑  

𝑗

lim
𝑘→+∞

|(𝑢𝑗)𝑘 − 𝑢𝑗|

1+4𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 = 0

                                      (2.4) 

For 𝐼3, using continuous imbedding 𝑊2,
1+2𝜖

2 (ℝ1+2𝜖) ↪ 𝐿
1+4𝜖

2 (ℝ1+2𝜖) for 𝜖 ≥ 0, we obtain that 

𝐼3  ≤ lim
𝑅→+∞

 lim
𝛿→0

  lim
𝑘→+∞

 
1

𝑅1+𝜖
∫  
ℝ1+2𝜖∖𝐵𝑅(0)

 ∑  

𝑗

|(𝑢𝑗)𝑘 − 𝑢𝑗|

1+4𝜖
2
𝑑𝑥

 ≲ lim
𝑅→+∞

 
1

𝑅1+𝜖

 = 0.

                   (2.5) 

Combining (2.3), (2.4) and (2.5), we get the following result  

lim
𝑘→+∞

 ∫  
ℝ1+2𝜖

∑ 

𝑗

|(𝑢𝑗)𝑘 − 𝑢𝑗|
1+4𝜖
2

|𝑥|1+𝜖
= 0                                                         (2.6) 

Thus the proof of Lemma 2.1 is hold. 

We have the following (see [64]): 

Lemma 𝟐. 𝟐 For 𝜖 ≥ 0 and 0 < 𝛽 < 𝛽1+2𝜖,2, let ((𝑢𝑗)𝑘) ∈ 𝑊̇
2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+2𝜖

2 (ℝ1+2𝜖) satisfying (𝑢𝑗)𝑘 →

𝑢𝑗 in 𝑊̇2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
1+2𝜖

2 (ℝ1+2𝜖) as 𝑘 → +∞. Then, we have the following convergence. 

 ∫  
ℝ1+2𝜖

 ∑  

𝑗
(

 Φ1+2𝜖,2 (𝛽 (
𝜖

1 + 2𝜖
) |(𝑢𝑗)𝑘|

1+2𝜖
2𝜖−1

) −
(𝛽 (

𝜖
1 + 2𝜖

))
𝑗1+2𝜖

2

−1

(𝑗1+2𝜖
2
− 1) !

|(𝑢𝑗)𝑘|

1+2𝜖
2𝜖−1

(𝑗1+2𝜖
2

−1)

)

 
𝑑𝑥

|𝑥|1+𝜖

 → ∫  
ℝ1+2𝜖

 ∑  

𝑗

(

 
 
Φ1+2𝜖,2 (𝛽 (

𝜖

1 + 2𝜖
) |𝑢𝑗|

1+2𝜖
2𝜖−1) −

(𝛽 (
𝜖

1 + 2𝜖
))

𝑗1+2𝜖
2

−1

(𝑗1+2𝜖
2
− 1) !

|𝑢𝑗|
1+2𝜖
2𝜖−1 (𝑗1+2𝜖

2
− 1)

)

 
 𝑑𝑥

|𝑥|1+𝜖
 as 𝑘 → ∞.

(2.7) 

Proof For simplicity, we define (Ψ𝑗)1+2𝜖,2(1 + 𝜖): = exp (1 + 𝜖) − ∑
𝑗=0

𝑗1+2𝜖
2

−1

 
(1+𝜖)

2+𝜖
𝜖 𝑗

𝑗!
 for 𝜖 ≥ 0, 𝑘 ∈ ℕ ∪ {0}, 

where 𝜖 = 0 and 0 < 𝛽 < 𝛽2+𝜖,2. Then we can rewrite (2.7) as 

lim
𝑘→∞

 ∫  
ℝ2+𝜖

∑ 

𝑗

(Ψ𝑗)2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |(𝑢𝑗)𝑘|

2+𝜖
𝜖 )

𝑑𝑥

|𝑥|1+𝜖

= ∫  
ℝ2+𝜖

∑ 

𝑗

(Ψ𝑗)2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 )

𝑑𝑥

|𝑥|1+𝜖
.                                                 (2.8) 

Hence, it follows from the mean value theorem and the convexity of the function (Ψ𝑗)2+𝜖,2 that 

∑ 

𝑗

|(Ψ𝑗)2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |(𝑢𝑗)𝑘|

2+𝜖
𝜖 ) − (Ψ𝑗)2+𝜖,2 (𝛽 (

1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 )|                                             (2.9)

≲∑ 

𝑗

Φ2+𝜖,2 (𝜃𝛽 (
1

2 + 𝜖
) |(𝑢𝑗)𝑘|

2+𝜖
𝜖 + (1 − 𝜃)𝛽 (

1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ) (|𝑢𝑗|

2
𝜖 + |(𝑢𝑗)𝑘|

2
𝜖) |(𝑢𝑗)𝑘 − 𝑢𝑗|

≲∑ 

𝑗

(|(𝑢𝑗)𝑘| + |𝑢𝑗|)
2
𝜖 (Φ2+𝜖,2 (𝛽 (

1

2 + 𝜖
) |(𝑢𝑗)𝑘|

2+𝜖
𝜖 ) + (Ψ𝑗)2+𝜖,2 (𝛽 (

1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 )) |(𝑢𝑗)𝑘 − 𝑢𝑗|

 

where 𝜃 ∈ [0,1]. 
Added to singular Adams inequality (1.4) give 

|∫  
ℝ2+𝜖

∑ 

𝑗

 ((Ψ𝑗)2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |(𝑢𝑗)𝑘|

2+𝜖
𝜖 ) − (Ψ𝑗)2+𝜖,2 (𝛽 (

1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ))

𝑑𝑥

|𝑥|1+𝜖
| 

≲ ∫  
ℝ2+𝜖

∑ 

𝑗

  (|(𝑢𝑗)𝑘| + |𝑢𝑗|)
2
𝜖 ((Ψ𝑗)2+𝜖,2 (𝛽 (

1

2 + 𝜖
) |(𝑢𝑗)𝑘|

2+𝜖
𝜖 ) + (Ψ𝑗)2+𝜖,2 (𝛽 (

1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 )) |(𝑢𝑗)𝑘

− 𝑢𝑗|
𝑑𝑥

|𝑥|1+𝜖
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≲∑ 

𝑗

∥∥|(𝑢𝑗)𝑘| + |𝑢𝑗|∥∥
2
𝜖 

×∑ 

𝑗

∥ (Ψ𝑗)2+𝜖,2 (𝛽 (
2 + 𝜖

𝜖
(ℝ2+𝜖; |𝑥|−(1+𝜖)𝑑𝑥) |(𝑢𝑗)𝑘|

2+𝜖
𝜖
)

+ (Ψ𝑗)2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ) ∥

∥ 𝐿1+𝜖(ℝ2+𝜖;|𝑥|−(1+𝜖)𝑑𝑥)∥
∥ (𝑢𝑗)𝑘 − 𝑢𝑗 ∥𝐿

𝑐 (ℝ2+𝜖; |𝑥|−(1+𝜖)𝑑𝑥) 

≲∑ 

𝑗

∥
∥(𝑢𝑗)𝑘 − 𝑢𝑗∥

∥
𝐿𝑐(ℝ2+𝜖;|𝑥|−(1+𝜖)𝑑𝑥)

                                            (2.10) 

where the constants  𝜖 > 0 sufficiently close to 1 and 
1

1+2𝜖
 +

1

1+𝜖
 +

1

𝑐
 =  1. Moreover, by the compact result of 

Lemma 2.1, we obtain (2.7).  

We are in a position to prove Theorem 1.1 (see [64]). 

Proof of Theorem 1.1 Let ((𝑢𝑗)𝑘 ) be a bounded function sequence in 𝑊̇2,
2+𝜖

2 (ℝ2+𝜖) such that ‖∆(𝑢𝑗)𝑘‖2+𝜖
2

=

 1 and 𝐹2+𝜖,2,1+𝜖,𝛽((𝑢𝑗)𝑘) → 𝜇2+𝜖,2,1+𝜖,𝛽(ℝ
2+𝜖) as 𝑘 → ∞. Denote a new sequence ((𝑣𝑗)𝑘  ) by (𝑣𝑗)𝑘(𝑥) ∶=

 (𝑢𝑗)𝑘  (‖(𝑢𝑗)𝑘‖2+𝜖
2

1

2
𝑥) for 𝑥 ∈ ℝ2+𝜖. Then it is easy to check that 

‖(𝑣𝑗)𝑘‖2+𝜖
2

 = 1, ‖(𝑣𝑗)𝑘‖2+𝜖
2
 =  1 

and 

𝐹2+𝜖,2,1+𝜖,𝛽((𝑣𝑗)𝑘) = 𝐹2+𝜖,2,1+𝜖,𝛽((𝑢𝑗)𝑘) → 𝜇2+𝜖,2,1+𝜖,𝛽(ℝ
2+𝜖) as 𝑘 → ∞ 

Thus we obtain a new maximizing sequence for 𝜇2+𝜖,2,1+𝜖,𝛽(ℝ
2+𝜖) satisfying that ((𝑣𝑗)𝑘) is bounded in 

𝑊̇2,
2+𝜖

2 (ℝ2+𝜖) ∩ 𝐿
2+𝜖

2 (ℝ2+𝜖). As a consequence, there exists a subsequence (still denoted by ((𝑣𝑗)𝑘) ) such that 

(𝑣𝑗)𝑘 → 𝑣𝑗 in 𝑊̇2,
2+𝜖
2 (ℝ2+𝜖) ∩ 𝐿

2+𝜖
2 (ℝ2+𝜖). 

By the weak semi-continuity of the norm in 𝑊̇2,
2+𝜖

2 (ℝ2+𝜖) ∩ 𝐿
2+𝜖

2 (ℝ2+𝜖), we derive that 

∥ ∑  

𝑗

Δ𝑣𝑗 ∥2+𝜖
2
≤ 1, ∥ ∑  

𝑗

𝑣𝑗 ∥2+𝜖
2
≤ 1.                                    (2.11) 

Up to a sequence, we can apply Lemmas 2.1 and 2.2 to obtain that 

𝜇2+𝜖,2,1+𝜖,𝛽(ℝ
2+𝜖) =  lim

𝑘→∞
∑ 

𝑗

 𝐹2+𝜖,2,1+𝜖,𝛽 ((𝑣𝑗)𝑘)

=  lim
𝑘→∞

 ∫  
ℝ2+𝜖

∑ 

𝑗

(Ψ𝑗)2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |(𝑣𝑗)𝑘|

2+𝜖
𝜖
)

𝑑𝑥

|𝑥|1+𝜖

 +∫  
ℝ2+𝜖

 ∑  

𝑗

(𝛽 (
1

2 + 𝜖
))

𝑗2

− 1

(𝑗2+𝜖
2
− 1) !

|(𝑢𝑗)𝑘|

2+𝜖
𝜖
(𝑗2+𝜖

2
− 1)

𝑑𝑥

|𝑥|1+𝜖

 = ∫  
ℝ2+𝜖

∑ 

𝑗

Φ2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |𝑣𝑗|

2+𝜖
𝜖 )

𝑑𝑥

|𝑥|1+𝜖
,

        (2.12) 

which implies that 

𝜇2+𝜖,2,1+𝜖,𝛽(ℝ
2+𝜖) ≤ 𝐹2+𝜖,2,1+𝜖,𝛽(𝑣𝑗).                                        (2.13) 

On the other hand, through the definition of 𝜇2+𝜖,2,1+𝜖,𝛽(ℝ
2+𝜖) and (2.11), we can write 
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𝜇2+𝜖,2,1+𝜖,𝛽(ℝ
2+𝜖)  ≥∑  

𝑗

𝐹2+𝜖,2,1+𝜖,𝛽 (
𝑣𝑗

∥ Δ𝑣𝑗 ∥2+𝜖
2

)

 =∑  

𝑗

∥ Δ𝑣𝑗 ∥2+𝜖
2

1
2

∥ 𝑣𝑗 ∥2+𝜖
2

1
2

∑  

∞

𝑖=𝑗2+𝜖
2

−1

 
𝛽𝑖

𝑖!

∥ 𝑣𝑗 ∥2+𝜖
𝜖
𝑖(ℝ2+𝜖;|𝑥|−(1+𝜖)𝑑𝑥)

2+𝜖
𝜖
𝑖

∥ Δ𝑣𝑗 ∥2+𝜖
2

2+𝜖
𝜖
𝑖

 ≥ ∑  

𝑗

𝐹2+𝜖,2,1+𝜖,𝛽(𝑣𝑗) +

(

 
 1

∥ Δ𝑣𝑗 ∥2+𝜖
2𝜖

2+𝜖
𝜖
(𝑗
2+𝜖
2 −1)−

1
2− 1

)

 
 
𝐹2+𝜖,2,1+𝜖,𝛽(𝑣𝑗),

 

which implies that ∥ 𝑣𝑗 ∥2+𝜖
2

=∥ Δ𝑣𝑗 ∥2+𝜖
2

= 1 and 𝜇2+𝜖,2,1+𝜖,𝛽(ℝ
2+𝜖) = 𝐹2+𝜖,2,1+𝜖,𝛽(𝑣𝑗). Then we end the proof of 

Theorem 1.1. 

Now we have the following (see [64]):  

Corollary 𝟐. 𝟑 For 𝜖 ≥ 0, there exists a constant 𝐶(
2+3𝜖

2
, 2 + 𝜖, 1 + 𝜖) such that 

∫  
ℝ2+𝜖

∑ 

𝑗

|𝑢𝑗|
2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥 ≲ (∫  

ℝ2+𝜖
 ∑  

𝑗

|𝑢𝑗|
2+𝜖
2 𝑑𝑥)

1
2+𝜖

                                (2.14) 

holds for all functions 𝑢𝑗 ∈ 𝑊̇
2,
2+𝜖

2 (ℝ2+𝜖) ∩ 𝐿
2+𝜖

2 (ℝ2+𝜖) with ∥ Δ𝑢𝑗 ∥2+𝜖
2

= 1. 

Proof For 
2+3𝜖

2
≥

2+𝜖

𝜖
(𝑗2+𝜖

2

− 1), inequality (2.14) is a direct consequence of Theorem 1.1. We only need to 

verify that inequality (2.14) holds for 𝜖 = 0. We can split the integral in inequality (2.14) into two parts. 

∫  
ℝ2+𝜖

∑ 

𝑗

 
|𝑢𝑗|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥  = ∫  

Ω𝑐(𝑢𝑗)

 ∑  

𝑗

|𝑢𝑗|
2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥 +∫ ∑ 

𝑗Ω(𝑢𝑗)

 
|𝑢𝑗|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥.

 = 𝐼1 + 𝐼2,

                (2.15) 

where Ω(𝑢𝑗) = {𝑥 ∣ 𝑢𝑗(𝑥) > 1}. For 𝐼1, by dividing the integral into two parts, one can obtain that 

𝐼1  = ∫  
Ω𝑐(𝑢𝑗)∩{|𝑥|≤∥𝑢𝑗∥2+𝜖

2

1
2 }

∑ 

𝑗

 
|𝑢𝑗|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥 +∫  

Ω𝑐(𝑢𝑗)∩{|𝑥|>∥𝑢𝑗∥2+𝜖
2

1
2 }

∑ 

𝑗

|𝑢𝑗|
2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥

≤∬  
{|𝑥|≤∥𝑢𝑗∥2+𝜖

2

1
2 }

∑ 

𝑗

 
1

|𝑥|1+𝜖
𝑑𝑥 +∫  

Ω𝑐(𝑢𝑗)

 ∑  

𝑗

|𝑢𝑗|
2+𝜖
2

∥ 𝑢𝑗 ∥2+𝜖
2

1
2

𝑑𝑥

 ≲ (∫  
ℝ2+𝜖

∑ 

𝑗

  |𝑢𝑗|
2+𝜖
2 𝑑𝑥)

1
2+𝜖

        (2.16) 

As for 𝐼2, by setting |𝑢𝑗| = 𝑣𝑗 + 1, it follows from the singular Adams inequality in 𝑊𝑁
2,
2+𝜖

2 (Ω(𝑢𝑗)) that 

𝐼2 ≲∑ 

𝑗

|Ω(𝑢𝑗)|
1
2+𝜖 ≲ (∫  

ℝ2+𝜖
∑ 

𝑗

  |𝑢𝑗|
2+𝜖
2 𝑑𝑥)

1
2+𝜖

.                        (2.17) 

Then the proof of Corollary 2.3 is completed. 

 

III. Proofs of Theorems 𝟏. 𝟐 and 𝟏. 𝟑 
We use the arrangement-free argument in [28,29] with singular Adams inequality and Navier boundary 

condition to show inequalities (1.6) and (1.7). By the scaling invariant form of singular Adams' inequalities, we 

show the existence of their extremals (see [64]): 

We proof Theorem 1.2. We first show that inequality (1.6) holds. By splitting the integral in inequality (1.6) into 

two parts, we have 
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 ∫  
ℝ2+𝜖

∑ 

𝑗

exp (𝛽 (
1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ) |𝑢𝑗|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 = ∫  
ℝ2+𝜖

∑ 

𝑗

Φ2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ) |𝑢𝑗|

2+𝜖
2

|𝑥|1+𝜖
+ ∑  

𝑗2+𝜖
2

−2

𝑖=0

 ∑  

𝑗

(𝛽 (
1

2 + 𝜖
))

𝑖

|𝑢𝑗|
𝑖(2+𝜖)
𝜖 |𝑢𝑗|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 =: 𝐼1 + 𝐼2.

(3.1) 

For 𝐼1, choose 𝜖 > 0 sufficiently close to 1 and (1 + 𝜖)𝛽 < 𝛽2+𝜖,2, then it follows from the Hölder inequality, 

Theorem 1.1 and Corollary 2.3 that 

𝐼1  ≤ (∫  
ℝ2+𝜖

∑ 

𝑗

 
Φ2+𝜖,2 ((1 + 𝜖)𝛽 (

1
2 + 𝜖

) |𝑢𝑗|
2+𝜖
𝜖 )

|𝑥|1+𝜖
𝑑𝑥)

1
1+𝜖

(∫  
ℝ2+𝜖

∑ 

𝑗

 
|𝑢𝑗|

(1+𝜖)(2+𝜖)
2𝜖

|𝑥|1+𝜖
𝑑𝑥)

ϵ
1+𝜖

 ≤ (∫  
ℝ2+𝜖

∑ 

𝑗

|𝑢𝑗(𝑥)|
2+𝜖
2 )

1
2+𝜖

.

(3.2) 

For 𝐼2, note the fact that 𝐼2 consists of 𝑗2+𝜖
2

− 1 terms and the power of every term is larger than 
2+𝜖

2
. Thus we 

can apply Corollary 2.3 to employ that 

𝐼2  = ∑  

𝑗2+𝜖
2

−2

𝑖=0

 (𝛽 (
1

2 + 𝜖
))

𝑖

∫  
ℝ2+𝜖

 ∑  

𝑗

|𝑢𝑗|
𝑖(2+𝜖)
𝜖 |𝑢𝑗|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 ≲ ∑  

𝑗2+𝜖
2

−2

𝑖=0

 (𝛽 (
1

2 + 𝜖
))

𝑖

(∫  
ℝ2+𝜖

 ∑  

𝑗

|𝑢𝑗(𝑥)|
2+𝜖
2 𝑑𝑥)

1
2+𝜖

 ≲ (∫  
ℝ2+𝜖

 ∑  

𝑗

|𝑢𝑗(𝑥)|
2+𝜖
2 𝑑𝑥)

1
2+𝜖

                        (3.3) 

This together with (3.1) and (3.2) yields inequality (1.6). 

In order to obtain the sharpness of (1.6), we use the test sequence ((𝑢𝑗)𝑘) introduced in [32]. Its definition is 

given by 

(𝑢𝑗)𝑘 =

{
 
 
 

 
 
 
(

1

𝛽2+𝜖,2
ln 𝑘)

𝜖
2+𝜖

−
(2 + 𝜖)𝛽2+𝜖,2

ϵ
2+ϵ

2

|𝑥|2

(
ln 𝑘
𝑘
)

2
2+𝜖

+
(2 + 𝜖)𝛽2+𝜖,2

ϵ
2+ϵ

2

1

(
ln 𝑘
𝑘
)

2
2+𝜖

,  if 0 ≤ |𝑥| ≤ (
1

𝑘
)

1
2+𝜖

,

(2 + 𝜖)𝛽2+𝜖,2
−

𝜖
2+𝜖(ln 𝑘)−

2
2+𝜖ln 

1

|𝑥|
,  if (

1

𝑘
)

1
2+𝜖

≤ |𝑥| ≤ 1,

𝑠𝑘 ,  if |𝑥| > 1,

 

where 𝜍𝑘 is a smooth function satisfying supp (𝜍𝑘) ⊂ {|𝑥| < 2}, 

𝜍𝑘||𝑥|=1 = 0,
∂𝜁𝑘
∂𝑣𝑗

|
|𝑥|=1

= (2 + 𝜖)𝛽2+𝜖,2
−

𝜖
2+𝜖(ln𝑘)

−
2
2+𝜖 , 𝜍𝑘 = 𝑂 ((ln𝑘)

2
2+𝜖) , Δ𝜁𝑘 = 𝑂 ((ln𝑘)

2
2+𝜖). 

Directly computations yield that 

1 ≤∑ 

𝑗

∥∥Δ(𝑢𝑗)𝑘∥∥2+𝜖
2

2+𝜖
2 ≤ 1 + 𝑂 (

1

ln 𝑘
). 

Let (𝑣̃𝑗)𝑘 =
(𝑢𝑗)𝑘

∥∥Δ(𝑢𝑗)𝑘∥∥2+𝜖
2

, we derive that 

∥∥Δ(𝑣̃𝑗)𝑘∥∥2+𝜖
2
= 1 and 

∥
∥
∥
∥
∥
∑  

𝑗

(𝑣̃𝑗)𝑘
∥
∥
∥
∥
∥

2+𝜖
2

2+𝜖
2

≤∑ 

𝑗

∥∥Δ(𝑢𝑗)𝑘∥∥2+𝜖
2

2+𝜖
2 ≤ 𝐴(ln 𝑘)−1 + 𝐵(ln 𝑘)

𝜖
2
1

𝑘
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Then we calculate as follows: 

∑ 

𝑗

∥
∥(𝑣̃𝑗)𝑘∥

∥
2+𝜖
2

−
1
2 ∫

ℝ2+𝜖
 

exp (𝛽 (
1

2 + 𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥 

≥∑ 

𝑗

∥
∥(𝑣̃𝑗)𝑘∥

∥
2+𝜖
2

−
1
2 ∫  

|𝑥|≤(
1
𝑘
)

1
2+𝜖

 

exp (𝛽 (
1

2 + 𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥 

≥ (
1

𝛽2+𝜖,2
ln 𝑘)

𝜖
2

∑ 

𝑗

∥
∥(𝑣̃𝑗)𝑘∥

∥
2+𝜖
2

−
1
2 ∫  

|𝑥|≤(
1
𝑘
)

1
2+𝜖

 

exp (𝛽 (
1

2 + 𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
𝜖
)

|𝑥|1+𝜖
𝑑𝑥 

≥ (
1

𝛽2+𝜖,2
ln 𝑘)

𝜖
2

∑ 

𝑗

∥
∥(𝑣̃𝑗)𝑘∥

∥
2+𝜖
2

−
1
2 ∫  

|𝑥|≤(
1
𝑘
)

1
2+𝜖

 

Φ2+𝜖,2 (𝛽 (
1

2 + 𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
𝜖
)

|𝑥|1+𝜖
𝑑𝑥 

 

≥ (
1

𝛽2+𝜖,2
ln 𝑘)

𝜖
2

(
1

1 −
𝛽

𝛽2+𝜖,2

)

1
2+𝜖

                                                                                              (3.4) 

→ ∞ as 𝛽 → 𝛽2+𝜖,2, 

which completes the proof of the sharpness of (1.6). 

The proof of the attainability of the best constant 𝐶(2 + 𝜖, 1 + 𝜖) for inequality (1.6) is similar to that of 

Theorem 1.1. In fact, by the scaling invariant form of the weighted Trudinger-Moser inequality, we can choose a 

maximizing sequence ((𝑣𝑗)𝑘) for 𝐶(2 + 𝜖, 1 + 𝜖) satisfying that ((𝑣𝑗)𝑘) is bounded in 𝑊̇2,
2+𝜖

2 (ℝ2+𝜖) ∩

𝐿
2+𝜖

2 (ℝ2+𝜖). Following the same procedure as that of Lemma 2.2 and Theorem 1.1, we can obtain 

lim
𝑘→∞

 ∫  
ℝ2+𝜖

∑ 

𝑗

(exp (𝛽 (
1

2 + 𝜖
) |(𝑣𝑗)𝑘|

2+𝜖
𝜖 ) − 1) |(𝑣𝑗)𝑘|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥

= ∫  
ℝ2+𝜖

∑ 

𝑗

(exp (𝛽 (
1

2 + 𝜖
) |𝑣𝑗|

2+𝜖
𝜖 ) − 1) |𝑣𝑗|

2+𝜖
2

|𝑥|1+𝜖
𝑑𝑥 

and ∥ ∑  𝑗 Δ𝑣𝑗 ∥2+𝜖
2

= ∑  𝑗 ∥ 𝑣𝑗 ∥2+𝜖
2

= 1, which implies the attainability of the best constant 𝐶(2 + 𝜖, 1 + 𝜖). 

We now prove Theorem 1.3. We first apply the arrangement-free argument introduced in [29] and the weighted 

Adams inequality in 𝑊𝑁

2+𝜖

2 (Ω) to obtain inequality (1.7). Indeed, by dividing the integral into two parts, we have 

∫  
ℝ2+𝜖

 ∑  

𝑗

exp (𝛽 (
1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ) |𝑢𝑗|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥 =  ∫  

|𝑢𝑗|
1+𝜖≤1

∑ 

𝑗

exp (𝛽 (
1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ) |𝑢𝑗|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 +∫  
|𝑢𝑗|>1

∑ 

𝑗

exp (𝛽 (
1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ) |𝑢𝑗|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 =: 𝐼1 + 𝐼2                                                                         (3.5)

 

For 𝐼2, setting |𝑢𝑗| = 𝑣𝑗 + 1 and using an elementary inequality 

|𝑢𝑗|
2+𝜖
𝜖 ≤ (1 + 𝜀)𝑣

𝑗

2+𝜖
𝜖 + 𝐶𝜀 , ∀𝜀 > 0, 

one can obtain 
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𝐼2  ≤ ∫  
|𝑢𝑗|>1

∑ 

𝑗

 

exp (𝛽 (
1

2 + 𝜖
) (1 + 𝜀)𝑣

𝑗

2+𝜖
𝜖 ) exp (𝛽 (

1
2 + 𝜖

)𝐶𝜀) |𝑢𝑗|
2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 ≲∑  

𝑗

(

 
 
∫  
|𝑢𝑗|>1

 

exp (𝛽 (
1

2 + 𝜖
) (1 + 𝜖)(1 + 𝜀)𝑣

𝑗

2+𝜖
𝜖 )

|𝑥|1+𝜖
𝑑𝑥

)

 
 

1
1+𝜖

(∫  
|𝑢𝑗|>1

 
(𝑣𝑗 + 1)

(2+3𝜖)(1+𝜖)
2𝜖

|𝑥|1+𝜖
𝑑𝑥)

ϵ
1+𝜖

 ≲ ∑  

𝑗

|{|𝑢𝑗| > 1}|
1

(2+𝜖)(1+𝜖)(∫  
|𝑢𝑗|>1

 
|𝑣𝑗|

(2+3𝜖)(1+𝜖)
2ϵ

|𝑥|1+𝜖
+

1

|𝑥|1+𝜖
𝑑𝑥)

1
1+𝜖

 ≲ ∑  

𝑗

|{|𝑢𝑗| > 1}|
1

(2+𝜖)(1+𝜖)|{|𝑢𝑗| > 1}|

1

(2+𝜖)
1+𝜖
𝜖 +∑ 

𝑗

|{|𝑢𝑗| > 1}|
1

(2+𝜖)(1+𝜖) (∫  
|𝑢𝑗|>1

 
1

|𝑥|1+𝜖
𝑑𝑥)

𝜖
1+𝜖

 ≲ (∫  
ℝ2+𝜖

 ∑  

𝑗

|𝑢𝑗|
2+3𝜖
2 𝑑𝑥)

1
2+𝜖

.                                                                                                                      (3.6)

 

For 𝐼1, direct computations show that 

 ∫  
|𝑢𝑗|≤1

 ∑  

𝑗

exp (𝛽 (
1

2 + 𝜖
) |𝑢𝑗|

2+𝜖
𝜖 ) |𝑢𝑗|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥

∫  

{|𝑢𝑗|≤1}∩

{
 
 

 
 

|𝑥|≤∥𝑢𝑗∥2+3𝜖
2

2+3𝜖
2

2+3𝜖
2

}
 
 

 
 
∑ 

𝑗

 
|𝑢𝑗|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥 + ∫  

{|𝑢𝑗|≤1}∩{|𝑥|>∥𝑢𝑗∥2+3𝜖
2

2+3𝜖
2
2+𝜖 }

∑ 

𝑗

 
|𝑢𝑗|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥

 =: 𝐼11 + 𝐼12.

                            (3.7) 

We can estimate 𝐼11 as follows 

∫  
{|𝑢𝑗|≤1}∩{|𝑥|≤∥𝑢𝑗∥2+3𝜖

2

2+3𝜖
2(2+ϵ)

}

∑ 

𝑗

 
|𝑢𝑗|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥𝑑𝑥 

≤ ∫  ∑ 

𝑗

{|𝑥| ≤∥ 𝑢𝑗 ∥2+3𝜖
2

2+3𝜖
2(2+ϵ)}

|𝑥|−(1+𝜖)

𝑑𝑥 =∥ 𝑢𝑗 ∥2+3𝜖
2

2+3𝜖
2(2+ϵ) .                            (3.8) 

Similarly, we also derive that 

∫  
{|𝑢𝑗|≤1∣∩{|𝑥|≥∥𝑢𝑗∥2+3𝜖

2

2+3𝜖
2(2+ϵ)

}

∑ 

𝑗

|𝑢𝑗|
2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥 ≤∑ 

𝑗

∥ 𝑢𝑗 ∥2+3𝜖
2

−
(2+3𝜖)(1+𝜖)

2(2+ϵ)
∫  
{|𝑢𝑗|≤1}

|𝑢𝑗|
2+3𝜖
2 𝑑𝑥 =∥ 𝑢𝑗 ∥2+3𝜖

2

2+3𝜖
2(2+ϵ)

(3.9) 

Combining inequalities (3.5), (3.6), (3.8) with (3.9), we obtain the required inequality (1.7). Next, we show the 

sharpness of inequality (1.7). Using the same test function sequence ((𝑢𝑗)𝑘)𝑘 as that of Theorem 1.2, one can 

easily calculate that 

∥∥(𝑣̃𝑗)𝑘∥∥2+3𝜖
2

2+3𝜖
2 ≤ 𝐴(ln 𝑘)−

2
2+𝜖

2+3𝜖
2 + 𝐵

(ln 𝑘)
𝜖(2+3𝜖)
2(2+ϵ)

𝑘
+ 𝐶

(ln 𝑘)−
2+3ϵ
2+𝜖

𝑘
 

Then, it follows that 

∥
∥(𝑣̃𝑗)𝑘∥

∥
2+3𝜖
2

−
(2+3𝜖)
2(2+ϵ)∫

ℝ2+𝜖
 

exp (𝛽 (
1

2 + 𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
𝜖
) |(𝑣̃𝑗)𝑘|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥 
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≥∑ 

𝑗

∥
∥(𝑣̃𝑗)𝑘∥

∥
2+3𝜖
2

−
(2+3𝜖)
2(2+ϵ)∫  

|𝑥|≤(
1
𝑘
)

1
2+𝜖

exp (𝛽 (
1

2 + 𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
𝜖
) |(𝑣̃𝑗)𝑘|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥 

≥ (
1

𝛽2+𝜖,2
ln 𝑘)

𝜖(2+3𝜖)
2(2+ϵ)

∑ 

𝑗

∥
∥(𝑣̃𝑗)𝑘∥

∥
2+𝜖
2

−
(2+3𝜖)
2(2+ϵ)∫  

|𝑥|≤(
1
𝑘
)

1
2+𝜖

exp (𝛽 (
1

2 + 𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
𝜖
)

|𝑥|1+𝜖
𝑑𝑥 

 

≥ (
1

𝛽2+𝜖,2
ln 𝑘)

𝜖(2+3𝜖)
2(2+ϵ)

∑ 

𝑗

∥
∥(𝑣̃𝑗)𝑘∥

∥
2+𝜖
2

−
1
2 ∫  

|𝑥|≤(
1
𝑘
)

1
2+𝜖

 

exp (𝛽 (
1

2 + 𝜖
) |(𝑣̃𝑗)𝑘|

2+𝜖
𝜖
)

|𝑥|1+𝜖
𝑑𝑥               (3.10) 

→ ∞ as 𝛽 → 𝛽2+𝜖,2 

Then, we show the attainability of the sharp constant 𝐶(2 + 𝜖, 1 + 𝜖) for inequality (1.7). We need the 

following compact imbedding (see [64]). 

Lemma 𝟑. 𝟏 For 𝜖 ≥ 0, 𝑊̇2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿
2+3𝜖

2 (ℝ1+2𝜖) can be embedded compactly into 

𝐿1+𝜖(ℝ1+2𝜖; |𝑥|−(1+𝜖)𝑑𝑥). 

For the continuity of the proof, we postpone the proof of Lemma 3.1. With the help of Lemma 3.1, applying the 

same method in Lemma 2.2, we can derive the following required convergence. 

lim
𝑘→∞

 ∫  
ℝ1+2𝜖

∑ 

𝑗

(exp (𝛽 (
𝜖

1 + 2𝜖
) |(𝑢𝑗)𝑘|

1+2𝜖
2𝜖−1

) − 1) |(𝑢𝑗)𝑘|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥 

= ∫  
ℝ1+2𝜖

∑ 

𝑗

(exp (𝛽 (
𝜖

1 + 2𝜖
) |𝑢𝑗|

1+2𝜖
2𝜖−1) − 1) |𝑢𝑗|

2+3𝜖
2

|𝑥|1+𝜖
𝑑𝑥.                                   (3.11) 

Then, we can use the same procedure as Theorem 1.1 to obtain the attainability of the best constant. At last, we 

focus on the proof of Lemma 3.1. 

The continuity of the embedding is a direct result of inequality (1.7) and the Hölder inequality. Then it is 

sufficient to show that for any bounded sequence ((𝑢𝑗)𝑘) in 𝑊̇2,
1+2𝜖

2 (ℝ1+2𝜖) ∩ 𝐿1+𝜖(ℝ1+2𝜖), there exists a 

subsequence which we still denote as ((𝑢𝑗)𝑘) such that 

lim
𝑘→∞

 ∑  

𝑗

∥∥(𝑢𝑗)𝑘 − 𝑢𝑗∥∥𝐿1+2𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥) = 0 as 𝑘 → ∞ for 𝜖 ≥ 0. 

Similar to the proof of Lemma 2.1, we carry out the process of proof by two steps. 

Step I We first show that there exists a subsequence still denoted by ((𝑢𝑗)𝑘) such that (𝑢𝑗)𝑘 → 𝑢𝑗 for almost 

𝑥 ∈ ℝ1+2𝜖. In fact, through Sobolev interpolation inequalities with weights (see Lin's work [41]), we can obtain 

∥ ∑  

𝑗

∇𝑢𝑗 ∥2(1+𝜖)≤∑ 

𝑗

∥ Δ𝑢𝑗 ∥𝜋
2

1
2∥ 𝑢𝑗 ∥1+𝜖

1
2 . 

Then it follows from the Hölder inequality that 

∫  
Ω

∑ 

𝑗

(|∇𝑢𝑗|
1+2𝜖
2 + |𝑢𝑗|

1+2𝜖
2 ) 𝑑𝑥 ≤ 𝐶(Ω) 

According to the classical Sobolev compact embedding 𝑊1,
𝜋

2(Ω) ↪↪ 𝐿1+2𝜖(Ω) for ϵ > 0 and the diagonal trick, 

one can obtain that there exists a subsequence (we still denote by ((𝑢𝑗)𝑘)) such that (𝑢𝑗)𝑘(𝑥) → 𝑢𝑗(𝑥),   

strongly in 𝐿𝑙𝑜𝑐
1+2𝜖(ℝ1+2𝜖), (𝑢𝑗)𝑘(𝑥) → 𝑢𝑗(𝑥),   for almost everywhere 𝑥 ∈ ℝ1+2𝜖. 

Step 2 We claim that for any 𝜖 ≥ 0, (𝑢𝑗)𝑘 → 𝑢𝑗 in 𝐿1+2𝜖(ℝ1+2𝜖; |𝑥|−(1+𝜖)𝑑𝑥). Since the process of the proof is 

similar to that of Lemma 2.1, we omit the details. 

 

IV. Proof of Theorem 𝟏. 𝟓 
We use the relationship between the supremums of the subcritical and critical inequalities in [33] to 

establish the existence of maximizers for the singular Adams inequality with the Sobolev norm. We need the 

following lemmas whose proofs can be found in [21], and [33]. 

Lemma 𝟒. 𝟏 For 𝜖 ≥ 0, then ATA(*,t) is continuous on (0, 𝛽1+2𝜖,2). 

Lemma 4.2 If 𝜖 ≥ 0, then 
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lim
1+𝜖→0

 

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

𝐴𝑇𝐴(1 + 𝜖, 1 + 𝜖) = 0 

Lemma 4.3 For 𝜖 ≥ 0, if (𝛽 < 𝛽1+2𝜖,2, 𝜖 ≥ 0) or (𝛽 = 𝛽1+2𝜖,2, 0 < 1 + 𝜖 <
1+2𝜖

2
), then 

lim
1+𝜖→𝛽

 

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

𝐴𝑇𝐴(1 + 𝜖, 1 + 𝜖) = 0. 

Proof of Theorem 𝟏. 𝟓 (see [64]) With the help of Theorem 1.1, Lemmas 4.1,4.2 and 4.3, we establish the 

existence of extremals for the singular Adams inequality with the Sobolev norm. We only need to prove that 

there exists an extremal function for 𝐴1+𝜖,1+𝜖,1+𝜖(𝛽) in the case of (𝛽 < 𝛽1+2𝜖,2, 𝜖 ≥ 0) or (𝛽 = 𝛽1+2𝜖,2, 1 +

𝜖 <
1+2𝜖

2
). It is easy to check that 

lim
1+𝜖→0

 

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

1
2(1+𝜖)

𝐴𝑇𝐴(𝛽, 1 + 𝜖) < 𝐴1+𝜖,1+𝜖,1+𝜖(𝛽) 

and 

lim
1+𝜖→1+𝜖

 

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

𝐴𝑇𝐴(𝛽, 1 + 𝜖) < 𝐴1+𝜖,1+𝜖,1+𝜖(𝛽) 

On the other hand, we also have 

𝐴1+𝜖,1+𝜖,1+𝜖(𝛽) = sup
1+𝜖∈(0,𝛽)

 

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

𝐴𝑇𝐴(1 + 𝜖, 1 + 𝜖). 

This together with Lemma 4.2 and Lemma 4.3 yields that there exists 1 + 𝜖 ∈ (0, 𝛽) such that 

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

𝐴𝑇𝐴(1 + 𝜖, 1 + 𝜖) = 𝐴1+𝜖,1+𝜖,1+𝜖(𝛽) 

Assume that 𝑢𝑗 ∈ 𝑊
2,
1+2𝜖

2 (ℝ1+2𝜖) with ∥ ∑  𝑗 Δ𝑢𝑗 ∥1+2𝜖
2

≤ 1 = ∑  𝑗 ∥ 𝑢𝑗 ∥1+2𝜖
2

 is the maximizer for 𝐴𝑇𝐴(1 +

𝜖, 1 + 𝜖). Define 

𝑣𝑗(𝑥) = (
1 + 𝜖

𝛽
)

2𝜖−1
1+2𝜖

∑ 

𝑗

𝑢𝑗(𝜆𝑥),

𝜆 =

(

 
 (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

1 − (
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

1
2(1+𝜖)

,

 

then it follows that 
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∥ ∑  

𝑗

Δ𝑣𝑗 ∥1+2𝜖
2

1+𝜖  = (
1 + 𝜖

𝛽
)

2𝜖−1
1+2𝜖

(1+𝜖)

∑ 

𝑗

∥ Δ𝑢𝑗 ∥𝜋
2

1+𝜖≤ (
1 + 𝜖

𝛽
)

2𝜖−1
1+2𝜖

(1+𝜖)

∥ ∑  

𝑗

𝑣𝑗 ∥1+2𝜖
2

1+𝜖  = (
1 + 𝜖

𝛽
)

2𝜖−1
1+2𝜖

(1+𝜖) 1

𝜆1+𝜖
∑ 

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
2

1+𝜖 = 1 − (
1 + 𝜖

𝛽
)

2𝜖−1
1+2𝜖

(1+𝜖)
 

which implies that ∥ Δ𝑣𝑗 ∥1+2𝜖
2

1+𝜖 +∥ 𝑣𝑗 ∥1+2𝜖
2

1+𝜖 ≤ 1. Hence, 

𝐴1+𝜖,1+𝜖,1+𝜖(𝛽)  =

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

∫  
ℝ1+2𝜖

∑ 

𝑗

 
Φ1+2𝜖,2 ((1 + 𝜖) (

𝜖
1 + 2𝜖

) |𝑢𝑗|
1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥

 =

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

∫  
ℝ1+2𝜖

∑ 

𝑗

 
Φ1+2𝜖,2 ((1 + 𝜖) (

𝜖
1 + 2𝜖

) |𝑢𝑗(𝜆𝑥)|
1+2𝜖
2𝜖−1)

|𝜆𝑥|1+𝜖
𝑑(𝜆𝑥)

 

 =

(

 
 1 − (

1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

(
1 + 𝜖
𝛽

)

2𝜖−1
1+2𝜖

(1+𝜖)

)

 
 

𝜖
2(1+𝜖)

𝜆𝜖 ∫  
ℝ1+2𝜖

∑ 

𝑗

Φ1+2𝜖,2 (𝛽 (
𝜖

1 + 2𝜖
) |𝑣𝑗|

1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥

 = ∫  
ℝ1+2𝜖

∑ 

𝑗

Φ1+2𝜖,2 (𝛽 (
𝜖

1 + 2𝜖
) |𝑣𝑗|

1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥.

     (4.1) 

This implies that 𝑣𝑗 is actually a maximizer for 𝐴1+𝜖,1+𝜖,1+𝜖(𝛽). 

 

V. Proofs of Theorems 1.7, 𝟏. 𝟗 and 1.11 
We show inequalities (1.8) and (1.9) which equipped with the Dirichlet norm and the existence of their 

extremal functions. The arrangement-free argument in [29] is a useful tool in dealing with the Trudinger-Moser 

and the second-order Adams inequalities. This method may fail when we come to consider the higher order 

inequalities. We use the method based on Fourier transform to establish (1.8) and (1.9). We need the following 

(see [64]). 

Lemma 5.1 For any 𝛽 ∈ (0, 𝛽2(2+𝜖),2+𝜖), there exists a positive constant 𝐶𝛽 such that 

∫  
ℝ2(2+𝜖)

∑ 

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2)

|𝑥|1+𝜖
𝑑𝑥 ≤ 𝐶𝛽 ,                     (5.1) 

where 𝑢𝑗 ∈ 𝑊
2+𝜖,2(ℝ2(2+𝜖)), ∥∥∑  𝑗 ∇

2+𝜖𝑢𝑗∥∥2 ≤ 1 and ∥ 𝑢𝑗 ∥2= 1. 

Proof We first claim that for any fixed 𝛽 ∈ (0, 𝛽2(2+𝜖),2+𝜖), there exists sufficient small 𝜖 ≥ 0 such that for all 

𝑢𝑗 ∈ 𝑊̇
2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) with ∥∥∇

2+𝜖𝑢𝑗∥∥2 ≤ 1 and ∥ 𝑢𝑗 ∥2= 1, there holds 

∥
∥
∥
∥
∥
((1 + 𝜖)𝐼 − Δ)

2+𝜖
2 ∑ 

𝑗

𝑢𝑗
∥
∥
∥
∥
∥

2

2

≤
𝛽2(2+𝜖),2+𝜖

𝛽
                                    (5.2) 

Indeed, by Fourier transform, we have 

∥
∥
∥
∥
∥
∑  

𝑗

((1 + 𝜖)𝐼 − Δ)
2+𝜖
2 𝑢𝑗

∥
∥
∥
∥
∥

2

2

= ∑  

2+𝜖

𝑗0=0

∑ 

𝑗

𝐶2+𝜖
𝑗0 (1 + 𝜖)2+𝜖−𝑗0∥∥∇

𝑗0𝑢𝑗∥∥2
2
. 

Thanks to the Sobolev interpolation inequalities, one can derive that for every 𝜀 > 0, there exists a positive 

constant 𝐶𝜀 > 0 such that 

∥
∥
∥
∥
∥
∑  

𝑗

((1 + 𝜖)𝐼 − Δ)
2+𝜖
2 𝑢𝑗

∥
∥
∥
∥
∥

2

2

≤ (1 + 𝜀)∑ 

𝑗

∥∥∇
2+𝜖𝑢𝑗∥∥2

2
+ 𝐶𝜀(1 + 𝜖)∑ 

𝑗

∥ 𝑢𝑗 ∥2
2, 

which implies inequality (5.2). With the help of Theorem D in [29], we derive that 
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∫  
ℝ2(2+𝜖)

 ∑  

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2)

|𝑥|1+𝜖
𝑑𝑥

= ∫  
ℝ2(2+𝜖)

∑ 

𝑗

 

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) ∥∥
∥((1 + 𝜖)𝐼 − Δ)

2+𝜖
2 𝑢𝑗∥∥

∥
2

2

|
𝑢𝑗

∥∥
∥((1 + 𝜖)𝐼 − Δ)

𝜋
2𝑢𝑗∥∥

∥
2

|

2

)

|𝑥|1+𝜖
𝑑𝑥

≤ ∫  
ℝ2(2+𝜖)

∑ 

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽2(2+𝜖),2+𝜖 (
3 + 𝜖

2(2 + 𝜖)
) |

𝑢𝑗

∥∥
∥((1 + 𝜖)𝐼 − Δ)

4
2𝑢𝑗∥∥
∥
2

|

2

)

|𝑥|1+𝜖
𝑑𝑥 ≤ 𝐶𝐵,                      (5.3) 

which finishes the proof. 

With the help of Lemma 5.1, we start the proof of inequality (1.8). In fact, for any 𝑢𝑗 ∈ 𝑊2+𝜖,2(ℝ2(2+𝜖)) 

satisfying ∥∥∑  𝑗 ∇
2+𝜖𝑢𝑗∥∥2 ≤ 1, we define (𝑢𝑗)𝜆(𝑥) = 𝑢𝑗(𝜆𝑥) with 𝜆 =∥ 𝑢𝑗 ∥2

1

(2+𝜖)(1+𝜖)
. Through direct 

calculations, we derive that 

∥
∥
∥
∥
∥
∑  

𝑗

(𝑢𝑗)𝜆
∥
∥
∥
∥
∥

2

2

= 𝜆−2(2+𝜖)∑ 

𝑗

∥ 𝑢𝑗 ∥2
2= 1

∥
∥
∥
∥
∥
∑  

𝑗

∇2+𝜖(𝑢𝑗)𝜆
∥
∥
∥
∥
∥

2

=∑ 

𝑗

∥∥∇
2+𝜖𝑢𝑗∥∥2 = 1

 

∫  
ℝ2(2+𝜖)

 ∑  

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |(𝑢𝑗)𝜆|

2
)

|𝑥|1+𝜖
𝑑𝑥

= 𝜆−2(3+𝜖)∫  
ℝ2(2+𝜖)

∑ 

𝑗

 
Φ2(2+𝜖),2+𝜖 (𝛽 (

3 + 𝜖
2(2 + 𝜖)

) |𝑢𝑗|
2)

|𝑥|1+𝜖
𝑑𝑥. 

Then it follows from inequality (5.1) that 

∫  
ℝ2(2+𝜖)

 ∑  

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2)

|𝑥|1+𝜖
𝑑𝑥 = 𝜆3+𝜖∫  

ℝ2(2+𝜖)
 ∑  

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |(𝑢𝑗)𝜆|

2
)

|𝑥|1+𝜖
𝑑𝑥 

 ≤ 𝜆3+𝜖𝐶𝛽

 = 𝐶𝛽∑ 

𝑗

∥ 𝑢𝑗 ∥2
2(

3+𝜖
2(2+𝜖)

)

.
                                                (5.4) 

Next, we show the sharpness of inequality (1.8). 

We will modify the idea of constructing test functions for the Adams inequality on domains of finite 

measure in Euclidean spaces [2]. Let 𝜙 ∈ 𝒞0
∞([0,1]) such that 

𝜙(0)  = 𝜙′(0) = ⋯ = 𝜙1+𝜖(0) = 0,  𝜙(1) = 𝜙′(1) = 1

𝜙′′(1)  = ⋯ = 𝜙1+𝜖(1) = 0
 

For 0 < 𝜀 <
1

2
, set 

𝐻(1 + 𝜖): =

{
 
 

 
 𝜀𝜙 (

1 + 𝜖

𝜀
) ,  if 0 < 1 + 𝜖 ≤ 𝜀

1 + 𝜖,  if 𝜀 < 1 + 𝜖 ≤ 1 − 𝜀

1 − 𝜀𝜙 (
−𝜖

𝜀
) ,  if 1 − 𝜀 < 1 + 𝜖 ≤ 1

1,  if 𝜖 ≥ 0.

 

For any fixed 𝜖 ≥ 0 sufficiently small, we define 
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(𝜓𝑗)1+𝜖(|𝑥|): = 𝐻𝜀(1+𝜖)(
log 

1
|𝑥|

log 
1

1 + 𝜖

) 

where 𝜀(1 + 𝜖) =
1

log 
1

1+𝜖

. Obviously, (𝜓𝑗)1+𝜖 ∈ 𝑊0
2+𝜖,2(𝐵1) and 

(𝜓𝑗)1+𝜖 = 1 on 𝐵1+𝜖 

It was proved in Adams [2] that 

∥
∥
∥
∥
∥
∑  

𝑗

∇2+𝜖(𝜓𝑗)1+𝜖
∥
∥
∥
∥
∥

2

2

≤ (2(2 + 𝜖))−1𝛽2(2+𝜖),2+𝜖 (log 
1

1 + 𝜖
)
−1

𝐴1+𝜖 

where 

𝐴1+𝜖: = 1 + 𝑂(
1

log 
1

1 + 𝜖

) 

Moreover, direct computations show 

∥∥(𝜓𝑗)1+𝜖∥∥2 ≲
1

log 
1

1 + 𝜖

 

Define 

(𝑢𝑗)1+𝜖: = ∑  

𝑗

(𝜓𝑗)1+𝜖

((2(2 + 𝜖))−1𝛽2(2+𝜖),2+𝜖 (log 
1

1 + 𝜖
)
−1

𝐴1+𝜖)

1
2

. 

By direct calculations, one can obtain that 

∥
∥
∥
∥
∥
∑  

𝑗

∇2+𝜖(𝑢𝑗)1+𝜖
∥
∥
∥
∥
∥

2

≤ 1 

and 

∥∥(𝑢𝑗)1+𝜖∥∥2
2
∼∑ 

𝑗

∥∥(𝜓𝑗)1+𝜖∥∥2
2

(log 
1

1 + 𝜖
)
−1

𝐴1+𝜖

≲
1

log 
1

1 + 𝜖

. 

Let 1 + 𝜖 → 0, it follows that 

lim
1+𝜖→0

  ∑  

𝑗

∫  
ℝ2(2+𝜖)

 Φ2(2+𝜖),2+𝜖 (𝛽2(2+𝜖),2+𝜖 (
3 + 𝜖

2(2 + 𝜖)
) |(𝑢𝑗)1+𝜖|

2

) |𝑥|−(1+𝜖)𝑑𝑥

∥
∥(𝑢𝑗)1+𝜖∥

∥
2

2(
3+𝜖

2(2+𝜖)
)

 ≳ lim
1+𝜖→0

 (log
1

1 + 𝜖
)

3+𝜖
2(2+𝜖)

∫  
𝐵1+𝜖

∑ 

𝑗

exp (𝛽2(2+𝜖),2+𝜖 (
3 + 𝜖

2(2 + 𝜖)
) |(𝑢𝑗)1+𝜖|

2

) |𝑥|−(1+𝜖)𝑑𝑥

 = lim
1+𝜖→0

 (log
1

1 + 𝜖
)

3+𝜖
2(2+𝜖)

∫  
𝐵1+𝜖

 exp ((3 + 𝜖) log
1

1 + 𝜖
𝐴1+𝜖
−1 ) |𝑥|−(1+𝜖)𝑑𝑥

 ≳ lim
1+𝜖→0

 (log
1

1 + 𝜖
)

3+𝜖
2(2+𝜖)

(1 + 𝜖)3+𝜖 exp ((3 + 𝜖) log
1

1 + 𝜖
𝐴1+𝜖
−1 )

 ≳ lim
1+𝜖→0

 (log
1

1 + 𝜖
)

3+𝜖
2(2+𝜖)

exp ((2(2 + 𝜖) − (1 + 𝜖)) log
1

1 + 𝜖
(𝐴1+𝜖

−1 − 1))

 ≳ lim
1+𝜖→0

 (log
1

1 + 𝜖
)

3+𝜖
2(2+𝜖)

→ ∞,

(5.5) 

which completes the proof of sharpness. 

At last, we show the attainability of 𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽. Just as what we did in Theorem 1.1, we need the following 

compactness lemma (see [64]). 

Lemma 5.2 For 𝜖 ≥ 0, then 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) can be compactly embedded into 

𝐿2+𝜖(ℝ2(2+𝜖), |𝑥|−(1+𝜖)𝑑𝑥). 
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Proof The proof is similar to that of Lemma 2.1 once we prove the equivalence between the space 

𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) and the standard Sobolev space 𝑊2+𝜖,2(ℝ2(2+𝜖)). Indeed, it suffices to show 

that 

∥∥∂
1+𝜖𝑢𝑗∥∥2

2
≤∥ 𝑢𝑗 ∥2

2+ ∥∥∇
2+𝜖𝑢𝑗∥∥2

2
,  ∀|1 + 𝜖| ≤ 2 + 𝜖.                                                (5.6) 

We first prove the 

∥∥∇
1+𝜖𝑢𝑗∥∥2

2
≲∥ 𝑢𝑗 ∥2

2+ ∥∥∇
2+𝜖𝑢𝑗∥∥2

2
, ∀𝜖 ≥ 0,1 + 𝜖 ∈ ℕ.                                    (5.7) 

In fact, by the Fourier transform, we have 

∫  
ℝ2(2+𝜖)

 ∑  

𝑗

|∇1+𝜖𝑢𝑗|
2
𝑑𝑥  = ∫  

ℝ2(2+𝜖)
 ∑  

𝑗

|𝜉|2(1+𝜖)|𝑢̂j(𝜉)|
2𝑑𝜉

 ≤ ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

(1 + |𝜉|2(2+𝜖))|𝑢̂j(𝜉)|
2𝑑𝜉

 = ∫  
ℝ2(2+𝜖)

∑ 

𝑗

  |𝑢̂j(𝜉)|
2𝑑𝜉 + ∫  

ℝ2(2+𝜖)
 ∑  

𝑗

|𝜉|2(2+𝜖)|𝑢̂𝑗(𝜉)|
2𝑑𝜉

 = ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

|𝑢𝑗|
2𝑑𝑥 + ∫  

ℝ2(2+𝜖)
 ∑  

𝑗

|∇2+𝜖𝑢𝑗|
2
𝑑𝑥.

 

Combining this result, in order to obtain the equivalence result, we only need to show that 

∥
∥
∥
∥
∥
∑  

𝑗

∂𝛼𝑢𝑗
∥
∥
∥
∥
∥

2

2

≤∑ 

𝑗

∥∥∇
|𝛼|𝑢𝑗∥∥2

2
                                                            (5.8) 

One can derive it by induction. For |𝛼| ≥ 2, 𝛼 = (𝛼1, 𝛼2, ⋯ , 𝛼1+2𝜖), there exist 𝛼𝑗 + 𝛼1+𝜖 ≥ 2 such that ∂𝛼 =
∂2

∂𝑥𝑗 ∂𝑥1+𝜖
∂𝛽. Hence, it follows from the Fourier transform and the Riesz transform that 

∥
∥
∥
∥
∥
∑  

𝑗

∂𝛼𝑢𝑗
∥
∥
∥
∥
∥

2

2

 = ∫  
ℝ2(2+𝜖)

∑ 

𝑗

  |(
∂2

∂𝑥𝑗 ∂𝑥1+𝜖
∂𝛽𝑢𝑗)

∧

(𝜉)|

2

𝑑𝜉

 = ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

∣ 4𝜋2𝜉𝑗𝜉1+𝜖∂
𝛽𝑢𝑗(𝜉)|

2
𝑑𝜉

̂

 = ∫  
ℝ2(2+𝜖)

∑ 

𝑗

  |(−𝑖
𝜉𝑗

|𝜉|
) (−𝑖

𝜉1+𝜖
|𝜉|

) (4𝜋2|𝜉|2) ∂𝛽𝑢𝑗(𝜉)
̂ |

2

𝑑𝜉

 = ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

|(𝑅𝑗𝑅1+𝜖Δ(∂
𝛽𝑢𝑗))

∧

(𝜉)|
2

𝑑𝜉

 

Then, with the help of the induction and the definition of ∇2+𝜖, one can get 

∫  
ℝ2(2+𝜖)

∑ 

𝑗

|(𝑅𝑗𝑅1+𝜖Δ(∂
𝛽𝑢𝑗))

∧

(𝜉)|
2

𝑑𝜉 ≤∑ 

𝑗

∥∥∂
𝛽(Δ𝑢𝑗)∥∥2

2
≤∑ 

𝑗

∥∥∇
|𝛽|Δ𝑢𝑗∥∥2

2
=∑ 

𝑗

∥∥∇
|𝛼|∣ 𝑢𝑗∥∥2

2
, 

which proves the required equivalence. 

Now we show that the best constant 𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽 could be attained by a function in 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩

𝐿2(ℝ2(2+𝜖)). Assume that ((𝑢𝑗)1+𝜖) ⊂ 𝑊̇
2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) satisfying 

∥
∥
∥
∥
∥
∑  

𝑗

∇2+𝜖(𝑢𝑗)1+𝜖
∥
∥
∥
∥
∥

2

= 1 and 𝐹2(2+𝜖),2+𝜖,1+𝜖,𝛽((𝑢𝑗)1+𝜖) → 𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽(ℝ
2(2+𝜖)) as 1 + 𝜖 → ∞. 

Constructing a new function sequence ((𝑣𝑗)1+𝜖) defined by (𝑣𝑗)1+𝜖(𝑥): = (𝑢𝑗)1+𝜖 (∥∥(𝑢𝑗)1+𝜖∥∥2

1

2+𝜖𝑥) for 𝑥 ∈

ℝ2(2+𝜖), one can easily verify that 

∥∥∇
2+𝜖(𝑣𝑗)1+𝜖∥∥2 = 1,  ∥∥(𝑣𝑗)1+𝜖∥∥2 = 1 

and 

𝐹2(2+𝜖),2+𝜖,1+𝜖,𝛽((𝑣𝑗)1+𝜖) = 𝐹2(2+𝜖),2+𝜖,1+𝜖,𝛽((𝑢𝑗)1+𝜖) → 𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽(ℝ
2(2+𝜖)) as 1 + 𝜖 → ∞ 

Hence, ((𝑣𝑗)1+𝜖) is also a maximizing sequence for 𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽(ℝ
2(2+𝜖)). Note that ((𝑣𝑗)1+𝜖) is bounded 

in 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)), thus up to a sequence, we may assume that 

(𝑣𝑗)1+𝜖 → 𝑣𝑗  in 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)). 

It follows from weak semicontinuity of the norm in 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) that 
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∥
∥
∥
∥
∥
∑  

𝑗

∇2+𝜖𝑣𝑗
∥
∥
∥
∥
∥

2

≤ 1,
∥
∥
∥
∥
∥
∑  

𝑗

𝑣𝑗
∥
∥
∥
∥
∥

2

≤ 1                                                (5.9) 

Then, implementing same procedures as we did in Lemma 2.2, we have 

 lim
1+𝜖→∞

 ∫  
ℝ2(2+𝜖)

∑ 

𝑗

  (Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |(𝑢𝑗)1+𝜖|

2

) − 𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |(𝑢𝑗)1+𝜖|

2

)
𝑑𝑥

|𝑥|1+𝜖

 = ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

(Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2) − 𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2)
𝑑𝑥

|𝑥|1+𝜖

(5.10) 

Combining (5.10) with Lemma 5.2, we derive that up to a sequence, 

𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽(ℝ
2(2+𝜖))  = ∫  

ℝ2(2+𝜖)
∑ 

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |(𝑣𝑗)1+𝜖|

2

)
𝑑𝑥

|𝑥|1+𝜖
+ 𝑜(1)

 = ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑣𝑗|

2)
𝑑𝑥

|𝑥|1+𝜖
,

   (5.11) 

which implies 𝑣𝑗 ≠ 0. Then we can deduce from (5.9) and (5.11) that 

𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽(ℝ
2(2+𝜖)) ≤∑  

𝑗

∫  
ℝ2(2+𝜖)

 Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑣𝑗|

2)
𝑑𝑥

|𝑥|1+𝜖

∥ 𝑣𝑗 ∥2
2−
1+𝜖
2+𝜖

= 𝐹2(2+𝜖),2+𝜖,1+𝜖,𝛽(𝑣𝑗).                                                                                                               (5.12) 

Therefore, it remains to show that ∥∥∇
2+𝜖𝑣𝑗∥∥2 = 1. By the definition of 𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽(ℝ

2(2+𝜖)) and (5.9), we 

see that 

𝜇2(2+𝜖),2+𝜖,1+𝜖,𝛽(ℝ
2(2+𝜖))  ≥ ∑ 

𝑗

𝐹2(2+𝜖),2+𝜖,1+𝜖,𝛽 (
𝑣𝑗

∥∥∇2+𝜖𝑣𝑗∥∥2
)

 =∑  

∞

𝑖=1

 ∑  

𝑗

𝛽𝑖

𝑖!
∥ 𝑣𝑗 ∥𝐿2𝑖(ℝ2(2+𝜖);|𝑥|−1+𝜖𝑑𝑥)

2𝑖 ∥ 𝑣𝑗 ∥2
−
3+𝜖
2+𝜖

∥∥∇
2+𝜖𝑣𝑗∥∥2

3+𝜖
2+𝜖

−2𝑖
    (5.13)

 ≥ ∑ 

𝑗

𝐹2(2+𝜖),2+𝜖,1+𝜖,𝛽(𝑣𝑗) +∑ 

𝑗

(∥∥∇
2+𝜖𝑣𝑗∥∥2

−
1+𝜖
2+𝜖 − 1)𝐹2(2+𝜖),2+𝜖,1+𝜖,𝛽(𝑣𝑗)

 

This together with (5.9) and (5.12) implies that ∥∥∇
2+𝜖𝑣𝑗∥∥2 = 1. Then we complete the proof of Theorem 1.7. 

The Proof of Theorem 𝟏. 𝟗 (see [64]) We first establish inequality (1.9). Just as what we did in Theorem 1.2, 

we divide the integral in inequality (1.9) into two parts. 

∫  
ℝ2(2+𝜖)

  ∑  

𝑗

exp (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2) |𝑢𝑗|
2

|𝑥|1+𝜖
𝑑𝑥

=  ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2) |𝑢𝑗|
2

|𝑥|1+𝜖
𝑑𝑥 + ∫  

ℝ2(2+𝜖)
∑ 

𝑗

 
|𝑢𝑗|

2

|𝑥|1+𝜖
𝑑𝑥

= ∶ 𝐼1 + 𝐼2.

            (5.14) 

By applying the Hölder inequality and inequality (1.8), one can estimate 𝐼1 as follows 

𝐼1  ≤ ∑ 

𝑗

(∫  
ℝ2(2+𝜖)

 
Φ2(2+𝜖),2+𝜖 (𝛽(2 + 𝜖) (

3 + 𝜖
2(2 + 𝜖)

) |𝑢𝑗|
2)

|𝑥|1+𝜖
𝑑𝑥)

1
2+𝜖

(∫  
ℝ2(2+𝜖)

 
|𝑢𝑗|

2(
1+𝜖
𝜖
)

|𝑥|1+𝜖
𝑑𝑥)

𝜖
1+𝜖

 ≤ ∑ 

𝑗

(∫  
ℝ2(2+𝜖)

  |𝑢𝑗|
2𝑑𝑥)

3+𝜖
2(2+𝜖)2

(∫  
ℝ2(2+𝜖)

  |𝑢𝑗|
2𝑑𝑥)

3+𝜖
2(2+𝜖)2

 = (∫  
ℝ2(2+𝜖)

 ∑  

𝑗

|𝑢𝑗|
2𝑑𝑥)

3+𝜖
2(2+𝜖)

(5.15) 

where 𝜖 > 0 and 𝛽(1 + 𝜖) < 𝛽2(2+𝜖),2+𝜖. As for 𝐼2, it is an immediate result of inequality (1.8). 

One can deduce the sharpness of inequality (1.9) from the sharpness of inequality (1.13). 
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In fact, one only needs to observe the following fact 

∫  
ℝ2(2+𝜖)

∑ 

𝑗

exp (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2) |𝑢𝑗|
2

|𝑥|1+𝜖
𝑑𝑥 ≥ ∫  

ℝ2(2+𝜖)
∑ 

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 (
3 + 𝜖

2(2 + 𝜖)
) |𝑢𝑗|

2)

|𝑥|1+𝜖
𝑑𝑥 

For the attainability of the best constant 𝐶(2 + 𝜖, 1 + 𝜖) of inequality (1.9), one can manage the same steps as 

what we do in Theorem 1.7 to obtain the required results. 

The Proof of Theorem 𝟏. 𝟏𝟏 (see [64]) We first employ the Fourier rearrangement tools to prove there exists 

radially maximizing sequence for 𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖)). In fact, assume that ( (𝑢𝑗)1+𝜖 ) is a maximizing 

sequence for 𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖)), that is 

∥
∥
∥
∥
∥
∑  

𝑗

(−Δ)
2+𝜖
2 (𝑢𝑗)1+𝜖

∥
∥
∥
∥
∥

2

= 1,  lim
1+𝜖→∞

 𝐹2(2+𝜖),2+𝜖,0,𝛽((𝑢𝑗)1+𝜖) → 𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖)) 

Define (𝑢𝑗)1+𝜖
♯  by (𝑢𝑗)1+𝜖

♯ = 𝐹−1 {(𝐹((𝑢𝑗)1+𝜖))
∗

}, where 𝐹 denotes the Fourier transform on ℝ2(2+𝜖) (with its 

inverse 𝐹−1 ) and 𝑓∗ stands for the Schwarz symmetrization of 𝑓. Using the property of the Fourier 

rearrangement from [35], one can derive that 

∥
∥
∥
∥
∥
∑  

𝑗

(−Δ)
2+𝜖
2 (𝑢𝑗)1+𝜖

♯

∥
∥
∥
∥
∥

2

≤∑ 

𝑗
∥∥
∥(−Δ)

2+𝜖
2 (𝑢𝑗)1+𝜖∥∥

∥
2
,

∥
∥
∥
∥
∥
∑  

𝑗

(𝑢𝑗)1+𝜖
♯

∥
∥
∥
∥
∥

2

=∑ 

𝑗

∥
∥(𝑢𝑗)1+𝜖∥

∥
2
,

∥
∥
∥
∥
∥
∑  

𝑗

(𝑢𝑗)1+𝜖
♯

∥
∥
∥
∥
∥

1+𝜖

≥∑ 

𝑗

∥∥(𝑢𝑗)1+𝜖∥∥1+𝜖. 

Hence, lim1+𝜖→∞  𝐹2(2+𝜖),2+𝜖,0,𝛽((𝑢𝑗)1+𝜖) ≤ lim1+𝜖→∞  𝐹2(2+𝜖),2+𝜖,0,𝛽((𝑢𝑗)1+𝜖
♯ ), which implies that ((𝑢𝑗)1+𝜖

♯ ) is 

also the maximizing sequence for 𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖)). Constructing a new function sequence ((𝑣𝑗)1+𝜖) 

defined by (𝑣𝑗)1+𝜖(𝑥): = (𝑢𝑗)1+𝜖 (∥∥(𝑢𝑗)1+𝜖∥∥2

1

2+𝜖𝑥 ) for 𝑥 ∈ ℝ2(2+𝜖), one can easily verify that ( (𝑣𝑗)1+𝜖 ) is also 

a maximizing sequence for 𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖)) with ∥∥∇

2+𝜖(𝑣𝑗)1+𝜖∥∥2 = 1 and ∥∥(𝑣𝑗)1+𝜖∥∥2 = 1. Note 

((𝑣𝑗)1+𝜖) is bounded in 𝑊2+𝜖,2(ℝ2(2+𝜖)), up to a sequence, we may assume that 

(𝑣𝑗)1+𝜖 → 𝑣𝑗  in 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)), 

thus 𝑣𝑗 satisfies that ∥ 𝑣𝑗 ∥2≤ 1 and ∥∥∇
2+𝜖𝑣𝑗∥∥2

2
≤ 1. Since 𝑊2+𝜖,2(ℝ2(2+𝜖) ) can be compactly imbedded into 

𝐿2+𝜖(ℝ2(2+𝜖) ) for any 𝜖 > 0 (please refer to [7], Lemma 5.3), implementing same procedures as what we did in 

Lemma 2.2, one can deduce that 

lim
1+𝜖→∞

 ∫  
ℝ2(2+𝜖)

∑ 

𝑗

(Φ2(2+𝜖),2+𝜖 (𝛽|(𝑢𝑗)1+𝜖|
2
) − 𝛽|(𝑢𝑗)1+𝜖|

2
)

= ∫  
ℝ2(2+𝜖)

∑ 

𝑗

(Φ2(2+𝜖),2+𝜖(𝛽|𝑢𝑗|
2) − 𝛽|𝑢𝑗|

2)                                                (5.16) 

Then it follows that 

𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖))  = ∑ 

𝑗

𝐹2(2+𝜖),2+𝜖,0,𝛽 ((𝑣𝑗)1+𝜖) + 𝑜
(1)

 = ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

Φ2(2+𝜖),2+𝜖 (𝛽 |(𝑣𝑗)1+𝜖|
2

) 𝑑𝑥 + 𝑜(1)

 = 𝛽 + ∫  
ℝ2(2+𝜖)

∑ 

𝑗

 Φ2(2+𝜖),2+𝜖 ((𝛽 |(𝑣𝑗)1+𝜖|
2

) − 𝛽 |(𝑣𝑗)1+𝜖|
2

)𝑑𝑥 + 𝑜(1)

 = 𝛽 + ∫  
ℝ2(2+𝜖)

 ∑  

𝑗

(Φ2(2+𝜖),2+𝜖(𝛽|𝑣𝑗|
2) − 𝛽|𝑣𝑗|

2)𝑑𝑥

     (5.17) 

Next, we show 𝑣𝑗 ≠ 0. Indeed, one can pick (𝑢𝑗)0 in 𝑊̇2+𝜖,2(ℝ2(2+𝜖)) ∩ 𝐿2(ℝ2(2+𝜖)) satisfying 

∥∥∇
2+𝜖(𝑢𝑗)0∥∥2 = 1 arbitrarily. Then, we have 
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𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖)) ≥ 𝐹2(2+𝜖),2+𝜖,0,𝛽((𝑢𝑗)0)  =∑  

𝑗

∫  
ℝ2(2+𝜖)

 Φ2(2+𝜖),2+𝜖 (𝛽|(𝑢𝑗)0|
2
) 𝑑𝑥

∥∥(𝑢𝑗)0∥∥2
2

 = ∑  

𝑗

∑  ∞
𝑗0=1

 
𝛽𝑗

𝑗0!
∥∥(𝑢𝑗)0∥∥2𝑗0

2𝑗0

∥∥(𝑢𝑗)0∥∥2
2

 = 𝛽 +∑ 

𝑗

∑  ∞
𝑗0=2

 
𝛽𝑗0

𝑗0!
∥∥(𝑢𝑗)0∥∥2𝑗0

2𝑗0

∥∥(𝑢𝑗)0∥∥2
2 > 𝛽.

 

Hence, 

𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖))  ≤ 𝛽 +∑ 

𝑗

∫  
ℝ2(2+𝜖)

 Φ2(2+𝜖),2+𝜖(𝛽|𝑣𝑗|
2) − 𝛽|𝑣𝑗|

2𝑑𝑥

∥ 𝑣𝑗 ∥2
2

 = ∑ 

𝑗

∫  
ℝ2(2+𝜖)

 Φ2(2+𝜖),2+𝜖(𝛽|𝑣𝑗|
2)𝑑𝑥

∥ 𝑣𝑗 ∥2
2 = 𝐹2(2+𝜖),2+𝜖,0,𝛽(𝑣𝑗).

 

Therefore, it remains to show ∥∥∇
2+𝜖𝑣𝑗∥∥2

2
− 1. Recall that ∥∥∇

2+𝜖𝑣𝑗∥∥2
2
≤ 1, it suffices to show that ∥∥∇

2+𝜖𝑣𝑗∥∥2
2
≥ 1. 

Through the definition of 𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖)), one can obtain that 

𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖))  ≥ ∑ 

𝑗

𝐹2(2+𝜖),2+𝜖,0,𝛽 (
𝑣𝑗

∥∥∇2+𝜖𝑣𝑗∥∥2
)

 = ∑  

∞

𝑗0=1

∑ 

𝑗

 
𝛽𝑗0

𝑗0!

∥ 𝑣𝑗 ∥2𝑗0
2𝑗0

∥ 𝑣𝑗 ∥2
2 ∥∥∇

2+𝜖𝑣𝑗∥∥2
2−2𝑗0

 ≥ 𝛽 +
𝛽2

2
∑  

𝑗

∥ 𝑣𝑗 ∥4
4

∥ 𝑣𝑗 ∥2
2 ∥∥∇

2+𝜖𝑣𝑗∥∥2
−2
+ ∑  

∞

𝑗0=2

 ∑  

𝑗

𝛽𝑗0

𝑗0!

∥ 𝑣𝑗 ∥2𝑗0
2𝑗0

∥ 𝑣𝑗 ∥2
2

=∑ 

𝑗

𝐹2(2+𝜖),2+𝜖,0,𝛽(𝑣𝑗) +
𝛽2

2
∑ 

𝑗

∥ 𝑣𝑗 ∥4
4

∥ 𝑣𝑗 ∥2
2 (∥∥∇

2+𝜖𝑣𝑗∥∥2
−2
− 1)

 ≥ 𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ
2(2+𝜖)) +

𝛽2

2
∑  

𝑗

∥ 𝑣𝑗 ∥4
4

∥ 𝑣𝑗 ∥2
2 (∥∥∇

2+𝜖𝑣𝑗∥∥2
−2
− 1)

(5.18) 

which implies that ∥∥∇
2+𝜖𝑣𝑗∥∥2

2
≥ 1. Thus, 𝑣𝑗 is a maximizer for 𝜇2(2+𝜖),2+𝜖,0,𝛽(ℝ

2(2+𝜖)) which completes the 

proof of Theorem 1.11. 

6 Proofs of Theorems 𝟏. 𝟏𝟐 and 𝟏. 𝟏𝟑 

We show some applications of Theorem 1.1 and Theorem 1.7. We first show the higher order critical Caffarelli-

Kohn-Nirenberg inequalities which are not in [40]. We also investigate the relationship between the best 

constants of the singular Adams inequality and the Caffarelli-Kohn-Nirenberg inequality in the asymptotic 

sense. 

Proof of Theorem 𝟏. 𝟏𝟐 (see [64]) We first give the proof of inequality (1.10). Denoting 

𝛽0 ∶= s  {𝛽:∫  
ℝ1+2𝜖

∑ 

𝑗

 
Φ1+2𝜖,2 (𝛽|𝑢𝑗|

1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥

≤ 𝐶(1 + 2𝜖, 1 + 𝜖) (∫  
ℝ1+2𝜖

∑ 

𝑗

  |𝑢𝑗(𝑥)|
1+2𝜖
2 𝑑𝑥)

𝜖
1+2𝜖

, ∀𝑢𝑗 ∈ 𝑊
2,
1+2𝜖
2 (ℝ1+2𝜖) with ∥ Δ𝑢𝑗 ∥1+2𝜖

2
≤ 1

}
 

 
 

then for any 𝛽 < 𝛽0, there exists a constant 𝐶(1 + 2𝜖, 1 + 𝜖) > 0 such that for 𝑢𝑗 ∈ 𝑊
2,
1+2𝜖

2 (ℝ1+2𝜖) and 1 +

𝜖 ≥ 𝑗1+2𝜖
2

− 1, there holds 
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𝐶(1 + 2𝜖, 1 + 𝜖)∑  

𝑗

(

∥ 𝑢𝑗 ∥1+2𝜖
2

∥ Δ𝑢𝑗 ∥1+2𝜖
2

)

𝜖
2

≥ ∫  
ℝ1+2𝜖

∑ 

𝑗

 

Φ1+2𝜖,2(𝛽 (
|𝑢𝑗|

∥ Δ𝑢𝑗 ∥1+2𝜖
2

)

1+2𝜖
2𝜖−1

)

|𝑥|1+𝜖
𝑑𝑥

≥
𝛽1+𝜖

(1 + 𝜖)!
∑  

𝑗

(

∥ 𝑢𝑗 ∥
𝐿
1+2𝜖
2𝜖−1

(1+𝜖)
(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)

∥ Δ𝑢𝑗 ∥1+2𝜖
2

)

1+2𝜖
2𝜖−1

(1+𝜖)

,                                             (6.1) 

which implies that for 𝑢𝑗 ∈ 𝑊
2,
1+2𝜖

2 (ℝ1+2𝜖) and 1 + 𝜖 ≥ 𝑗1+2𝜖
2

− 1, 

∥ ∑  

𝑗

𝑢𝑗 ∥
𝐿
1+2𝜖
2𝜖−1

(1+𝜖)
(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)

≤ (𝐶(1 + 2𝜖, 1 + 𝜖)
(1 + 𝜖)!

𝛽1+𝜖
)

2𝜖−1
(1+2𝜖)(1+𝜖)

∑ 

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
2

𝜖

2(
1+2𝜖
2𝜖−1

)(1+𝜖)

∥ Δ𝑢𝑗 ∥1+2𝜖
2

1−
𝜖

2(
1+2𝜖
2𝜖−1

)(1+𝜖)
                                                                                                                (6.2) 

For any 1 + 𝜖 ≥
1+2𝜖

2𝜖−1
(𝑗1+2𝜖

2

− 1), there exists 1 + 𝜖 ≥ 𝑗1+2𝜖
2

− 1 satisfying 
1+2𝜖

2𝜖−1
(1 + 𝜖) ≤ 1 + 𝜖 <

1+2𝜖

2𝜖−1
(𝜖) 

such that 

∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)≤∑ 

𝑗

∥ 𝑢𝑗 ∥
𝐿
1+2𝜖
2𝜖−1

(1+𝜖)
(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)

𝜃

∥ 𝑢𝑗 ∥
𝐿
1+2𝜖
2𝜖−1

(2+𝜖)
(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)

∘
1−𝜃                                                                                  (6.3) 

Combining (6.2) with (6.3) and the fact 
1

1+𝜖
=

𝜃
1+2𝜖

2𝜖−1
(1+𝜖)

+
1−𝜃

1+2𝜖

2𝜖−1
(2+𝜖)

, one can conclude that 

∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)≤ C(1 + 2𝜖, 1 + 𝜖)
1

1+2𝜖𝛽−
2𝜖−1
1+2𝜖((𝑘 + 1)!)

1
1+2𝜖∑ 

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
2

2𝜖
2(1+2𝜖)

∥ ∆𝑢𝑗 ∥2+𝜖
2

2+𝜖
2(1+2𝜖)                                                                                                                                 (6.4) 

since 
(1+𝜖)(2𝜖−1)

1+2𝜖
≥ 1 + 𝜖, we have 

((2 + 𝜖)!)
1
1+𝜖 ≤ (Γ(

(1 + 𝜖)(2𝜖 − 1)

1 + 2𝜖
+ 2))

1
1+𝜖

                                           (6.5) 

By (6.4) and (6.5), one can derive inequality (1.10) with estimating 𝑐(1 + 2𝜖, 1 + 𝜖, 1 + 𝜖) ≈ 𝐶(1 + 2𝜖, 1 +

𝜖)
1

1+𝜖𝛽−
2𝜖−1

1+2𝜖 (Γ (
(1+𝜖)(2𝜖−1)

1+2𝜖
+ 2))

1

1+𝜖
. 

Next, we claim that there exists 𝜖 ≥ 0 such that 𝑐(1 + 2𝜖, 1 + 𝜖, 1 + 𝜖) behaves like 𝑐(1 + 2𝜖, 1 + 𝜖, 1 + 𝜖) ≃

(1 + 𝜖)(1 + 𝜖)
2𝜖−1

1+2𝜖 as 1 + 𝜖 → +∞ which is equivalent to say by recalling Stirling's asymptotic formula, we see 

that as 1 + 𝜖 → ∞, 

(Γ (
(1 + 𝜖)(2𝜖 − 1)

1 + 2𝜖
+ 2))

1
1+𝜖

= (1 + 𝑜(1))(
1 + 𝜖

𝑒
1 + 2𝜖
2𝜖 − 1

)

2𝜖−1
1+2𝜖

 

Therefore, we derive that 

∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)≤ (1 + o(1))(
1 + 2𝜖

𝛽𝑒 (
2𝜖 − 1
1 + 2𝜖

)
)

2𝜖−1
1+2𝜖

∑ 

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
2

2𝜖
2(1+2𝜖)∥ ∆𝑢𝑗 ∥2+𝜖

2

2+𝜖
2(1+2𝜖) (6.6) 

which accomplishes the claim. 

At last, we show the relationship between 𝛽0 and 𝛼1+2𝜖,1+𝜖,  
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𝛼1+2𝜖,1+𝜖 ≔ inf {𝜖 ≥ 0: ∃1 + 𝜖 ≥ 𝑗1+2𝜖
2
, ∀𝜖 ≥ 0, ∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)≤ (1 + 𝜖)(1 + 2𝜖)
2𝜖−1
1+2𝜖∑ 

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
2

2𝜖
2(1+2𝜖)

∥ ∆𝑢𝑗 ∥2+𝜖
2

2+𝜖
2(1+2𝜖)

 } 

where  according to the definition of 𝛼1+2𝜖,1+𝜖, combining inequality (6.6), one can derive that 𝛼1+2𝜖,1+𝜖 ≤ 

(
1

𝛽𝑒
1+2𝜖

2𝜖−1

)

2𝜖−1

1+2𝜖

. Then it follows from the definition of 𝛽0 that 

𝛼1+2𝜖,1+𝜖 ≤ (
1

𝛽0𝑒
1 + 2𝜖
2𝜖 − 1

)

2𝜖−1
1+2𝜖

                                              (6.7) 

Then it suffices to show that 

𝛼1+2𝜖,1+𝜖 ≥ (
1

𝛽0𝑒
1 + 2𝜖
2𝜖 − 1

)

2𝜖−1
1+2𝜖

 

Pick any 𝛼 > 𝛼1+2𝜖,1+𝜖, through the definition of 𝛼1+2𝜖,1+𝜖, there exists 1 + 𝜖 ≥ 𝑗1+2𝜖
2

 such that for any 𝜖 ≥ 0 

∥ ∑  

𝑗

𝑢𝑗 ∥𝐿1+𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)≤ (1 + 𝜖)(1 + 2𝜖)
2𝜖−1
1+2𝜖∑ 

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
2

2𝜖
2(1+2𝜖)

∥ ∆𝑢𝑗 ∥2+𝜖
2

2+𝜖
2(1+2𝜖)

                    (6.8) 

Then for 𝑢𝑗 ∈ 𝑊
2,
1+2𝜖

2 (ℝ1+2𝜖) and ∥ Δ𝑢𝑗 ∥1+2𝜖
2

≤ 1, 

 ∫  
ℝ1+2𝜖

∑ 

𝑗

 
Φ1+2𝜖,2 (𝛽|𝑢𝑗|

1+2𝜖
2𝜖−1)

|𝑥|1+𝜖
𝑑𝑥

= ∫  
ℝ1+2𝜖

 ( ∑  

𝑗
𝜋
2
≤
1+2𝜖
2𝜖−1

(1+𝜖)<1+𝜖

∑ 

𝑗

 
𝛽1+𝜖

(1 + 𝜖)!
|𝑢𝑗(𝑥)|

1+2𝜖
2𝜖−1

(1+𝜖))
𝑑𝑥

|𝑥|1+𝜖

+∫  
ℝ1+2𝜖

∑ 

𝑗

 ( ∑  
1+2𝜖
2𝜖−1

(1+𝜖)≥1+𝜖

 
𝛽1+𝜖

(1 + 𝜖)!
|𝑢𝑗(𝑥)|

1+2𝜖
2𝜖−1

(1+𝜖))
𝑑𝑥

|𝑥|1+𝜖

=: 𝐽1 + 𝐽2.                               (6.9) 

Since 𝐽1 consists of finite weighted norms and 
1+2𝜖

2
≤

1+2𝜖

2𝜖−1
(1 + 𝜖) < 1 + 𝜖, one can get 

∥ ∑  

𝑗

𝑢𝑗 ∥
𝐿
1+2𝜖
2𝜖−1

(1+𝜖)
(ℝ1+2𝜖;|𝑥|−1+𝜖𝑑𝑥)

≤ C∑ 

𝑗

∥ 𝑢𝑗 ∥
𝐿
1+2𝜖
2 (ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)

𝜃 ∥ 𝑢𝑗 ∥𝐿1+𝜖(ℝ1+2𝜖;|𝑥|−(1+𝜖)𝑑𝑥)
1−𝜃 (6.10) 

through using the Hölder inequality. Taking (6.8) and (6.10) into consideration, we get that for all 
1+2𝜖

2
≤

1+2𝜖

2𝜖−1
(1 + 𝜖) < 1 + 𝜖, 

∥ ∑  

𝑗

𝑢𝑗 ∥
𝐿
1+2𝜖
2𝜖−1

(1+𝜖)
(ℝ1+2𝜖;|𝑥|−1+𝜖𝑑𝑥)

≤ 𝐶∑ 

𝑗

∥ 𝑢𝑗 ∥𝜋
2

𝜖

2(
1+2𝜖
2𝜖−1

(1+𝜖))

,                             (6.11) 

where we used the fact that ∥ Δ𝑢𝑗 ∥1+2𝜖
2

≤ 1. Then it follows from (6.11) that 

𝐽1 ≤ 𝐶( ∑  
1+2𝜖
2

≤
1+2𝜖
2𝜖−1

(1+𝜖)<1+𝜖

 
𝛽1+𝜖

(1 + 𝜖)!
)∑  

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
2

𝜖
2                         (6.12) 

For 𝐽2, inequality (6.8) leads to 

𝐽2 ≤ ( ∑  
1+2𝜖
2𝜖−1

(1+𝜖)≥1+𝜖

 
(1 + 𝜖)1+𝜖

(1 + 𝜖)!
(𝛽
1 + 2𝜖

2𝜖 − 1
(1 + 𝜖)

1+2𝜖
2𝜖−1)

1+𝜖

)∑ 

𝑗

∥ 𝑢𝑗 ∥1+2𝜖
ϵ
.                                (6.13) 
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Then it follows from the Stirling's asymptotic formula that the power in (6.13) converges if 𝛽
1+2𝜖

2𝜖−1
(1 + 𝜖)

1+2𝜖

2𝜖−1 <

1

𝑒
, which implies that 𝛽 ∈ (0,

1

𝑒
1+2𝜖

2𝜖−1
𝛼′
). Hence, the definition of 𝛽0 leads to 𝛽0 ≥

1

𝑒
1+2𝜖

2𝜖−1
(1+𝜖)

1+2𝜖
2𝜖−1

. Moreover, 

through the definition of 𝛼1+2𝜖,1+𝜖, we get that 

𝛽0 ≥
1

𝑒
1 + 2𝜖
2𝜖 − 1

𝛼1+2𝜖,1+𝜖

1+2𝜖
2𝜖−1

 

which is equivalent to 

𝛼1+2𝜖,1+𝜖 ≥ (
1

𝑒
1 + 2𝜖
2𝜖 − 1

𝛽0

)

2𝜖−1
1+2𝜖

                                                (6.14) 

Combining (6.7) and (6.14), we complete the proof. 

Remark 6.1 The proof of Theorem 1.13 is similar to that of Theorem 1.12. 
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