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Abstract

For the clearity, consistency and simplicity we restate and follow the pioneer of the paper [38] to show the
boundedness of a general class of multipliers and Fourier multipliers, in particular of the Hilbert transform, on
quasi-Banach modulation spaces. And deduce boundedness for multiplications and convolutions for elements in
such spaces with slightly small changes in the sequel.

Keywords: Hilbert transform, convolutions, multiplications

Received 14 Jan., 2026, Revised 26 Jan., 2026, Accepted 29 Jan., 2026 © The author(s) 2026.
Published with open access at www.questjournas.org

I.  Introduction

We deduce mapping properties of step multipliers and Fourier step multipliers when acting on quasi-
Banach modulation spaces. Some parts of our investigations are based on certain continuity properties for
multiplications and convolutions for elements in such spaces, deduced in Section 3, and which might be of
independent interests. So the Hilbert transform, i.e. multiplication by the signum function on the Fourier
transform side, is frequently used in mathematics, science and technology. In physics it can be used to secure
causality. For example, in optics, the refractive index of a material is the frequency response of a causal system
whose real part gives the phase shift of the penetrating light and the imaginary part gives the attenuation. The
relationship between the two are given by the Hilbert transform. Consequently, knowledge of one is sufficient to
retrieve the other. Hence the inconveniently property with the Hilbert transform concerns lack of continuity
when acting on commonly used spaces. For example, it is well-known that the Hilbert transform is continuous
on L?, but fails to be continuous on L'*¢ for € # 1 as well as on S. (See [22]). A pioneering contribution which
drastically improve the situation concerns [23], who showed that the Hilbert transform is continuous on the
modulation space M*€1*€ when 0 < € < oo. The result is surprising because M**€1*€ is rather close to L'*€

when (1 + €) stays between (1 + €) and (1;) (seee. g. [8, 29]).

The result in [23] was extended in [3], where Bényi, Grafakos, Grochenig and Okoudjou show that Fourier step
multipliers, i.e. Fourier multipliers of the form

Lo P DY atmond, | a0 € £202) (0.1)

JEPZ p
are continuous on the modulation space M1+€1+¢(R%), when 0 < € < o and 0 < € < o. (See [3, Theorem 1].)
Note that modulation spaces is a family of function and distribution spaces introduced by [8] and

further developed by [10-13, 17]. In particular, the modulation spaces M(laf;j“ze(Rd) and W(la:':)'Hze(Rd) are

the set of tempered (or Gelfand-Shilov) distributions whose short-time Fourier transforms belong to the

weighted and mixed Lebesgue spaces L%:)i‘)“ze(RZd) respectively Lizi;;' 2¢(R?%). Here w, is a weight function

on phase (or time-frequency shift) space and 0 < € < oo. Note that W(la:':)'“ze

(RY) is also an example on
Wiener-amalgam spaces (cf. [10]).

There are several convenient characterizations of modulation spaces. For example, in [9, 14, 17, 18, it
is shown that modulation spaces admit reconstructible sequence space representations using Gabor frames.

[38] extend [3, Theorem 1] in several ways (see Theorems 2.1 and (2.3).
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(1) The condition 0 < € < oo is relaxed into 0 < € < oo.

(2) We allow weighted modulation spaces M(l(:;sl”(Rd), where the weight w, only depends on the

momentum or frequency variable &, i.e. w,(x,§) = w,(§). These weights are allowed to grow or
decay at infinity, faster than polynomial growth.

(3) Our analysis also include continuity properties for the modulation spaces W(tf:)‘l“(Rd).

As in [3], we use Gabor analysis for modulation spaces to show these properties. In [3] the continuity
for Fourier step multipliers are obtained by a convenient choice of Gabor atoms in terms of Fourier transforms
of second order B-splines. This essentially transfer the critical continuity questions to a finite set of discrete
convolution operators acting on £1*€, with dominating operator being the discrete Hilbert transform. The choice
of Gabor atoms then admit precise estimates of the appeared convolution operators.

In our situation the B-splines above are insufficient, because B-splines lack in regularity, and when
(1 + €) approaches 0 , unbounded regularity on the Fourier transform of the Gabor atoms are required. In fact,
in order to obtain continuity for weighted modulation spaces with general moderate weights in the momentum
variables, it is required that the Fourier transform of Gabor atoms obey even stronger regularities of Gevrey
types.

In Section 4 we obtain some further extensions and deduce precise estimates of the Fourier multipliers
in (0.1), where more restrictive a, should belong to £1*€(bZ) for some 0 < € < 0. In the end we are able to
prove that the Fourier multiplier in (0.1) is continuous from M1*€1%€ to M1+€1+2€ when 0 < € < o0 and 0 <
€ < oo satisfy

1 1 1
- <
1+2¢ 1+€ 1+e
More generally, in Section 4 we generalize the continuity properties for the step and Fourier step multiplier
results in Section 2 with more general slope step multiplier and Fourier slope step multipliers.

~ Multiplier functions in Section 2,

SN — T

Multiplier functions in Section 4 (see [38]).
An important ingredient for the proofs of the latter extension is multiplication and convolution properties for
M} and WS spaces, given in Section 3.

(wp) (“)p)
Proposition 0.1 [38]. Let 0 < € < oo, then
P (1 1 1 1 ) 40 (1 1 1 )
T e T e T+ 5¢) MO T M T e T se
Then
1 1 1 1
M1+35,1+4e . M1+5€,1+6e c M1+e,1+2€’ + — , + =0, + ,
1+3¢ 1+5¢ 1+e 1+4e 1+5¢ ' 1+2€
1 1 1 1 1 1

MLt3eltde , prlt+5€1+6e c pyltelt2e

113 T1x5e 2tTie TvaeT1vee 1v2e
Similar result holds for W1*€1%€ gpaces. The general multiplication and convolution properties in Section 3 also
overlap with results by [1], [2], and [21].

The multiplication relation in Proposition 0.1 for € > 0 was obtained already in [8]. It is also obvious
that the convolution relation was well-known since then (though a first formal proof of this relation seems to be
given first in [30]). In general, these convolution and multiplication properties follow the rules

€1+3<—: % _€1+56 c €1+e' £1+4e . €1+6€ c €1+Ze = M1+3e,1+4-e * M1+56,1+66 c M1+E,1+ZE

al’ld 1{)1+35 . 1{)1+Se c [1+e’ [1+4e * €1+6€ c [1+2€ = M1+3e,1+6e . M1+56,1+66 c M1+E,1+26
which goes back to [8] in the Banach space case and to [14] in the quasi-Banach case. See also [11] and [26] for
extensions of these relations to more general Banach function spaces and quasi-Banach function spaces,
respectively.

In Section 3 we extend the multiplication and convolution results in [1, 2, 21] to allow more general
weights as well as finding multi-linear versions. We stress that the results in Section 3 hold true for general
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moderate weights, while corresponding results in [21] are formulated only for polynomially moderate weights
which also should be split, i.e. of the form w,(x,&) = (wp)1(x)(w,)2(£). In Section 3 we also carry out
questions on uniqueness for extensions of multiplications and convolutions from the Gelfand-Shilov space
%, (RY), to the involved modulation spaces. Note that T;(R%) is dense in S(R%) and is contained in all
modulation spaces with moderate weights(see e. g. [31]). On the other hand, in contrast to [21], we do not
deduce any sharpness for our results.

The analysis to show Proposition 0.1 is more complex compared to the restricted case when € > 0,
because of absence of local-convexity of involved spaces when some of the Lebesgue exponents are smaller
than one. In fact, the desired estimates when € = 0 can be achieved by straightforward applications of Holder's
and Young's inequalities. For corresponding estimates in Proposition 0.1, some additional arguments are
needed. In our situation we discretize the situations in similar ways as in [1] by using Gabor analysis for
modulation spaces, and then apply some further arguments, valid in non-convex analysis. This approach is
slightly different compared with [21] which follows the discretization technique introduced in [36], and which
has some traces of Gabor analysis.

A non-trivial question concerns wether the multiplications and convolutions in Propositions 0.1 and 0.1
are uniquely defined or not. If € < oo, j = 1,2, then the uniqueness is evident because the Schwartz space is
dense in MP/%_ In the case € < oo, the uniqueness in Proposition 0.1 follows from the first case, duality and
embedding properties for quasi-Banach modulation spaces into Banach modulation spaces. The uniqueness in
0.1 then follows from the uniqueness in Proposition 0.1 and the fact that M1+€1*€ increases with (1 + €).

A critical situation appear when 2 + 7¢ = 2 + 4€ = . Then § is neither dense in M*+3¢1+4€ nor in
MI5€1+6€ Eor the multiplications in Propositions 0.1, the uniqueness can be obtained by suitable approaches
based on the so-called narrow convergence, which is a weaker form of convergence compared to norm
convergence (see [28, 29, 31]). However, for the convolution in Propositions 0.1, we are not able to show any
uniqueness of these extensions in this critical situation.

[38] present well-known properties of Gelfand-Shilov spaces, modulation spaces, multipliers and
Fourier multipliers. They deduce continuity properties for step and Fourier step multipliers when acting on
(quasi-Banach) modulation spaces. Then establish convolution and continuity properties for quasi-Banach
modulation spaces. They show how the multiplication and convolution results can be used to generalize the
continuity results, to more general slope step multiplier and Fourier slope step multipliers. Finallythey present a
proof of a multi-linear convolution result in Appendix A.

1. Preliminaries

We present some facts on Gelfand-Shilov spaces, modulation spaces, discrete convolutions, step and
Fourier step multipliers. After explaining some properties of the Gelfand-Shilov spaces and their distribution
spaces, we consider a suitable twisted convolution and recall some facts on weight functions and mixed norm
spaces. Thereafter we consider classical modulation spaces, which are more general compared in [8] in the sense
of more general weights as well as we permit the Lebesgue exponents to belong to the full interval (0, o]
instead of [1, ]. Here we also recall some facts on Gabor expansions for modulation spaces. Then we collect
some facts on discrete convolution estimates on weighted #17¢ spaces with the exponents in the full interval
(0, o]. We finish the section by giving the definition of step and Fourier step multipliers (see [38]).

1.1. Gelfand-Shilov spaces and their distribution spaces. For any € > 0 and belong toR,S{3¢,, . (R%)

consists of all f, € C ®(R%) such that

— |xﬁaafp(x)| 1.1
Ifollsitze, s = SUP (1 + e)la+Blgiv3e giitee 1)
p
is finite. Then S{{3¢,,.(R?) is a Banach space with norm || - || sitse_ . - The GelfandShilov spaces SH3E(RY)

and X}13¢(R%), of Roumieu and Beurling types respectively, are the inductive and projective limits of

STH3E 1+ e(RY) with respect to € > 0 (see e.g. [15]). It follows that

SHIERD = | ] SH36.eRD and 23R = ] 1314 RD (12)
We remark that £113¢(R%) # {0}, ifoand only if 2 + 5¢ > 1, and Sfif’gzkod) # {0}, if and only if 2 + 5¢ = 1,
and that

SgH(RY) € 22(RY) € 52 (RY) € S(RY), 51 < 55,04 < 0,

The Gelfand-Shilov distribution spaces (Sif3¢)'(R%*) and (Z1F3€)'(R%), of Roumieu and Beurling types
respectively, are the (strong) duals of SE3E(RY) and Z1f3¢(R%), respectively. It follows that if
(43¢, RY) s the  I2-dual  of SH3¢,.(RY) and 2+5e>1(2+5¢>1), then
(S136) R ((Z1439)'(RY)) can be identified with the projective limit (inductive limit) of (S1#3¢,,.) (RY)
with respect to € = 0. It follows that
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(S126) RY) = ﬂ (S1f3¢14e) (R and 21, (R?) = U (S15610e) R (13)
€20 €20

for such choices of (1 + 2€) and (1 + 3€). (See 24.) We remark that
S'RY € (52) RY € (22) RY € (571) RD),

when
51 <5y,00<0yands; +0; =1
For convenience we set Sy, = SE72€ and 5, ,,, = Z1T2E.

The Gelfand-Shilov spaces are invariant under several basic transformations. For example they are
invariant under translations, dilations and under (partial) Fourier transformations. In fact, let F be the Fourier
transform which takes the form

Fh)© = /& = @n)F f N pmetedax
p

when f, € L*(R%). Here (--) denotes the usual scalar product on R%. The map F extends uniquely to
homeomorphisms on §'(R%), from (S173¢)'(R%) to (SiF26)'(RY) and from (Z113€) (R%) to (Z1F2€) (R%).
Then the map F restricts to homeomorphisms on S(R%), from S{5€(R?) to S{26(RY), from Z1f3¢(R%) to
$112¢(R%), and to a unitary operator on L?(R%).
There are several characterizations of Gelfand-Shilov spaces and their distribution spaces (cf. [6,7,33]

and the references therein). For example, it follows from [6,7] that the following is true. Here g,(8) S
h(6),8 € Q, means that there is a constant ¢ > 0 such that g,(8) < ch(8) forall 6 € Q.
Proposition 1.1 [38]. Let f, € S'(R?) and € > 0. Then the following conditions are equivalent:

() f, € SHEERY (f, € ZHH3ERD);

1 1
Q2) If,(x)| S e” A+ and | £ (8)| s e A+IRIT for some € > 0 (for every € > 0);

_1
3) f, €C®RY) and [(8%f,)(x)| S (1 + €)!*a!*¥3€ e~ (1+2OXI**2€ for some € > 0 (for every € > 0).
Gelfand-Shilov spaces and their distribution spaces can also be characterized by estimates on their short-time
Fourier transforms Let ¢, € S;1,.(R%) (¢p € ZHZG(Rd)) be fixed. Then the short-time Fourier transform of

fo € S142e[RY) (of f, € B 4,(R?) ) with respect to ¢, is defined by

(Vo fo) (1,8 = @1)73(f,, (- —2)) (14)
We observe that
(Voo fp) 0. 8) = F(fy - d,C—2))(©) (1.4)’
(cf. 34). If in addition f,, € L' €(R%) for some 0 < € < oo, then
(Vo) O = @02 | S f0)8,0 =Dy (14)"
p

In the next lemma we present characterizations of Gelfand-Shilov spaces and their distribution spaces in terms
of estimates on the short-time Fourier transforms of the involved elements. The proof is omitted, since the first
part follows from [20, and the second part from [31, 33].
Lemma 1.2 [38]. Let 0 < € < oo, f, € SI(R?),€ > 0,¢, € S{T3E(RY) \ 0(¢, € Z113E(RY) \ 0) and

2

1 1
(1+2€)<|x|1+26+|§'|1+3e

Vip2e(x,§) = e >,6 20

Then the following is true:
(1) f, € SLEERY) (£, € ZHZER®). if and only if

D Vefovid| <o (1.5)
p

L1+E
for some € > 0 (for every € = 0);

@) f, € (S RY (f, € (513 (RY)), if and only if

D Vafolviee|| < (16)
p

L1+E
for every € = 0 (for some € > 0).
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We also need the following. Here the first part is a straight-forward consequence of the definitions, and

the second part follows from the first part and duality.
Proposition 1.3 [38]. Let ¢, € %1 42¢(RY) \ 0. Then the following is true:

(1) Vg, is continuous from 21,5, (R?) to £y 42, (R*?) and from Z{ 5 (R?) to 21, (R?*?);

(2) Vg, is continuous from T142¢(R?2) to 21,5 (R?) and from I}, (R%?) to 21, ,.(RY).
The same holds true with §; ,,. or § in place of X, ,,. at each occurrence.
1.2. A suitable twisted convolution. Let fp be a distribution on R?, bp» ((;bp) j»J = 1,2,3, be suitable test
functions on R%, and let F, and G be a pair of suitable distribution/test function on R24. Then the twisted
convolution Fj, *, G of F, and G is defined by

(B @)d =02 [[ S B y.6-meome o Vaydy
R2
p

o [[ D BOmGe =g - e idydy (1)
P

The convolution above should be interpreted as

d .

(B, *v 6) () = 2m) 2(F, (X —)e™"*¢*), G)
d .

= (2m)2(F,, G(X —)e " ®p(XX)) 1.7)
where®,(X,Y) = (y,§ —n), X = (x,&) e R*LY = (y,1) € R*%.
when F, belongs to a distribution space on R?? and G belongs to the corresponding test function space. By
straight-forward computations it follows that

(B #v G) *y Hy = Fy xy (G *y Hp) (1.8)

when F,, H, are distributions and G is a test function, or F,, H, are test functions and G is a distribution.
Remark 1.4 [38]. Let € > 0. An important property of *,, above is that if f, € 1, .(R?) and (¢,); € Z;4¢(R?)
and ¢, € 21+e(RH)\ 0,j = 1,2,3, then it follows by straight-forward applications of Parseval's formula that

(Ve @023) 2+ (Vigpfo)) €08 = (@5 @02) - (Vegpaf) (9. (19)
and that if
Py, =l pll7 - Vg, Vs, (1.10)
then
Po, By = 0,117 Vi, bp *v Fy (1.11)
when F, € 31, .(R®*?). We observe that
Py, =Py, and P = Py . (1.12)

(See e.g. Chapters 11 and 12 in [17].)
We also remark that if F, € 21, (R*?), then F, = V,,_f, for some f, € £, (R%), if and only if
F, =Py F, (1.13)
Furthermore, if (1.13) holds, then F, = Vo, f, with

fp = ”¢p”222V(;pr (1.14)
In fact, suppose that f, € 2;,.(R?) and let F, = Ve, fp- Then (1.13) follows from (1.9).
On the other hand, suppose that (1.13) holds and let f,, be given by (1.14). Then
V¢pfp = P¢pFP = [';)
and the asserted equivalence follows.
We notice that the same holds true with S;,. or § in place of £, . at each occurrence.
1.3. Mixed norm space of Lebesgue types. A weight on R? is a function (w,), € Lf, (R?) such that 1/
(wp)o € L7, (RY). The weight (w,)o on R? is called moderate, if there is an other weight v on R? such that
w,(x +¥) S w,(X)v(y),x,y € R? (1.15)
The set of moderate weights on R? is denoted by Pz (R?), and if € > 0, then Pgq,(R?) is the set of all
1

moderate weights (w,), on R? such that (1.15) holds for v(y) = e*WI™* for some € > 0. We also let
Pi43E(R??) be the set of all weights w), such that
1 1
(1+e)(|y|m+|n|m>
a)p(x +y,&+n) S a)p(x,y)e
for some € = 0. We recall that if w, € Pg (R%), then there is a constant € > —1 such that
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w,(x +¥) S w,(x)e+IW], x,y € R?
In particular, Pg 1, (R?) = Pz(R%) when € < 0 (see [19]).
For any weight w, on R2% and for every 0 < € < o, we set

VEpllgseivaciuiny = [|Grpapavel| ey Who1E Grpaopase®) = I1F (D0 C Ollasecuey
and
”F;)llLi':(i';')"ZE(RZd) = ||(Hp)Fp,mp,1+26 L1+€(Rd)' where (Hp)Fp,a)p,1+25(x) = ”Fp(x:')wp(x:')”Ll“'ZE(Rd)’ when ED
is (complex-valued) measurable function on R2?¢. Then Ll(;;‘)“ze(RZd) (Litfoi;r 2G(Rz"l)) consists of all

measurable functions F, such that ||F, || 1+e1+2¢ < 00 (||1~70|| 1+e1t2e < oo).
Lwp) Lotwp

In similar ways, let Q;,Q, be discrete sets and £5(Q; X Q,) consists of all formal (complex-valued)
sequences ¢ = {c(j, k)}jeq, kea,- Then the discrete Lebesgue spaces

£1+€,1+26(Ql X Qz) and €1+E,1+26(Ql X Qz)

(wp) *(wp)
1+€,1+2€

of mixed (quasi-)norm types consists of all ¢ € £5(Q; X Q,) such that ||C||(wp) (Q; X Q,) < oo respectively

||C||*’1,?f)';;'25(ﬂlxﬂz) < 0. Here

1+€,1+2 —
el "2 % 02) = [|Grpprsel]1raegg ) WHETE e are(R) = W R0 G R rveca
and [lellspesaeqq, xa,) = (A —" preay M1t (Ho)ew,102e() = 16G)0, G ls2ecay), when

c €4y(Q; X Q).

1.4. Modulation spaces and other Wiener type spaces. The (classical) modulation spaces, essentially
introduced in [8] are given in the following. (See e.g. [10] for definition of more general modulation spaces.)
Definition 1.5 [38]. Let 0 < € < », w), € Pr(R?%) and ¢, € 2 (RH)\ 0.

(1) The modulation space M(la:';f”e(Rd) consists of all f, € £{ (R?) such that

”fp”M(l(j;')Hze = ||V¢>pfp [lrel+ze
(wp)
M1+€,1+2€

is finite. The topology of (@p)

(R%) is defined by the (quasi-)norm || - ||M(1+e,)1+25;
@p

(2) The modulation space (of Wiener amalgam type) Wt,+p€51+26(Rd) consists of all f, € 21 (R?) such that

I lgsease = Vs, fo

Ll-E-E'l-;ZE
*,| wp
is finite. The topology of W(lw“L:)‘HZE(Rd) is defined by the (quasi-)norm || - ||W(1w+:).1+ze.

Remark 1.6 [38]. Modulation spaces possess several convenient properties. In fact, let 0 < € < 0, w, €
P (R??) and b, € 2,(RY)\ 0. Then the following is true (see [8,10,12,14,17] and their analyses for
verifications):

e the definitions of M, jf‘“e(Rd) and W(lc:pz)e‘“e(Rd) are independent of the choices of ¢, € £;(R%) \

0, and different choices give rise to equivalent quasi-norms;

e the spaces M(luj’j)e A+€(R?) and W(lJpzf’He(Rd) are quasi-Banach spaces which increase with (1 + 2¢)

and (1 + €), and decrease with w),. If in addition € = 0, then they are Banach spaces.
° 21 (Rd) c M1+2€,1+€(Rd)’ W1+2€,1+€(Rd) c Zi (Rd),

(wp) (wp)
e If in addition € > 0, then the L?(R%) scalar product, () 12(rd)> ON 2, (R%) x £(R%) is uniquely
1tze1te
extendable to dualities between M(lufj)e‘“e(Rd) and M(lz/fw'p)f (R9), and between W(tfpz)e'l“(Rd) and
1+2€£
W..2€ "€ (Rd).
1
( /wp) 1+2€£
: " 1+2¢6,1+€ rpd 1+2¢,1+€ rpd . . . 2 " d
If in addition € < oo, then the duals of M(wp) (R%) and W(wp) (R%) can be identified with M(lpr)e (RY
1t2e1te
: g d .
respectively VV(liZJP)E (R%), through the form () 12(RE)>
o Let (w))o(x,&) = w,(—¢,x). Then F on £1 (R?) restricts to a homeomorphism from M(l(:—j)é,l‘l'é (RY) to
1+€,1+2€ d
W@po) (R).

DOI: 10.35629/0743-12015478 www.questjournals.org 59 | Page



On Fourier Step Multipliers and Multiplications Actingon Quasi-Banach Modulation Spaces

1.5. Gabor expansions for modulation spaces. A fundamental property for modulation spaces is that they can
be discretized in convenient ways by Gabor expansions. For fundamental contributions, see e.g. [5,9,11,14, 16,
17, 20] and the references therein. Here we present a straight way to obtain such expansions in the case when we
may find compactly supported Gabor atoms.

Let € > 0. Then D*€(R?) is the set of all compactly supported elements in Si}5.(R?). That is,
D'*€(R?) consists of all ¢, € C5°(R?) such that

||6"‘<j)p||Loo S (1 + ¢)l*lqrtte

holds true for some € > 0. We recall that if € < 0, then D**¢(R?) is trivial (i. e. D**¢(R%) = {0}). If instead
€ > 0, then D1€(R%) is dense in Cg°(R%).

From now on we suppose that € > 0, giving that D1*€(R?) is non-trivial. In view of Sections 1.3 and

1.4 in [22], we may find ¢, ¥, € D€ (R?) with values in [0,1] such that
d d

33 11
suppgp, S |—=,—| , ¢,(x) =1 whenX € [—7,7
4’4 4’4

and
YD -p=1 (118)
jezd p
d
Let f, € (Si75)'(RY). Then x & f,(x)¢,(x — j) belongs to (S{5.)'(R%) and is supported in j + [—z,%] .
Hence, by periodization it follows from Fourier analysis that
b= = ) (e x e+ [~1,1)4 (119)
1enzd
where
d
¢, = 274(f, 3, =) = (3): Vi, £,G1 0, € 29,0 € 2
) - pr¥p ] - 2 ¢p p\U» 1] )
Since ¥, = 1 on the support of ¢, (1.19) gives
d
=) Ve, fo(i Nel*h x e RY 1.19)’
¢, =) = (3) 0o D, (x = e, x € RY, (1.19)
enzd p
By (1.18) it now follows that
d
UAY) , N i
L@ =) D D Ve Syl 0w, (x = it x € R (1.20)
Uvea p
where
A=17%x (nZ9) (1.21)
which is the Gabor expansion of f,, with respect to the Gabor pair ( ¢, ¥, ) and lattice A, i.e. with respect to the

Gabor atom ¢, and the dual Gabor atom 1,,. Here the series converges in (S (RY). By duality and the fact

that D1*€(R%) is dense in (S175.) (R?) we also have
d

LAY . i) d
L@ =) D D Ve, fr0.08,0c ~ e, x R (1.22)
Unea p
with convergence in (S115.)"(R%).
Let T be a linear continuous operator from 875, (R?) to (§{75.)'(R?) and let £, € S{{5.(R?). Then it
follows from (1.20) that
d
N2 ,
TR =(G) D D Ve frG0TW,¢ —Dett) @
Unea p
and

d
. T\Z . .
T, D@ = (5)7 Y D (V, (T(pC =et))) iy (x = ket
(k,k)EA p

A combination of these expansions show that

d

T\Z .
TR =(5) D (4:-Vy,f,) G0w, 0x = et (1.23)
(.DeA

where A = (a(J, K))jken is the A X A-matrix, given by
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d
T\Z . .
4G,k = (5) (T C=De'), 9, —0e) (124)
when j = (j,1) and k = (k, k).
By the Gabor analysis for modulation spaces we get the following. See[9,11,14,16,17,32] for details.
Proposition 1.7 [38]. Let € > 0,0 < € < o0, w, € P15 (R*Y), $,, ¥, € D*¢(R%; [0,1]) be such that (1.16),
(1.17) and (1.18) hold true, and let £, € (D**€)'(R%). Then the following is true:

1) f, € M}*2EME(RE), if and only if ||V¢pfp

(‘Up)

f%;;§'1+e(ldxnld)’
1+2€,1+€

1+2¢,1 : : ’

() f, € MR, if and only if ||V, fp||(wp)

(@) (2% x wZY);

(3) the quasi-norms

for ||V¢pfp

are equivalent to || - ||M(1+2)E,1+E.
®p

and f, — ||V1,,pfp

14+2€,1+€/5d d 14+2€,1+€/5d d
Lwp) (z%xmz4) wp) (2%xnz4)

The same holds true with W(tjpz)e‘lﬂ and {’1&2);)1 *€ in place of M(lafj)e 1+ respectively 1{’%;[2’)5’1” at each

occurrence.

Remark 1.8 [38]. There are weights w, € Pz (R*?) such that corresponding modulation spaces M It2elte Rd)

((Up)
and W1t261+€(R9) do not contain D1+€(R?) for any choice of € > 0. In this situation, it is not possible to find

(wp)

compactly supported elements in Gabor pairs which can be used for expanding all elements in M(l(:pz)e 1+HE(RY)
1+2¢€,1+

and W(wp)E ¢(RY).

For a general weight w, € Pz (R?*?) which is moderated by the submultiplicative weight v € Pz (R??),
we may always find a lattice A € R% and a Gabor pair (¢, ¥p) such that
bp by €[] MEFRY
€20
and

[ = € D Vg £y by (x = et

JILEA

=CY VG 00,0~ e, £, € ME, (RY),  (1.25)
JILEA
for some constant C, where the series convergence with respect to the weak* topology in M("Z)p)(Rd). (See [16,

Theorem S] and some further comments in [32]. See also [11-13] for more facts.) In such approach we still have
that if 0 < € < oo, then

f, € MitZElte(Rdy o {V%fp(]', L)} € PL2EIYE () 7

(wp) jEA (wp)
. 1+2€,1+€
& {Vy, .0, L)}NeA €4 (A XA (1.26)
1+2¢,1+€ d . 1+2¢,1+€
fo € WHHERY) & {Vo, /oG, L)}j‘LEA € L2 (A X A)
&V, £,0, l)}j _ELRE @A (1.27)

1+2€,1+€ 1+2€,1+€
Wollggzee = Vo foll , @[V n]l, 7 axm (1.28)

and

1+2e1+e = ||V = ||V 1.29
“fp"W(wpf € || ¢pfp [:Ib%;)IH(AXA) Ippfp [:zfaz);-)lJ'E(AxA) ( )

Furthermore, if f, € M(la’,';f'“f(Rd) (fp € W&,*pzf'l*E(Rd)) and in addition € < oo, then the series in (1.25)
converges with respect to the M{,; 5)5'“5 quasi-norm (W&szf'”e quasi-norm).
Remark 1.9 [38]. Let (w,)o € Pz(RY), w, € Px(R*1),0 < € < o0,Q, = [0,1]¢ be the unit cube, and set for
measurable fp on R4,

||fp”W1+3€(a)p,{’1+E) = ||a0||{,1+s(zd) (1.30)
when
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N — ; d
aO(]) = ”fp ' (wp)0||L1+3e(j+Qd)’] €EZ
and measurable F, on R?%,
||P;7”W1+3€(wp,t’1+€'1+25) = ||a||{;1+s,1+2s(zzd) and ”F;’”W(wp,f’,}ﬁ’uze) = ||a||{,1+e,1+ze(zzd) (1.31)

w-hen
a(j,v) = ||F;) : a)p||L1+3E((j_L)+Q2d),j,l €74
The Wiener space
W1+3€(((/Jp)0,€1+e) — W1+3€ ((wp)OJ ’E1+E(Z2))

consists of all measurable f, € Lig.>*(R?) such that [|F, [lw+se((q ,e1+¢) is finite, and the Wiener spaces

W1+3e(w £1+€,1+26) — Wl+3e (w €1+6,1+2€(Z2d)) and W1+3e(w €1+e,1+2€) — Wi+3e (a) 1gl+e,1+25(22al))
p’ p! p, * p’ *

consist of all measurable F;’ € L}04;36(R2d) such that ||Fp||W1+3€(wp’£)1+6,1+2€) respectively ||F;3||W1+3e(mp’€}+e,1+25)

are finite. The topologies are defined through their respectively quasi-norms in (1.30) and (1.31). For
conveniency we set

W(wp’€1+e,1+2€) — Woo(a)p, _gl+€,1+26) and W(a)p, £1+E,1+26) — Woo((.l)p, £1+6,1+26)
Obviously, W*3¢((w,)o, #1*€) and W'*3¢(w,, £1+€1+2€) increase with 1 + €, 1 + 2¢, decrease with (1 + 3€),
and

W(wp’£1+6,1+26) o Lt;;')l+26(R2d) N Zi(RZd) o Li:};,)l+26(R2d) o W1+3€(wp’€1+5,1+25) (1.32)
and
|- ||W1+3E(wp,€1+e'1+ze) <|- ”L%+e,)1+26 <|- ”W(wp plHel2e), 1+ 3e <min(1,1+¢,1+ 2¢). (1.33)
wp ’
On the other hand, for modulation spaces we have
fo € Mg T RY) &V f, € Lty (R & Vy f, € WH3¢(wy, £17614%€) (1.34)

with
(1.35)

”fp”M(1“-:;,)1+2€ = ||V¢pfp Lg)z)uze = ||V¢pfp||W1+3e(wp,[1+e,1+ze)

: 1+€,1+2€ y1+4+€,1+2€ 1+€,1+2€ : 1+€,14+2€ jyl+€,1+2€
The same holds true with W, y"™, L, y* and W(w,, £1 ) in place of My L) and

W(w,, £1+61%2€), respectively, at each occurrence. (For € = o, see [17] when 0 < € < ©,[14,32] when 0 <
€ < o0, and for 0 < € < oo, see [35].)

-- Next we discuss extended Holder and Young relations for multiplications and convolutions on discrete
Lebesgue spaces. Here the involved weights should satisfy

N
(@,),(0) Sz 1_[ (@), () (1.36)
or g =
(@), + 430 < > [ ] (@), 06), (1.37)
p j=1

and it is convenient to make use of the functional
N

1 1
Ry(pq, - pN) = Z max <1,p—j) - 11;}15111\] (max <1, p_]>> (1.38)
Jj=1
The Holder and Young conditions on Lebesgue exponent are then
! < ' 1 (1.39)
1+ 2¢ = q;
respectively
1 < i 1 Ry( ) 1.40
1+€—'1pj NP1, PN ( )
]:

Proposition 1.10 [38]. Let 0 < € < oo be such that (1.38), (1.39) and (1.40) hold, (a)p)j € Pz(RY), and let A €
R% be a lattice containing origin. Then the following is true:
(1) if (1.36) holds true, then the map (ay,..,ay) = a; - ay from £3(A) X - X £,(A) to €4(A) extends

uniquely to a continuous map from £7* A) X oo x LIV A) to £7° A), and
q y p ((wp)l)( ) ((wp)N)( ) ((wp)o)( )
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llay - aNIIeme Z 1_[ ||a,|| q, i€t (A),j=1,..,N (1.41)
((wp b ) ((@p);)
(2) if (1.37) holds true, then the map (al, e, Qy) P a1 ~x ay from £5(A) X - X £5(A) to £4(A) extends
uniquely to a continuous map from £7* A) X - X PPN A) to £7° A), and
quely pfrom £6,, )™ (o p>N)( 1w
lla, * *aN||{,1+E Z 1_[ lay ], p, aj e’ (A)yj=1.,N (1.42)
j= —1N ((wp)j)

The assertion (1) in Proposition 1.10 is the standard Holder s 1nequality for discrete Lebesgue spaces. The
assertion (2) in that proposition is the usual Young's inequality for Lebesgue spaces on lattices in the case when
P1, -, Py € [1,00]. In order to be self-contained we give a proof when ps, ..., py are allowed to belong to the full
interval (0, o] in Appendix A.

1.7. Step and Fourier step multipliers. Let b € R% be fixed, A, be the lattice given by

Ab = {(blnl, ey bdnd) S Rd, (nl, ...,Tld) € Zd} (143)
Qy, be the b-cube, given by
Qb = {(blxl, ey bdxd) S Rd, (.xl, ...,xd) € [0,1]d} (144)
and a, € £°(Ap). Then we let the Fourier step multiplier Mg j, o, (With respect to b and a, ) be defined by
Mzpa =F 1 oMpyg, oF, (1.45)
where M), , is the multiplier
Myay fy = D a0Djsanfy (146)
JEAp

Here yq is the characteristic function of (.

IL. Step and Fourier step multipliers on modulation spaces
We deduce continuity properties for step and Fourier step multipliers on modulation spaces. In contrast
to [3], the results presented here permit Lebesgue exponents to be smaller than one
We begin with step multipliers when acting on modulation spaces. Here involved Lebesgue exponents

should fullfil
1 L (1 10) 2.1
1+ 2¢e 1+36_maX 1+e 21

Theorem 2.1 (see [38]). Let 0 < e <00,0<e<,1+¢€,1+ 2€ € (min(1,1 + €),) be such that (2.1)
holds, b > 0, (wp)o € Pz(RY) and w,(x,¢§) = (a)p)o(x),x,f € R%. Let a, € £°(Ap). Then the following is

true:
(1) My, is continuous on W&:%He(Rd);

(2) M, 4, is continuous from M(lafs)l+€(Rd) to M(laT;SHE(Rd).

We observe that the conditions on (1 + €) in Theorem 2.1 implies that € > 0, since otherwise (2.1) should lead
to 1 + e < min(1 + ¢, 1), which contradicts the assumptions on (1 + €).

We need the following lemma for the proof of Theorem 2.1.
Lemma 2.2 [38]. Let 0 < € < o0 and 6 € (0,1) be such that

1
6+—=1
+1+ +1+26

(2.2)
and suppose that a = {a(j)};eza & C satisfies

HOIRSCARR N
Then the map b = a * b from £4(Z%) to £5(Z%) is uniquely extendable to a continuous mapping from £1+€(Z%)
to €1+Ze(zd).
We observe that the conditions in Lemma 2.2 implies that 1 + € < 1 + 2e.
Lemma 2.2 is a straight-forward consequence of [22, Theorem 4.5.3]. In fact, by that theorem we have
for

h(x) = (lg] - 1xa )7t and ho (x) = (1) -+ xa)7? (23)

Z fp * ho s Z ||fp||L1+s(Rd)
o

L1+2€(Rd) P
when (2.2) holds. Since 0 < hy(x) < h(x), we obtain

that
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DAL < Ml Bl snegqey S D Whollpasequey 24
p

L1+25(Rd) p P
which gives suitable boundedness properties for f, » f, * hg.
We also have
”(gp)a”LHe(Rd) ”a”e“'e(zd) (gp) (x) = Z a(j))(j+[o_1]d(x)
jezd

By a straight-forward combination of this estimate with (2.4) we obtain

”b * hg||{;1+25(zd) S ||b||£1+5(zd)
where now * denotes the discrete convolution. The continuity assertions in Lemma 2.2 now follows from

||b * a||€1+ze(zd) s |||b| * hg||{,1+26(zd) S ||b||{;1+e(zd)

and the uniqueness assertions follows from the fact that £,(Z%) is dense in #'*€(Z%) when € < 0.
Proof of Theorem 2.1. By straight-forward computations it follows that if (w,),(x, ) = w, (bx,b™1&), then

fo € W(lajre 1+2€(R4), if and only if f,(b-) € 1(2-)6)14-)26(Rd) and

||fp||W1+€1+2€ = ||fp(b )”W1+e‘1+2e‘
(p) ®p)p)
and similarly with M1t€1%2€ in place of W1€1+2€ at each occurrence. This reduce ourself to the case when b =
1.

Let ¢,,1, and A be the same as in (1.16)-(1.18) and (1.21). By (1.24) we have

d
N2 L .
Maaofy ) = (5) ) D, (A4 Vah) |60y = ), @5)
Uvea p
where A = (a(J, K))j ke is the matrix with elements
d

N2 . .
4l k) = (5)° (Mpa by (- =), €%, (- =k),
when j = (j,1) € A,k = (k,k) €A
Let Q = [0,1]% and
={j € Z%|j,| < mforeveryn € {1,..,d}},meZ,
By the support properties of ¢, and Y, we have
a(j,k) =0 whenj—k & Q,,
and for j — k € Q, we get

laG, k)| = ‘ [,20 Maa(e ¢ =)0, ~ iy
p

3 (2

-1, Z ao(Dxe(y — (L= k)™, (v = (j = k), (1))

ag(Dxe(y — De " N, (y — N (v — k)dy)

1ezd

Z > el U (o = (L= k))e =, (y = j - k))¢p(y)dy)|

S Z ”aO”t’“’(zd) Z |(XQ(' G k))’e_i«'xﬂ)l/)p(' -0 - k))¢p)Lz(Rd)

p
where the last three sums are taken over all | € Z% such that [ — (j — k) € Q.

We have to estimate

(2.6)

| o = = 9,50, G = )y 1
whenj—k € Q, and | — (j — k) € Q3. By Parseval's formula we get
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D1 (ol == k), e 50, ¢ = = 1)) zaey |

| )

p

(e—i<l—k,-)gp‘ Vg, ®p( =k =t = K)))Lz(Rd)

where
d i
9,(8) = (2m) 2e 24+ ¥ sine(§ /2) -+ sinc(€4/2)
Here

sin t 0
sinct={ t t#

1, t=0
is the sinc function.
Since
1
sinct < (t)~* and |V¢p¢p(j —k&—-(—- K))| < e~ (1+O)§-(1-K)[1+€
we obtain

| (ol == 1), e (- =G = D) 1 ey
< L; 1951 [V, 850 = k. = = 1))| dg

1
< ) ho(§)e~(AFONE-=mlt*e ge
R

1
= | Ro(E +1— K)e- (Ol ge
R4

< hy(t— k) fk (£1) (&4~ AFOIETFeGe = b (1 — i)

Here h is given by (2.3), and we have used
ho(§ +m) = (&1 +11) € +na) ™ < (1) - M) THELD) -+ (€)-
By inserting this into (2.6) we get
G IOIS D holt= 10t = 1) (g = 1aD) ™ = Tho(t = K)
le(j—k)+Q3
Hence,

h -k
|a(1k)|<{’0(l ) ;_k;gz @.7)

Ifc(,0) = Vg, £,0,0)]. then (2.7) gives

(4-Vs,5) G| = Z (Z ho(t—;c)c(k,x)>

k€j+Q, “kemzd
- z (ho * c(k))(D) = z (ho * c(j + k) (O(2.8)
kEj+Q, keQ;

and Lemma 2.2 gives

[CRSAIR] S > M+ €6+ ) rvaegrgay

kEQ,

S D HleG + k)l sacggay
keQ,
By applying the f%&fp)o) norm on the last inequality and raise it to the power 1 + € = min(1,1 + €), we obtain
1+e
> (avy,f) s> Z e +0e Ol Ecssze
p €1zre 1;25(1\) keQ,
- Z Z lelifersae ) = Z Z lellfferssey = sdz ||c||;1+fel+z€m) 2.9)
keQ, p #(@p(—=(k0)) ke, “(@p)

Here we have used the fact that the number of elements in Qz is equal to 5¢.
The asserted continuity in (1) now follows in the case when € < oo by combining (2.9) and the facts that
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||V¢pfp el‘("E,:);'Ze ) = ”fp”]/y“‘f'1+ZE and ||(A ’ V¢pfp) {,:'2-5,;;-25(/\) = ||Mb,a0fp||w(1a‘)":jl+26'
The uniqueness of the map M, ,, on W(L”)”ze(Rd) follows from the fact that finite sequences in (1.22) are
1+€,1+2€

dense in W(w ; (R%) gives. The case when € = o now follows from the case when € = 0 and duality, and

(1) follows.
In order to prove (2) we first consider the case when € < oo. By applying the 1?%(” ) ) norm with
respect to the j variable in (2.8), we get

1
1+e

S (4-70,5) 60 Y. (1 @G+ k90 (@),0)
p €1+e \]ezd p kEQz
P(] L
=Y | Y (O, G0) ) o
kEQ, p jezd
= D B IO = (€ GO0
KEQ,

where ¢y (1) = ”C(',l)”{,E+e

Letl+e=(14+¢e)11+2¢1+2e=(1+€)1(1+2¢)and u= (1+€)~L. Then (2.2) holds with
(1+ €) and (1 + 2¢) in place of (1 + €) and (1 + 2¢), respectively. Hence by applying the #22€ norm on the
last estimates, Lemma 2.2 gives

||A ) V¢pfp 1+e€

1+€
<
pLreltze ”hO
(wp)

1+6”1{;1+ze S lleg*€llpave = llcoll1+2¢

*CO

The asserted continuity in (2) now follows in the case when € < oo by combining (2.9) and the facts that
[Vaofoll sressne gy = Wollgsgpsae and [[(4- Vi, ),

The uniqueness assertlons as well as the continuity in the case € = oo follow by similar arguments as in the

proof of (1).
By the links between M(lafBHZE(Rd) and W(g:)'HZE(Rd) via the Fourier transform, explained in

Remark 1.6, the following result follows from Theorem 2.1 and Fourier transformation.
Theorem 2.3 [38].Let0 < e < 0,0 < e < 0,1 +¢€,14 € € (min(1,1 + €), ) be such that

! - ! = max( ! - 1,0) (2.10)
1+e 1+e€ 1+e€
b >0,ay € €% (Ap), (Wp)o € Pp14e(RY) and w, (x,€) = (w))o(§), x, & € R%. Then the following is true:
(1) Mg pq, is continuous on M;* e 1+E(Rd)
(2) Mg q, is continuous from W(la)"LE)HE(Rd) to WHE 1Jre(Rd).

We observe that Theorem 2.3 generalizes [3, Theorem l] and [37, Theorem 4.16].

1+;)1+25(A = ||Mb,aofp||M(1(:—;,)1+Ze

III.  Multiplications and convolutions of quasi-BanachModulation Spaces

We extend the multiplication and convolution properties on modulation spaces in [8,30] to allow the
Lebesgue exponents to belong to the full interval (0, ] instead of [1, 0], and to allow general moderate
weights. There are several approaches in the case when the involved Lebesgue exponents belong to [1, o] (see
[4,8,11,21,27,30] ). There are also some results when such exponents belong to the full interval (0, ] (see [1,
2, 14, 25, 26, 32]). Here we remark that our results in this section cover several of these earlier results. For
example, we observe that Theorem 3.2 below extends [1 Proposition 3.1].

We recall that convolutions and multiplications on ; (R%) are commutative and associative. That is,
forany N > 1, (fp)1’ . (fp)N € 2,(R%) and j, k € {1, ..., N} one has

(fp)1 (fp)N = ((fp)1 (fp)j) : ((fp)j+1 (fp)N) and (fp)1 (fp)N = (gp)l (gp)N
(gp)m = (fp)m' (gp)]- = (fp)k and (-gp)k = (fp)j'm *jk

and similarly for convolutions in place of multiplications at each occurrence.

when
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Because of possible lacks of density properties, we do not always reach the uniqueness when extending
the convolutions and multiplications from the case when each ( fP)j belong to 2, (R%) to the case when each

( fp)j belong to suitable modulation spaces. In some cases we manage the uniqueness by replacing the (quasi-

)Jnorm convergence by a weaker convergence, the socalled narrow convergence (see [28,29,31]). In the other
situations we define multiplications and convolutions in terms of short-time Fourier transforms, in similar ways
as in [30].

Let (@), (6,), € Z1(R?) be fixed such that

((¢p)1 (¢p)N' (¢p)0)L2 = (27'[)_(1\’_1)E (3.1)
and let (fP)1' s (fp)N, 9p €Ly (R%). Then the multiplication (fp) (fp) can be expressed by
((fp) (fp) ‘pp 12(R%) de e 1:1[ (F) (x, fJ Dy (x, &1 + -+ Ey)dxd§
=f f Z (F) (1,§)) | @, G0 &+ + En)dxdé, - dEy(3.2)
RIN+1)d ]
for every ¢, € £;(R?), where
(Fp)j =Vie,), (fp)j and @, = Vg ) ¢p. (3.3)
We observe that (3.2) is the same as
(F),@® & = ((V(%)l(fp)l) ) x e (Vo) (o)) (x,-)) © 32)

where

-2
(5,0 = (@), [,.) Vo, ((B), - (5),) @ (3:4)
and that we may extract ( fp)0 = ( fp)1 ( fp)N by the formula

(0o = Vo), (o), (3.5)
In the same way, let (d)p)o, . (q.')p)N € 2, (R) be fixed such that
((¢p)1 o (‘l’p)N' (¢P)0)Lz =1 (3.6)
and let (fp)1’ s (fp)N, gp €EZq (R%). Then the convolution (fp)l * ok (fP)N can be expressed by
N
(AREARCY IS | IDY [T, o6) | e By
N
- f fR s Z [ ®),05.6) | @G+, D, - s 3.7)
j=1

for every ¢, € I, (R%), where (P;,)j and @, are given by (3.3). We observe that (3.7) is the same as

(E),(:) = ((V@,p)l(fp)l) GO (Vg (7)) G s)) @) 3.7)

where

(5, = (1@, ],.) Vo, ((5), ==+ (),) (38
and that we may extract (fp)O = (fp)1 * ek (fP)N from (3.5).
Definition 3.1 [38]. Let (fp)l, ...,(fp)N € ZJ(RY).
(1) Let (¢p)0, s (¢p)N € 2, (R%) be fixed and such that (3.1) holds, and suppose that the integrand in
(3.2) belongs to L'(RW*M?) for every ¢, € Z;(R%), where (FP),' = V(¢p)j(fp)j and @, =

V(6p),PorJ = 1.+, N. Then (1), = (£),  (f),, € Z1(R?) is defined by (3.2);
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(2) Let (qbp)o, e (qbp)N € 2, (R%) be fixed and such that (3.6) holds, and suppose that the integrand in
(3.7) belongs to L'(RW*H?) for every ¢, € Z;(R%), where (Fp)j = V(¢p)j(fp)j and @, =
V(¢p),®prJ =1, N. Then (fo), = (£o), * == (f), € Z1(R?) is defined by (3.7).

Next we discuss convolutions and multiplications for modulation spaces, and start with the following
convolution result for modulation spaces. Here the conditions for the involved weight functions are given by

(@p), (& + -+ &) S Z l_[ (@), (1.6 5,61, € RE (3.9)
=1
or by ’ ]
N
(wp)o(x1 + ot xy,é) S Z 1_[ (wp)j(xj,g‘),xl, ., Xy, & €ER? (3.10)
j=1

For multiplications of elements in modulation spaces we need to swap the conditions for the involved Lebesgue

exponents compared to (1.39) and (1.40). That is, these conditions become
N N

1 <Z 1 1 <Z 1 R 311
1+E_ . pj'l_l_e— . qj 1+6,N(q1"“'qN) ( . )
j=1 j=1
or
N N
1<211<21R( ) 3.12
T+e Lip'l+e Ligq Vv 12
Jj=1 j=1
where
N
Rypen( )—Zl i ()7 = min(11 + 6,1+ €) 3.13
1+en 1) - qN) = L Tj 1rsrljlsrlm 7 ,77 = min(1, €, € (3.13)
and
Ry(qq, -, an) = Rin(qq, 5 qn) (3.14)

Evidently, Ry +en(q1, .., qn) = Ry(qy, ..., qy) When e = 0.
Theorem 3.2 [38]. Let Iy = {1, ..., N}, (wp)j € Pz (R??) and 0 < € < o0, € Iy, be such that (3.9), (3.11) and

(3.13) hold. Then ((fp)1’ o (fp)N) = (f,), = (f), in Definition 3.1 (1) restricts to a continuous, associative

and symmetric map from M&l‘ql) )(Rd) X oee X ME’(’V AN )(Rd) to ME’(" a0 )(Rd) and
@p wp) wp)
s <5 [0 erzoren o
(“‘P 0 mp ]

Moreover, (fp)1 (fp)N in (3.2) is independent of the choice of (qbp)o, . (qbp)N in Definition 3.1 (1).
Theorem 3.3 [38]. Let Iy = {1, ..., N}, (wp)j € Pz (R??) and 0 < € < o0, € Iy, be such that (3.9), (3.12) and

(3.14) hold. Then ((fp)1’ o (fp)N) - (fp) ~+(f,),, in Definition 3.1 (1) restricts to a continuous, associative

and symmetric map from W(1(+E';+)E (RY) x -+ % W(IEN q;" )(Rd) to W(1(+E';+)E (RY), and
@p)y @p
||(fp (fp) || 1+e1+e Z 1_[ ||(fp) || P] aj (fp) € ij A )(Rd) ] € IN (3'16)
")

Moreover, (fp)1 (fp)N in (3.2) is independent of the choice of ((j)p)o, . ((bp)N in Definition 3.1 (1).

The corresponding results for convolutions are the following. Here the conditions on the involved
Lebesgue exponents are swapped as

L <i ! R ( ), i ! 3.17
17e~2ip vreN Py PN T S y (3.17)
j= j=1
or
N N
! <Z L ) — <Z ! 3.18
1+e™ Lip; Npl""'pN'1+6_, q; (3.18)
j=1 j=1
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Theorem 3.4 (see [38]). Let Iy ={1,...,N}, (wp)j € Py (R?*?) and 0 <€ < o, j € Iy, be such that (3.10),
(3.14) and (3.18) hold. Then ((fp)l,...,(fp)N)l—»(fp)l*---*(fp) in Definition 3.1(2) restricts to a

continuous, associative and symmetric map from M (1+E’1+E(Rd) X +ee X MPNAN )(Rd) to M (1 (+ 6'1)+)E (R%), and
Wp

(wp),) ((wp)
[ARI=IAN " Z ﬂ (B p,q,)(fp) EML ROIER  (319)

wP 0 ((up j

Moreover, (fp)1 * ook (fp)N in (3.7) is independent of the choice of ((;bp)o, ) ((;bp)N in Definition 3.1 (2).
Theorem 3.5(see [38]). Let Iy = {1, ..., N}, (a)p)j € Py(R?**) and 0 < € < o, j € Iy, be such that (3.10), (3.13)

and (3.17) hold. Then ((f/’)1' ""(fP)N) = (fp) * ook (fp) in Definition 3.1(2) restricts to a continuous,
associative and symmetric map from W(1+E 1+E(Rd) X oo X W(’z"’ AN )(Rd) to W(1+€ 1+)€ (R%), and

(@p),) (wp)
e S Z H ||(fp) I ey (o)) € W(p]q; ) (RY),j €Iy (3.20)
)

“’P 0 (“’P)j

[(AREIIAN S

Moreover, (fp)1 Kok (fP)N in (3.7) is independent of the choice of ((;bp)o, e ((;bp)N in Definition 3.1 (2).

For the proofs of Theorems 3.2v/3.5 we need the following proposition. Here recall [11,13,17,25,26] and
Remark 1.4 for some facts concerning the operators P¢,p and V(;p.

Proposition 3.6(see [38]). Let 0 < e < o, w, € Px(R*),¢, € Z;(R) \ 0 and Py, be the projection in
Remark 1.4 . Then Py from 21 (R??) to 2;(R?%), and Vs, from 21 (R?%) to Z7(R%) restrict to continuous
mappings

P¢,p:W (wp,{)1+2€‘1+6(Z2d)) N V¢p (M(l(:;)e 1+6(Rd)) oW (wp‘ €1+26,1+6(Z2d)), (3_21)
P¢p:W(wp’€1+2€,1+€(Z2d)) -V, <W(t)+p2)€'1+E(Rd)> N W(wp’€1+26,1+e(zzd))’ (3.22)
Vg,: W (@, £14261+(224)) > MIZ201+(RY) (3:23)

and
V(;;p: W ((Up: €1+26,1+6(Z2d)) N W( 1+2€¢, 1+5(Rd) (3.24)

For € = 0, i. .e. the case when all spaces are Banach spaces, proofs of Proposition 3.6 can be found in e.g. [17]
as well as in abstract forms in [11]. In the general case when € = 0, proofs of Proposition 3.6 are essentially
given in [14,26]. In order to be self-contained we here present a short proof.

Proof. By Remark 1.4, the result follows if we prove (3.21) and (3.22), i.e., it suffices to prove

Z Py, Fs sz 1y llw(ap 1 +261+€) Ey € W (y, £14263%€(724)) (3.25)
p

W(wp,{’HZE'“E) 4

and
Z Py, Fy = Z 1 g, e1+2e1vey, Fy € W (@, £142614€(220) ) (3.26)
P W(wp‘{,i+25,1+5) p
We only prove (3.25). The estimate (3.26) follows by similar arguments and is left.
Let
@ = [IFpllogirq,q and by = ||V¢p¢p||Lw(j+de)-
Since Vg, ¢p € I, (R?4), Proposition 1.10 gives
||P¢pr||W(wp,€1+25'1+€) S |la * b|[p1+2e1+e S ||B|| minuiszerro ||| 1+ze1+e = ”F,D”W(a)p,{’l+25'1+e)

Theorems 3.2 and 3.3 are Fourier transformations of Theorems 3.4 and 3.5. Hence it suffices to prove the last
two theorems.

Proof of Theorems 3.4 and 3.5. First we prove (3.19). Suppose (f,), € M

((‘*’p)j)

Qa1+¢ = [0, 1+ G]d and Q = Qg1 = [0’1](1

(R%), and consider the cubes

Then
da
0< Xk1+Q Kok XkN+Q < Xk1+'“+kN+Qd,N’k1’ kN (<A
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Let
G, = (Vg (1), O * =+ Vg ) (15),(O) )
G2(x. )= ([Vis,, (1), 0O+ [V, (£), 0] ) )
9= [V, 0, v
and l
bk, ) = G2 ll o (s +0541)
Then
||V(*¢ﬂ)061| M(1(+ze,)1se = ||P(¢p)061||w((wp) ‘[1+ze,1+e) s ”Glllw((“’p)o"?“za“e)
(J)p 0 0
< ”GZHW((wp)O.fHZE'HE) = ”b”g“';;llo*'f' (3.27)
and
NG oy = gl ey (3.28)
((wp))) ((wp);

in view of [32, Proposition 3.4] (see also Theorem 3.3 in [14]) and Proposition 3.6.
By (3.7) we have

N

Gy(x,A) < z 1_[ aj(ij/l) (Xk1+Q * "'XkN+Q)(x)

kq,..knyeZE \ j=1
N
< > T oW |t simrow® (3.29)
kq,...kNyEZE \ j=1
We observe that
Xicy+-tky+Qqn (¥) = 0 whenx & [+ Qq, (k) ky) € Q,
where
Q = {(ky, . ky) €IV =N <hyj+ -+ ky; <L +1}
and
kn = (kni) o kng) €Z%and 1 = (l, .., ly) €Z4n =1,...,N.
Hence, if x = [ in (3.29), we get
N

b(l, ) < Z l_[ a;(k;, 1)

(k1,kN)EQE \ j=1

< Z (@A) %% ay(, D)) = Neg +m)  (3.30)

where ¢y = (1,...,1) € Z¢ and Iy = {0, ..., N}*. By multiplying with (wp)o(l,/l), using (3.10), the fact that Iy is
a finite set and that (wp)o is moderate, we obtain

BAD(@,), AN S Y > (@A) ay (= Neo +m)(w,) 1, 2)

melNt1 P
< Z Z (a,(A) *-*ay(,1)(L— Ney + m)(a)p)o(l —Ney +m, 1)
melNy1 P

s Z Z ((al(.,a)(wp)l(.,z))*...*(aN(.,A)(wp)N(.,A)» (I— Ney +m)

melyy1 P

Hence (3.30) gives

N
b, DS D > ] @), 02)
(kq1,...kN)EQ; p j=1
- z Z (a1, () * % () (D) A= Neg+m)  (330)

melyy1 P
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where
% w,), (k) = ok, K)(a)p)j(k, k) and b, ) (k,x) = b(k, 1) (w,), (k, k).

If we apply the £1*2€ quasi-norm on (3.30) with respect to the [ variable, then Proposition 1.10 (2) and the fact

that Iy, is a finite set give

[, CDN e S| D0 Do (@, G = # aaa), (D) € ~Neo +m)
MmEINy1 P pl+2e
D 20 o, €= =g, (D) ¢ =Neo +m) pisze

melyy1 P

= [las o), 02 % g, ()

< [l o), 0 pirze a0y, -2
a ng the uasi-norm and usin roposition 1. we now get
By applying the £'*€ quasi d using Proposition 1.10 (1) g

|| b(“’p)o

€1+ZE

#PN

< ||a oo, |
plt2eive || 1'(“’17)1 plt2elte N'(“’P)N 2PN gy

This is the same as
||Gz||L1+2€'1+€ = ||(P;:)1||L1+ze.1+e ||(F;J)N||LI’NrCIN
((@p)) (@p), (@p)y
A combination of this estimate with (3.27) and (3.28) gives that (fp)1 Kook (fP)N is well-defined and that

(3.19) holds.
Next we prove (3.20). Let (1 4+ €) = min(1,1 + €). Then (3.30)' gives

N
bup), LS ) z [1] @), ()
(k kN)EQl j=1
- > Z @1 og), (v ) (L)1) (L= Neg +m)

melN+1
By applying the #! norm with respect to the A variable and using Minkowski's and Holder's inequalities we
obtain

N
1 1+€
||b(“’p) @ ) e ||b(wp) (L)e .S Z Z 1_[ aj,(wp)].(k"')
(k1,-kKN)EQ; p j=1 ”
N
1+e

< 2 2 e ®™ )= )0 2 (dts,), = ait,,) €= Ne+m.

(kq,-oKN)EQ; p j=1 melNy1 P

where
1/1+€

—_— . 1+ = *
Cj'(wp)j(k) B ||af'(wp)j(k') ) paj/1te B ||aj‘(wp)j(k’) 29

An application of the £1*2€/1+€ quasi-norm on the last inequality and using Proposition 1.10 (2) now gives

|| (@p), 1:fs,1+25 ~ Z Z || 1(a)p) ok CITI:EZP)N) (- —Neg +m)

p1+2€/1+€
meIN+1
_ 1+ 1+ . 1+
- ||C1v(:’p)1 o CN'(“’p)N pl+2e/1+e = | Cl'(‘f’p)l [1+25/1+e || N(i’p) ||le/1+e
1+e€
= (o e lentan, 1,0,
which is the same as
”62”1}”‘51+€ s ||(Fp)1”L1+25,1+e ”(Fp)N”LPNv‘IN
“((@p, “((@p)y *'((“’P)N)
which in particular shows that (fp) (fP)N is well-defined. Since
([CARETEIAM w— =6l and 1), || oy =NE) sy =1 N, we get
wp)) “((@p)y) “(@n) “((wp);
(3.20).
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We need to prove the associativity, symmetry and invariance with respect to (qbp)o, ...,(qbp)N in
Definition 3.1. We observe that if

- -9 - mi .
- rj'—‘ max(pj, 1) and sj = T 6,1 +e= og}lsl}v(qj)‘] =1,..,N,
then ME’('q’) )(Rd) c M(T("S’ ) )(Rd), j=1,..,N. By straight-forward computations it follows that if (3.17) or

(3.18) hold, then (3.17) respectively (3.18) still hold with 7; and s; in place of p; and q;, respectively, j =
1,...,N, for some 0 < € < . This reduce ourself to the case when P, q; € [1, 0] for every j =0,...,N, in
which case all modulation spaces are Banach spaces. We observe that Lemmas 5.2-5.4 and their proofs in [30]
still hold true when (wp )j are allowed to belong to the class Pz (R?%), provided the involved window functions

X; belong to X, (R%), and all distributions are allowed to belong to X; instead of S’. The the associativity,
symmetric assertions and invariant properties with respect to the choice of (qbp)o, s (¢p)N in Definition 3.1

now follows from these modified Lemmas 5.2-5.4 in [30] and their proofs. This gives the results.
Remark 3.7 [38]. Suppose that p;, g; and (wp)j are the same as in Theorems 3.2 3.5, and that p; + q; = oo for
at most one j € {1, ..., N}. Then it follows that extensions of the mappings ((fp)1' ""(fP)N) s (1), (5),
and ((fp)l, ...,(fp)N) - (fp)1 Kook (fp)N from Z;(R%) X -+ x Z;(R%) to 2;(R%) in Theorems 3.2-3.5 are
unique.
In fact, by the proof of Theorem 3.8 below, we may assume that p;,q; = 1 for every j. If pj,q; < o
for every j € {1, ..., N}, then the uniquenesses follow from (3.15), (3.16), (3.19), (3.20) and the fact that %, (R%)
is dense in each MY (R%) and W'7Y
((“’p)]-) ((“’p)j
follows from the previous case and duality.
Evidently, Theorems 3.2, 3.5 show that multiplications and convolutions on %; (R%) can be extended to
involve suitable quasi-Banach modulation spaces. Remark 3.7 shows that in most situations, these extensions
from products on Z; (R%) are unique. For the multiplication and convolution mappings in Theorems 3.2 and 3.5
Wwe can say more.
Theorem 3.8(see [38]). Let (wp)j € Px(R*") and p;,q; € (0,] and j € {0, ..., N}. Then the following is true:

(1) if (3.9). (3.11) and (3.13) hold, then ((£,) .- (fy), ) = (fp), - (f,),, from 53 (R%) x - x 54 (R)
to 2, (R%) is uniquely extendable to a continuous map from MIP2EME(RD) x .o x MPVAN )(Rd) to

((‘*’ﬂ)l) ((‘*’p)zv

)(Rd) for j € {1,...,N}. For the general situation, the assertion

M}T2erre(R) and (3.15) holds;
((wp)o) ( ) ( )

) if (3.10), (3.13) and (3.17) hold, then ((fp)l,...,(fp)N) > (f,), < (f,),, from 5 (RY) x - X
% (RY) to X,;(RY) is uniquely extendable to a continuous map from W(l(:fe)'l;’ f(RY) X - X
PJy

W(IEIOVJ,Z;\J )(Rd) to W(l(:)ie)‘l)ﬂ(Rd), and (3.20) holds;

The problems with uniqueness in Theorem 3.8 appear when one or more Lebesgue exponents are equal to
infinity, since £;(R%) fails to be dense in corresponding modulation spaces. In these situations we shall use
narrow convergence, introduced in [28], and is a weaker form of convergence than the norm convergence.

Definition 3.9 [38]. Let w, € Pz(R?*}),0 < € < oo, f,, (fp)j € M(loj;“f(Rd), j = 1and let

(Hp)fyoprve (@ = |[Vip, o (- D0, () reqa)
Then (f,); is said to converge to f,, narrowly as j — oo, if the following conditions are fulfilled:
(1) (fp)j = fo inZi(RY) as j > oo
(2) (Hp)(fp)j,wp,1+e - (Hp)fp,a)p,1+e in L1+E(Rd) asj - .

The following result is a special case of Theorem 4.17 in [31]. The proof is therefore omitted.

Proposition 3.10 [38]. Let w, € P(R??) and 0 < € < o0 be such that € < o. Then %;(R%) is dense in
M1+e,1+e
(wp)

(R%) with respect to the narrow convergence.

We also need the following generalization of Lebesgue's theorem, which follows by a straight-forward
application of Fatou's lemma.

Lemma 3.11 [38]. Let u be a positive measure on a measurable set £, {(fp) 1}7;1 and {(gp) j}:ozl be sequences
in L*(dy) such that (f,); = f, a. ., (g,); = g, in L*(du)as j tends to infinity, and that |(f,);| < (g,); for
every j € N. Then (f,); = f, in in L' (du) as j tends to infinity.
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Remark 3.12 [38]. The narrow convergence is especially interesting when € = 0. Let w, € Pg (R?%),0<e<
0,¢p, € Z,(R?) and f, € M(')z;;re(Rd) () € Z1(R?) converges to f, narrowly as j — oo, and let (Hp)f, w0
be the same as in Definition 3.9, Then we may choose these (f,,); such that

1m Vo, (150, (5 €) = Vig (6. 0, Vi £ 06, )0 (6, )| S (Hp) 0,00 (8)

and lim [ CHp) 53000 = (Hod oo (3.31)
(See [31, Theorem 4.17] and its proof.) It is then possible to apply Lemma 3.11 in integral expressions
containing Vo, (fp)j(x,¢) and Vo, f»(x,$) and perform suitable limit processes.
Proof of Theorem 3.8. Since (2) is the Fourier transform of (1), it suffices to prove (1).

The existence of the extension follows from Theorem 3.2. Since M(l(j E)HE(Rd) increases with (1 + €),

L1+E

we may assume that equality is attained in (3.11) and that p, = --- py = 0. By replacing q; with
1 = max(1,q,)
it follows from (3.11) that for ry = T > 1 and some € = 0,
N

1 1
SZ——N+1
1+e 4L
j=1

and that

MY R M
(@) = Mo,

Suppose (gp) (gp) € M(( )(Rd) are such that (gp) equals (gp) as elements in M(
o)

Rd
)( )

RY). Th
(p))( )- Then

(gp) is also equal to (gp) as elements in M, ( )(Rd) Hence it suffices to prove the uniqueness of the

(p)

product (fp) (fp) € M&’“)f ) (RY) of (fp) € M(( ) )(Rd), j=1,..,N, when additionally € > 0, i.c.,
Wp
1 1 1
q_+ +q——N—1+q ,qo, -, qn € [1, 0] (3.32)
1 N

In particular, all involved modulation spaces are Banach spaces.
Let j, € {1, ..., N} be chosen such that q; < g, for every j € {1, ..., N}. Then j < co when j # j.

The product (fp) (fp) is uniquely defined and can be obtained through (3.2) for every ¢, €
2, (RY) when (fp) €2, (R%) and (fp) € M(( S )(Rd) ,J # jo. For general (fp) eM Y (R9), choose
“pljy

((@p)))

( fp)]_ . € 2 (RY), k = 1,2, ... such that ( fp) converges to ( fp) narrowly as k tends to infinity, and that (3.31)

holds with ( fp)j and ( fp)]_ in place of f, and ( fp) respectlvely Then it follows by replacing (fp) by ( fp)
when j # j, in (3.2) and applying Lemma 3.11 on the integral in (3.2) that

t(¢p) = lim ((fp)l,k"'(fﬂ)w,k’(pp)

k—oo

exists and defines an element in f, € X} (R%). This shows that the only possibility to define (fp)l ( fp)N ina

continuous way is to put ( fp)1 (fp)zv = f,, and the asserted uniqueness follows.

IV.  Extensions and variations

We extend the results on step and Fourier step multipliers to certain so-called curve step and Fourier
curve step multipliers. That is a generalized form of step and Fourier step multipliers, where the constants a,(j)
in the definition of M, o, and Mg o are replaced by certain nonconstant functions or even distributions. In the
end we are able to generalize Theorems 2.1 and 2.3 to such multipliers. These achievements are based on
Hoélder-Young relations for multiplications and convolutions in Section 3, In the case of trivial weights and all
modulation spaces are Banach spaces, our results are similar to [3, Theorem 6] and [27, Proposition 4.12].

The multipliers and Fourier multipliers which we consider are given in the following.

Definition 4.1 [38]. Let b € R% be fixed, A, and Q, be given by (1.43) and (1.44), and let

ao = {ao(,)}jea, € C*(RY) (4.1)

be such that

. @00, | € TR,
j€Ap
Then the multiplier
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Moayify ™ ) @G jsonfo (L46)
JEAp
from C*(R%) to Lo, (R?) is called slope step multiplier with respect to b and a,. The Fourier multiplier
Mg pag =F oMy, oF, (1.45)'

is called slope step Fourier multiplier with respect to b and a,.
First we perform some studies of

Typao = ) aoG (=) (42)
JeAp
where Y, €S (R%) is suitable. The conditions on the sequence (4.1) that we have in mind are that for fixed
(wp)o € P:(R%) and 0 < € < oo, the functions

bgye(X) = sup <§up |(afa0)(j, x)|) (4.3)
Bsa \JjEAp

should belong to L'*€(R%) for every a € N4, or that for some or for every € > 0, the function
0%ay)(j, x
(14 e)lalgli+e

bao 1+e(x) = sup <Sup

aeNd \jeAp
should belong to L**€(R%).
Proposition 4.2(see [38]). Let b € R be fixed, A, be given by (1.43), € > 0, (4.1) be a sequence of functions
on C*(R), Y, € S(RY), and let Ty, g, Dyq q and by 14 be given by (4.2)-(4.4) when @ € N¢ and € > 0. Then
the following is true:
(1) if bgy e € Lo (R?) for a = (0,...,0) € N4, then the series in (4.2) is locally uniformly convergent and
defines an element in C(R%);
(2) if bagq € Lige (R?) for every @ € N, then T, @, € C*(R?) and
|(29T,,a0) ()] < Baga(®), x € R?
for every @ € N¢;
(3) if in addition 1, € S{FE(R?) and b, p, € Lis. (RY), then
|(29Ty,a0) (0] = (1 + %@t by, (1), x € R

for some € = 0;
(4) if in addition 1, € Z{TE(RY),c > 1 and by 5, € Lis. (R?), then

|(6“T¢pa0) ()| S (chp)*a!™ by 5, (x),x € R?
Proof. We only prove (1) and (4). The other assertions follow by similar arguments and are left for the reader.

Let A = Ay, a = (0, ...,0) € N and suppose that b, , € Lis. (R?). We have

DD 180U =Dl S baga@ Y D Iy (8 = DI = g,

jeA jEA
which shows thatj(4.2)pis locally uniformly convergent. Sin]ce aop(j,-) and Y, (- —j) are continuous functions, it
follows that Ty, a0 in (4.2) is continuous.
Next suppose additionally that ¥, € 1€ (R%) and consider fo= Twp a,. For every a € N%, & > 0 and
€ > —1, we have

@Il >0 > ()10 et mllor, 6=

JEA ysa p
1
S bag,ne (X) Z Z ( )h(')“_yl(a — P glrlyrgm(tre)lx—jlTre
JEA y=a
1
< (hg + g)lala!1+e bao,ho (x) Z e~ (1+e)|x—j|T+e (ho + €)|a|a,!1+e bao,ho (x)
jeA

and the result follows.
In the next result we show that if b, , or bg q14c in the previous proposition belong to

w? ((a)p)o, f“e), then for Ty, ao in (4.2) we have
Tlppao € M1+e ,1+€ Rd) ﬂ W1+e ,1+e Rd) (4.5)

( p)He ( P)1+s
and
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||T1Ppa0| plrelte + ||T1/1pa0||w1+s,1+e S gllg%”baoa||W1((wp)0‘{,1+s) (4.6)
®p)y4e ©“p)1te
or
||T1/1pa0| plrelte + ||T111pa0||w1+e,1+e s ”bao.1+6”Wl((mp)o‘[ue) (4.7)

(@p)14e (@p)14e
See also Remark 1.9 for notations.
Proposition 4.3(see [38]). Let (wp)o € Py (R%),A S R%, e >0, Ty, 00, 0q0,a> Dag,1+e and 1, be the same as in

Proposition 4.2, and let 0 < € < oo. Then the following is true:
(1) if in addition (wp)o € P(RY),b,, o € W? ((wp)0,€1+€) for every a € N4, and 0;,.(x,§) =
(wp)o(x)(a“f when € > 0, then (4.5) and (4.6) hold;
(2) if in addition (a)p)o € PL1+e(RY), Y, € STFERY), by, 146 € W? ((wp)o, 1’,’”6) for some € = 0, and

9y4e(x,8) = (wp)o(x)e(“f)'f'ﬁ when € > 0, then (4.5) and (4.7) hold for some € > 0;
(3)  if in addition (w,), € Pg14e(RD, 1, € ZHER®), bgy 14e € W ((wp)0,€1+€) for every € > 0, and
O14pe(x,8) = (wp)o(x)e(“fﬂf rve when € > 0, then (4.5) and (4.7) hold for every € > —1.
Proof. We only prove (2). The other assertions follow by similar arguments and are left for the reader.
Let f, = Ty, a0, (¥p); = ¥, (- =) and §,(x) = ¢, (—x). Since
(Vo f) (. &) = e (v £,) (£, —x)
we get

(Vo fo) (.6 =e=0 > (v F (W) 00G)) ) €, =)

JEA
=e~0 " 1 (F((y)ja00) - o =) ()
jEA
= (Zn)_ge_i(x‘f) z (((lpp)jaO(j")) * (¢ - ei("f))) (=)

jen
Hence, Leibnitz rule, integrations by parts and Proposition 1.1 give

e () 0] = 3. [((09,0069) (8- G2e) o

jea

=S (|07 ®,),) @a0G)

Y1!v2!ys!

#[0%,]) (x)

1 1
< Z 3111 4 eritra4vsl(y 1y, 1y ) 1e ((e—(1+e)|~—j|1+eba011+6) " e—(1+e)|.|1+e> (x)

- 1
< (9(1 + €))l@lg1i+e Z <<e—(1+€)|-—jll+€ba0‘1+e) . e-<1+e)|-|1+e> )
jen
1
(901 + NI (b 1y + e+ ()
Here the second and third sums are taken with respect to all j € A and all y;,¥,,¥; € N¢ such that y; + y, +

V3 = a.
This implies that for some constant C which is independent of 1 + €, and @ we have

1 k 1

|€]2+e %ﬂ < o=k —(1+s)|‘|ﬁ 1+€

—— | Ve /o O S 27 (Bag1ae € @)
(C(1+e))rse

and by taking the sum over all k = 0 we land on

1 1
Vd)pfp(x' 5)67‘(1+€)|f|1+5 < (ba0,1+€ * e—(1+€)|'|1+6> (X),T(1+e) =

1+¢€
(€1 +ive

1
By multiplying with (a)p)g and using that (a)p)o(x +y) s (a)p)o(x)e(”e)'y'l” for every € = 0, we obtain
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o 1+e
|V¢pfp(x' LN 2 f)l = ((bao,1+6(“’p)0) * g~ (1ralIT > (), Ta4e) = ————— (4.8)
(C(A +€))rse
for some € > 0.
By applying [32, Proposition 2.5] on the last inequality we obtain

1
< ||e—(1+e)|»|m

||V¢ﬂfp ||w(19r(1+5),€1+5'°°) + ||V¢pr ||w(19r( W(1,£min(11+)) ||ba°'1+6||W(19r(1+6),{’1+6)

1+€,00
1+€)’€* )

The result now follows for general 0 < € < o from the relations ||V¢p fp”w (s ) = |[f,llp1+e, and

1{;1+e,oo
(1+e)’
1+e,00 1+e1+ 1+, L - 1+e1+ -
M(ﬁ2(1+€))(Rd) = M(ﬁ;s) ‘(RY) & M(191E+S(Rd)’ and similarly with W(w:) € and £1T€1+€ gpaces in place of
M1+€’1+E and p1re1+e

(@p) spaces.

We have now the following extension of Theorem 2.1. Here involved Lebesgue exponents and weight
functions should fullfil

1 11 1 1 < L 0) v
1+3c 1+2e 1+e1+2e 1+43e- "3~ (4-9)

and
(05),,0 s (wp) () (w)) () (4.10)

Theorem 4.4(see [38]). Let 0 < € < 0,0 <€ < 0,1+ 2¢,1+ 3¢ € (min(1,1 + 3€),) be such that (4.9)
holds, b > 0, (wp)o, (a)p)oj be weights on R% such that (4.10) holds true, w,(x,§) = (a)p)o(x) and

(wp)],(x, &= (a)p)oj(x),j =1,2,x,& €R%. Let a, in (4.1) be such that A=A, and ay(j,") € C*(R%) for

every j € Ay, and let by o and by 14 be given by (4.3) and (4.4). Also suppose that one of the following
conditions hold true:

(i) baya € WH ((a)p)o, {’”E) for every @ € N¢, and (wp)o, (wp)oj € P(RY),j=12;
(i) Bagrre € W (@) ¢1*) for some e = 0,and (@,) , (@), ; € PR1re(RD,j = 1.2
(iif) ba0,1+e e Wt ((wp)(],{)l"'f) for every € = 0, and ((Up)o, (wp)Oj € ?E,1+E(Rd);j =1,2.

Then the following is true:
(1) M4, is continuous from witaeltepdy o wit3elre(Re);

((“’p)l) ((“’p)z)
(2) M, is continuous from M} 2 2€(R?) to M} 341 T3¢ (RD).
o ((wp)1) ((wp)z)

Proof. We only prove the result when (iii) holds. The other cases follow by similar arguments and is left for the
reader.

Let ¥, € 1€(R%) be such that Y, =1 on Q, and supported in a neighbourhood of @, and let
A4, ...,Ay be sublattices of A=A, such that U?’=1 Aj=A and suppy,(- —k;) N suppy,(: —k;) =
@, ki, k, € Aj, kq # ko, forevery j = 1,...,N. Then

N
Mb,ao = Z S',
j=1

where §; = S, ; © §5; j, with S ; and S, ; being the multiplication operators with the functions

@1 = D) D kI C —k) and (9,)25 = D xg, (=)
keAj p kEA;
respectively. The result follows if we prove the asserted continuity properties for S; in place of My 4.

By Proposition 4.3 it follows that (¢,),; € M(llgli)_s(Rd) n Wé;:'el)_e(Rd) for every 0 < € < 1 and

€ = 0. Hence, if we choose (1 — €) small enough, Theorems 3.2 and 3.3 show that S; ; is continuous from

Wrt2el=€(Re) to WAT3E1-€(RY), and from M, 2 2 (RY) to M} 3SM2€(RY). In view of Theorem 2.1 one
((‘*’p)l) ((“’p)z) ((“’p)l) ((“’p)z)

has that S, ; is continuous on W/ >%'7¢(R%), and from M "> 2€(RY) to M/ >4 13€(RY), for every j. By

((“’p)z) ((wp)z) ((wp)z)
combining these mapping properties it follows that S; is continuous from W(l(:fe),l)— ‘(R%) to W(l(:?e)'l)_ ¢(R%), and
pPJq P2
from M} 12€(RA) to M) T2EME3€(RY) for every j, and the result follows.
(((‘)ﬂ)1) (((‘)P)z)

By Fourier transforming the latter result we obtain the following extension of Theorem 2.3, The details
are left for the reader. Here
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1 1 1 1 1 (
ax

_ < — > —-1,0 411
T73e T+2e ~1—¢ ™ 152 T43e =M\ 153 ) (4.11)
Theorem 4.5 [38]. Let 0 < € < 00,0 < € < 00,1 + 2¢,1 + 3¢ € (min(1,1 + 3¢€), ©) be such that (4.11) holds,

b >0, (a)p)o, (a)p)oj be weights on R? such that (4.10) holds true, w,(x,$) = (a)p)o(f) and (wp)j (x,86) =
(wp)oj(f),j =1,2,x,§ € R% Let (f,) in (4.1) be such that A = Ay, and ay(j,") € C*(R?) for every j € Ay,

and let by, , and b, 14 be given by (4.3) and (4.4). Also suppose that one of the following conditions hold
true:

(i)  bgye €EW! ((wp)0,1,”1+€) for every @ € N4, and (wp)o, (wp)oj € P(RY),j =1,2;
(i) bgy14e € W! ((wp)0,1,”1+6) for some € = 0, and (wp)o, (wp)oj EPL1e(RY,j=1.2;
(iil) bgy14+e € W! (((up)o, {’“E) for every € = 0, and (a)p)o, ((up)oj € Pp1re(R),j=12.

Then the following is true:
(1) Mg g, is continuous from M/ T *2€(R?) to M/ T +3€(RY);

((‘*’p)l) ((“’P)z)
(2) Mg, 4. is continuous from W1H2€1F2€(RD) to W 291 13€(RE),
e ((“’P)1) ((‘*’p)z)

We observe that Theorems 4.4 and 4.5 include the following extensions of Theorems 2.1 and 2.3.
Corollary 4.6 [38]. Let 0 <€ < 0,0< e < 00,1+ 26,1+ 3¢ € (min(1,1 + €),0) be such that (4.9) hold,
b >0, (wp)o,(wp)oj € Pz(R%) be such that (4.10), (wp)j(x, &)= (wp)oj(x),j =1,2,x,¢ R, x, & €RY,

and let a, € f%g{j ) )(Ab). Then the following is true:
Plo

(1) M4, is continuous from witzelrepdy (o wlt3elte(ra);

((‘*’p)l) ((‘”p)z)
(2) M, is continuous from M} 12€(R?) to M 3913€(RY).
o ((‘*’p)l) ((‘”p)z)

Corollary 4.7 [38]. Let 0 < € < o0,1+4+ 2¢,1+ 3¢ € (min(1,1 + €),),0 < € < oo be such that (4.11) hold,
b >0, (wp)o, (wp)oj € Pz(R%) be such that (4.10) holds, (wp)].(x. &= (wp)oj(s), j=12x¢€R:x €

R4 andleta, € {’%E'(j ) )(Ab). Then the following is true:
PJo

1) M is continuous from M} ***2€(R?) to M} FE13€(RE ;

( ) F,b,ag ((wp)l) ( ) ((wp)z) ( )

2 M . ti fi W1+2€,1+2€ Rd t W1+3e,1+3e Rd )

(2) Mg p q, is continuous from ((wp)l) (RY) to ((wp)z) (R%)
Proof of Corollaries 4.6 and 4.7. Let ), € 21+€(R%) be compactly supported and chosen such that Y, =1on
Qp- Then the results follow by letting aq(j,-) = aq(j)¥, (- —j) in Theorems 4.4 and 4.5. The details are left for

the reader.
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