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Abstract 
For the clearity, consistency and simplicity we restate and follow the pioneer of the paper [38] to show the 
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quasi-Banach modulation spaces. And deduce boundedness for multiplications and convolutions for elements in 

such spaces with slightly small changes in the sequel. 
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I. Introduction 
We deduce mapping properties of step multipliers and Fourier step multipliers when acting on quasi-

Banach modulation spaces. Some parts of our investigations are based on certain continuity properties for 

multiplications and convolutions for elements in such spaces, deduced in Section 3, and which might be of 

independent interests. So the Hilbert transform, i.e. multiplication by the signum function on the Fourier 

transform side, is frequently used in mathematics, science and technology. In physics it can be used to secure 

causality. For example, in optics, the refractive index of a material is the frequency response of a causal system 

whose real part gives the phase shift of the penetrating light and the imaginary part gives the attenuation. The 

relationship between the two are given by the Hilbert transform. Consequently, knowledge of one is sufficient to 

retrieve the other. Hence the inconveniently property with the Hilbert transform concerns lack of continuity 

when acting on commonly used spaces. For example, it is well-known that the Hilbert transform is continuous 

on 𝐿2, but fails to be continuous on 𝐿1+𝜖 for 𝜖 ≠ 1 as well as on 𝒮. (See [22]). A pioneering contribution which 

drastically improve the situation concerns [23], who showed that the Hilbert transform is continuous on the 

modulation space 𝑀1+𝜖,1+𝜖 when 0 ≤ 𝜖 ≤ ∞. The result is surprising because 𝑀1+𝜖,1+𝜖 is rather close to 𝐿1+𝜖 

when (1 + 𝜖) stays between (1 + 𝜖) and (
1+𝜖

𝜖
) (see e. g. [8, 29]). 

The result in [23] was extended in [3], where Bényi, Grafakos, Gröchenig and Okoudjou show that Fourier step 

multipliers, i.e. Fourier multipliers of the form 

𝑓𝜌 ↦ ℱ−1 (∑  

𝑗∈𝑏𝐙

 ∑

𝜌

𝑎0(𝑗)𝜒𝑗+[0,𝑏)𝑓𝜌) , 𝑎0 ∈ ℓ
∞(𝑏𝐙) (0.1) 

are continuous on the modulation space 𝑀1+𝜖,1+𝜖(𝐑𝑑), when 0 < 𝜖 < ∞ and 0 ≤ 𝜖 ≤ ∞. (See [3, Theorem 1].) 

Note that modulation spaces is a family of function and distribution spaces introduced by [8] and 

further developed by [10-13, 17]. In particular, the modulation spaces 𝑀(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) and 𝑊(𝜔𝜌)

1+𝜖,1+2𝜖(𝐑𝑑) are 

the set of tempered (or Gelfand-Shilov) distributions whose short-time Fourier transforms belong to the 

weighted and mixed Lebesgue spaces 𝐿(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑2𝑑) respectively 𝐿∗,(𝜔𝜌)

1+𝜖,1+2𝜖(𝐑2𝑑). Here 𝜔𝜌 is a weight function 

on phase (or time-frequency shift) space and 0 < 𝜖 ≤ ∞. Note that 𝑊(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) is also an example on 

Wiener-amalgam spaces (cf. [10]). 

There are several convenient characterizations of modulation spaces. For example, in [9, 14, 17, 18, it 

is shown that modulation spaces admit reconstructible sequence space representations using Gabor frames. 

[38] extend [3, Theorem 1] in several ways (see Theorems 2.1 and (2.3). 

http://www.questjournals.org/
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(1) The condition 0 ≤ 𝜖 ≤ ∞ is relaxed into 0 < 𝜖 ≤ ∞. 

(2) We allow weighted modulation spaces 𝑀(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑), where the weight 𝜔𝜌 only depends on the 

momentum or frequency variable 𝜉, i.e. 𝜔𝜌(𝑥, 𝜉) = 𝜔𝜌(𝜉). These weights are allowed to grow or 

decay at infinity, faster than polynomial growth. 

(3) Our analysis also include continuity properties for the modulation spaces 𝑊(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑). 

As in [3], we use Gabor analysis for modulation spaces to show these properties. In [3] the continuity 

for Fourier step multipliers are obtained by a convenient choice of Gabor atoms in terms of Fourier transforms 

of second order B-splines. This essentially transfer the critical continuity questions to a finite set of discrete 

convolution operators acting on ℓ1+𝜖, with dominating operator being the discrete Hilbert transform. The choice 

of Gabor atoms then admit precise estimates of the appeared convolution operators. 

In our situation the B-splines above are insufficient, because B-splines lack in regularity, and when 

(1 + 𝜖) approaches 0 , unbounded regularity on the Fourier transform of the Gabor atoms are required. In fact, 

in order to obtain continuity for weighted modulation spaces with general moderate weights in the momentum 

variables, it is required that the Fourier transform of Gabor atoms obey even stronger regularities of Gevrey 

types. 

In Section 4 we obtain some further extensions and deduce precise estimates of the Fourier multipliers 

in (0.1), where more restrictive 𝑎0 should belong to ℓ1+𝜖(𝑏𝐙) for some 0 ≤ 𝜖 ≤ ∞. In the end we are able to 

prove that the Fourier multiplier in (0.1) is continuous from 𝑀1+𝜖,1+𝜖 to 𝑀1+𝜖,1+2𝜖 when 0 < 𝜖 < ∞ and 0 ≤
𝜖 ≤ ∞ satisfy 

1

1 + 2𝜖
−

1

1 + 𝜖
≤

1

1 + 𝜖
 

More generally, in Section 4 we generalize the continuity properties for the step and Fourier step multiplier 

results in Section 2 with more general slope step multiplier and Fourier slope step multipliers. 

 
Multiplier functions in Section 2, 

 
Multiplier functions in Section 4 (see [38]). 

An important ingredient for the proofs of the latter extension is multiplication and convolution properties for 

𝑀(𝜔𝜌)
1+𝜖,1+𝜖

 and 𝑊(𝜔𝜌)
1+𝜖,1+𝜖

 spaces, given in Section 3. 

Proposition 0.1 [38]. Let 0 ≤ 𝜖 ≤ ∞, then 

𝜃1 = max (1,
1

1 + 𝜖
,
1

1 + 4𝜖
,
1

1 + 5𝜖
)  and 𝜃2 = max (1,

1

1 + 𝜖
,
1

1 + 5𝜖
) 

Then 

𝑀1+3𝜖,1+4𝜖 ⋅ 𝑀1+5𝜖,1+6𝜖 ⊆ 𝑀1+𝜖,1+2𝜖 ,
1

1 + 3𝜖
+

1

1 + 5𝜖
=

1

1 + 𝜖
,

1

1 + 4𝜖
+

1

1 + 5𝜖
= 𝜃1 +

1

1 + 2𝜖
,

𝑀1+3𝜖,1+4𝜖 ∗ 𝑀1+5𝜖,1+6𝜖 ⊆ 𝑀1+𝜖,1+2𝜖,
1

1 + 3𝜖
+

1

1 + 5𝜖
= 𝜃2 +

1

1 + 𝜖
,

1

1 + 4𝜖
+

1

1 + 6𝜖
=

1

1 + 2𝜖
.

 

Similar result holds for 𝑊1+𝜖,1+𝜖 spaces. The general multiplication and convolution properties in Section 3 also 

overlap with results by [1], [2], and [21]. 

The multiplication relation in Proposition 0.1 for 𝜖 ≥ 0 was obtained already in [8]. It is also obvious 

that the convolution relation was well-known since then (though a first formal proof of this relation seems to be 

given first in [30]). In general, these convolution and multiplication properties follow the rules 

ℓ1+3𝜖 ∗ ℓ1+5𝜖 ⊆ ℓ1+𝜖 , ℓ1+4𝜖 ⋅ ℓ1+6𝜖 ⊆ ℓ1+2𝜖  ⇒  𝑀1+3𝜖,1+4𝜖 ∗ 𝑀1+5𝜖,1+6𝜖 ⊆ 𝑀1+𝜖,1+2𝜖 

and 

ℓ1+3𝜖 ⋅ ℓ1+5𝜖 ⊆ ℓ1+𝜖, ℓ1+4𝜖 ∗ ℓ1+6𝜖 ⊆ ℓ1+2𝜖  ⇒  𝑀1+3𝜖,1+6𝜖 ⋅ 𝑀1+5𝜖,1+6𝜖 ⊆ 𝑀1+𝜖,1+2𝜖 

which goes back to [8] in the Banach space case and to [14] in the quasi-Banach case. See also [11] and [26] for 

extensions of these relations to more general Banach function spaces and quasi-Banach function spaces, 

respectively. 

In Section 3 we extend the multiplication and convolution results in [1, 2, 21] to allow more general 

weights as well as finding multi-linear versions. We stress that the results in Section 3 hold true for general 
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moderate weights, while corresponding results in [21] are formulated only for polynomially moderate weights 

which also should be split, i.e. of the form 𝜔𝜌(𝑥, 𝜉) = (𝜔𝜌)1(𝑥)(𝜔𝜌)2(𝜉). In Section 3 we also carry out 

questions on uniqueness for extensions of multiplications and convolutions from the Gelfand-Shilov space 

Σ1(𝐑
𝑑), to the involved modulation spaces. Note that Σ1(𝐑

𝑑) is dense in 𝒮(𝐑𝑑) and is contained in all 

modulation spaces with moderate weights(see e. g. [31]). On the other hand, in contrast to [21], we do not 

deduce any sharpness for our results. 

The analysis to show Proposition 0.1 is more complex compared to the restricted case when 𝜖 ≥ 0, 

because of absence of local-convexity of involved spaces when some of the Lebesgue exponents are smaller 

than one. In fact, the desired estimates when 𝜖 ≥ 0 can be achieved by straightforward applications of Hölder's 

and Young's inequalities. For corresponding estimates in Proposition 0.1, some additional arguments are 

needed. In our situation we discretize the situations in similar ways as in [1] by using Gabor analysis for 

modulation spaces, and then apply some further arguments, valid in non-convex analysis. This approach is 

slightly different compared with [21] which follows the discretization technique introduced in [36], and which 

has some traces of Gabor analysis. 

A non-trivial question concerns wether the multiplications and convolutions in Propositions 0.1 and 0.1 

are uniquely defined or not. If 𝜖 < ∞, 𝑗 = 1,2, then the uniqueness is evident because the Schwartz space is 

dense in 𝑀𝑝𝑗,𝑞𝑗. In the case 𝜖 < ∞, the uniqueness in Proposition 0.1 follows from the first case, duality and 

embedding properties for quasi-Banach modulation spaces into Banach modulation spaces. The uniqueness in 

0.1 then follows from the uniqueness in Proposition 0.1 and the fact that 𝑀1+𝜖,1+𝜖 increases with (1 + 𝜖). 
A critical situation appear when 2 + 7𝜖 = 2 + 4𝜖 = ∞. Then 𝒮 is neither dense in 𝑀1+3𝜖,1+4𝜖 nor in 

𝑀1+5𝜖,1+6𝜖. For the multiplications in Propositions 0.1, the uniqueness can be obtained by suitable approaches 

based on the so-called narrow convergence, which is a weaker form of convergence compared to norm 

convergence (see [28, 29, 31]). However, for the convolution in Propositions 0.1, we are not able to show any 

uniqueness of these extensions in this critical situation. 

[38] present well-known properties of Gelfand-Shilov spaces, modulation spaces, multipliers and 

Fourier multipliers. They deduce continuity properties for step and Fourier step multipliers when acting on 

(quasi-Banach) modulation spaces. Then establish convolution and continuity properties for quasi-Banach 

modulation spaces. They show how the multiplication and convolution results can be used to generalize the 

continuity results, to more general slope step multiplier and Fourier slope step multipliers. Finallythey present a 

proof of a multi-linear convolution result in Appendix A. 

1. Preliminaries 

We present some facts on Gelfand-Shilov spaces, modulation spaces, discrete convolutions, step and 

Fourier step multipliers. After explaining some properties of the Gelfand-Shilov spaces and their distribution 

spaces, we consider a suitable twisted convolution and recall some facts on weight functions and mixed norm 

spaces. Thereafter we consider classical modulation spaces, which are more general compared in [8] in the sense 

of more general weights as well as we permit the Lebesgue exponents to belong to the full interval (0,∞] 
instead of [1,∞]. Here we also recall some facts on Gabor expansions for modulation spaces. Then we collect 

some facts on discrete convolution estimates on weighted ℓ1+𝜖 spaces with the exponents in the full interval 

(0,∞]. We finish the section by giving the definition of step and Fourier step multipliers (see [38]). 

1.1. Gelfand-Shilov spaces and their distribution spaces. For any 𝜖 ≥ 0 and belong to𝐑, 𝒮1+2𝜖,1+𝜖
1+3𝜖 (𝐑𝑑) 

consists of all 𝑓𝜌 ∈ 𝐶
∞(𝐑𝑑) such that 

‖𝑓𝜌‖𝒮1+2𝜖,1+𝜖1+3𝜖 ≡ sup∑

𝜌

|𝑥𝛽𝜕𝛼𝑓𝜌(𝑥)|

(1 + 𝜖)|𝛼+𝛽|𝛼!1+3𝜖 𝛽!1+2𝜖
(1.1) 

is finite. Then 𝒮1+2𝜖,1+𝜖
1+3𝜖 (𝐑𝑑) is a Banach space with norm ‖ ⋅ ‖𝒮1+2𝜖,1+𝜖1+3𝜖 . The GelfandShilov spaces 𝒮1+2𝜖

1+3𝜖(𝐑𝑑) 

and Σ1+2𝜖
1+3𝜖(𝐑𝑑), of Roumieu and Beurling types respectively, are the inductive and projective limits of 

𝒮1+2𝜖,1+𝜖
1+3𝜖 (𝐑𝑑) with respect to 𝜖 ≥ 0 (see e.g. [15]). It follows that 

𝒮1+2𝜖
1+3𝜖(𝐑𝑑) =⋃  

𝜖≥0

 𝒮1+2𝜖,1+𝜖
1+3𝜖 (𝐑𝑑) and Σ1+2𝜖

1+3𝜖(𝐑𝑑) =⋂  

𝜖≥0

 𝒮1+2𝜖,1+𝜖
1+3𝜖 (𝐑𝑑) (1.2) 

We remark that Σ1+2𝜖
1+3𝜖(𝐑𝑑) ≠ {0}, if and only if 2 + 5𝜖 > 1, and 𝒮1+2𝜖

1+3𝜖(𝐑𝑑) ≠ {0}, if and only if 2 + 5𝜖 ≥ 1, 

and that 

𝒮𝑠1
𝜎1(𝐑𝑑) ⊆ Σ𝑠2

𝜎2(𝐑𝑑) ⊆ 𝒮𝑠2
𝜎2(𝐑𝑑) ⊆ 𝒮(𝐑𝑑), 𝑠1 < 𝑠2, 𝜎1 < 𝜎2 

The Gelfand-Shilov distribution spaces (𝒮1+2𝜖
1+3𝜖)′(𝐑𝑑) and (Σ1+2𝜖

1+3𝜖)′(𝐑𝑑), of Roumieu and Beurling types 

respectively, are the (strong) duals of 𝒮1+2𝜖
1+3𝜖(𝐑𝑑) and Σ1+2𝜖

1+3𝜖(𝐑𝑑), respectively. It follows that if 

(𝒮1+2𝜖,1+𝜖
1+3𝜖 )

′
(𝐑𝑑) is the 𝐿2-dual of 𝒮1+2𝜖,1+𝜖

1+3𝜖 (𝐑𝑑) and 2 + 5𝜖 ≥ 1(2 + 5𝜖 > 1), then 

(𝒮1+2𝜖
1+3𝜖)′(𝐑𝑑)((Σ1+2𝜖

1+3𝜖)′(𝐑𝑑)) can be identified with the projective limit (inductive limit) of (𝒮1+2𝜖,1+𝜖
1+3𝜖 )

′
(𝐑𝑑) 

with respect to 𝜖 ≥ 0. It follows that 



On Fourier Step Multipliers and Multiplications Actingon Quasi-Banach Modulation Spaces 

DOI: 10.35629/0743-12015478                             www.questjournals.org                                                57 | Page 

(𝒮1+2𝜖
1+3𝜖)′(𝐑𝑑) =⋂  

𝜖≥0

  (𝒮1+2𝜖,1+𝜖
1+3𝜖 )

′
(𝐑𝑑) and Σ1+2𝜖

′ (𝐑𝑑) =⋃  

𝜖≥0

  (𝒮1+2𝜖,1+𝜖
1+3𝜖 )

′
(𝐑𝑑) (1.3) 

for such choices of (1 + 2𝜖) and (1 + 3𝜖). (See 24.) We remark that 

𝒮′(𝐑𝑑) ⊆ (𝒮𝑠2
𝜎2)

′
(𝐑𝑑) ⊆ (Σ𝑠2

𝜎2)
′
(𝐑𝑑) ⊆ (𝒮𝑠1

𝜎1)
′
(𝐑𝑑), 

when 

𝑠1 < 𝑠2, 𝜎1 < 𝜎2 and 𝑠1 + 𝜎1 ≥ 1 

For convenience we set 𝒮1+2𝜖 = 𝒮1+2𝜖
1+2𝜖 and Σ1+2𝜖 = Σ1+2𝜖

1+2𝜖. 

The Gelfand-Shilov spaces are invariant under several basic transformations. For example they are 

invariant under translations, dilations and under (partial) Fourier transformations. In fact, let ℱ be the Fourier 

transform which takes the form 

(ℱ𝑓𝜌)(𝜉) = 𝑓ρ(𝜉) ≡ (2𝜋)
−
𝑑

2∫  
𝐑𝑑
∑

𝜌

𝑓𝜌(𝑥)𝑒
−𝑖⟨𝑥,𝜉⟩𝑑𝑥 

when 𝑓𝜌 ∈ 𝐿
1(𝐑𝑑). Here ⟨⋅,⋅⟩ denotes the usual scalar product on 𝐑𝑑. The map ℱ extends uniquely to 

homeomorphisms on 𝒮′(𝐑𝑑), from (𝒮1+2𝜖
1+3𝜖)′(𝐑𝑑) to (𝒮1+3𝜖

1+2𝜖)′(𝐑𝑑) and from (Σ1+2𝜖
1+3𝜖)′(𝐑𝑑) to (Σ1+3𝜖

1+2𝜖)′(𝐑𝑑). 
Then the map ℱ restricts to homeomorphisms on 𝒮(𝐑𝑑), from 𝒮1+2𝜖

1+3𝜖(𝐑𝑑) to 𝒮1+3𝜖
1+2𝜖(𝐑𝑑), from Σ1+2𝜖

1+3𝜖(𝐑𝑑) to 

Σ1+3𝜖
1+2𝜖(𝐑𝑑), and to a unitary operator on 𝐿2(𝐑𝑑). 

There are several characterizations of Gelfand-Shilov spaces and their distribution spaces (cf. [6,7,33] 

and the references therein). For example, it follows from [6,7] that the following is true. Here 𝑔𝜌(𝜃) ≲

ℎ(𝜃), 𝜃 ∈ Ω, means that there is a constant 𝑐 > 0 such that 𝑔𝜌(𝜃) ≤ 𝑐ℎ(𝜃) for all 𝜃 ∈ Ω. 

Proposition 1.1 [38]. Let 𝑓𝜌 ∈ 𝒮
′(𝐑𝑑) and 𝜖 ≥ 0. Then the following conditions are equivalent: 

(1) 𝑓𝜌 ∈ 𝒮1+2𝜖
1+3𝜖(𝐑𝑑) (𝑓𝜌 ∈ Σ1+2𝜖

1+3𝜖(𝐑𝑑)); 

(2) |𝑓𝜌(𝑥)| ≲ 𝑒
−(1+𝜖)|𝑥|

1
1+2𝜖

 and |𝑓ρ(𝜉)| ≲ 𝑒
−(1+𝜖)|𝜉|

1
1+3𝜖

 for some 𝜖 ≥ 0 (for every 𝜖 ≥ 0); 

(3) 𝑓𝜌 ∈ 𝐶
∞(𝐑𝑑) and |(𝜕𝛼𝑓𝜌)(𝑥)| ≲ (1 + 𝜖)

|𝛼|𝛼!1+3𝜖 𝑒−(1+2𝜖)|𝑥|
1

1+2𝜖
 for some 𝜖 ≥ 0 (for every 𝜖 ≥ 0). 

Gelfand-Shilov spaces and their distribution spaces can also be characterized by estimates on their short-time 

Fourier transforms Let 𝜙𝜌 ∈ 𝒮1+2𝜖(𝐑
𝑑) (𝜙𝜌 ∈ Σ1+2𝜖(𝐑

𝑑)) be fixed. Then the short-time Fourier transform of 

𝑓𝜌 ∈ 𝒮1+2𝜖
′ (𝐑𝑑) (of 𝑓𝜌 ∈ Σ1+2𝜖

′ (𝐑𝑑) ) with respect to 𝜙𝜌 is defined by 

(𝑉𝜙𝜌𝑓𝜌) (𝑥, 𝜉) ≡ (2𝜋)
−
𝑑

2(𝑓𝜌, 𝜙𝜌(⋅ −𝑥)𝑒
𝑖⟨⋅,𝜉⟩)

𝐿2
(1.4) 

We observe that 

(𝑉𝜙𝜌𝑓𝜌) (𝑥, 𝜉) = ℱ(𝑓𝜌 ⋅ 𝜙𝜌(⋅ −𝑥))(𝜉) (1.4)′ 

(cf. 34). If in addition 𝑓𝜌 ∈ 𝐿
1+𝜖(𝐑𝑑) for some 0 ≤ 𝜖 ≤ ∞, then 

(𝑉𝜙𝜌𝑓𝜌) (𝑥, 𝜉) = (2𝜋)
−
𝑑

2∫  
𝐑𝑑
∑

𝜌

𝑓𝜌(𝑦)𝜙𝜌(𝑦 − 𝑥)𝑒
−𝑖⟨𝑦,𝜉⟩𝑑𝑦                    (1.4)′′ 

In the next lemma we present characterizations of Gelfand-Shilov spaces and their distribution spaces in terms 

of estimates on the short-time Fourier transforms of the involved elements. The proof is omitted, since the first 

part follows from [20, and the second part from [31, 33]. 

Lemma 1.2 [38]. Let 0 ≤ 𝜖 ≤ ∞, 𝑓𝜌 ∈ 𝒮1
2

′(𝐑𝑑), 𝜖 ≥ 0, 𝜙𝜌 ∈ 𝒮1+2𝜖
1+3𝜖(𝐑𝑑) ∖ 0(𝜙𝜌 ∈ Σ1+2𝜖

1+3𝜖(𝐑𝑑) ∖ 0) and 

𝑣1+2𝜖(𝑥, 𝜉) = 𝑒
(1+2𝜖)(|𝑥|

1
1+2𝜖+|𝜉|

1
1+3𝜖)

, 𝜖 ≥ 0 

Then the following is true: 

(1) 𝑓𝜌 ∈ 𝒮1+2𝜖
1+3𝜖(𝐑𝑑) (𝑓𝜌 ∈ Σ1+2𝜖

1+3𝜖(𝐑𝑑)), if and only if 

‖∑

𝜌

𝑉𝜙𝜌𝑓𝜌 ⋅ 𝑣1+𝜖‖

𝐿1+𝜖

< ∞ (1.5) 

for some 𝜖 ≥ 0 (for every 𝜖 ≥ 0); 

(2) 𝑓𝜌 ∈ (𝒮1+2𝜖
1+3𝜖)′(𝐑𝑑) (𝑓𝜌 ∈ (Σ1+2𝜖

1+3𝜖)′(𝐑𝑑)), if and only if 

‖∑

𝜌

𝑉𝜙𝜌𝑓𝜌/𝑣1+𝜖‖

𝐿1+𝜖

< ∞ (1.6) 

for every 𝜖 ≥ 0 (for some 𝜖 ≥ 0). 
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We also need the following. Here the first part is a straight-forward consequence of the definitions, and 

the second part follows from the first part and duality.  

Proposition 1.3 [38]. Let 𝜙𝜌 ∈ Σ1+2𝜖(𝐑
𝑑) ∖ 0. Then the following is true: 

(1) 𝑉𝜙𝜌  is continuous from Σ1+2𝜖(𝐑
𝑑) to Σ1+2𝜖(𝐑

2𝑑) and from Σ1+2𝜖
′ (𝐑𝑑) to Σ1+2𝜖

′ (𝐑2𝑑); 

(2) 𝑉𝜙𝜌
∗  is continuous from Σ1+2𝜖(𝐑

2𝑑) to Σ1+2𝜖(𝐑
𝑑) and from Σ1+2𝜖

′ (𝐑2𝑑) to Σ1+2𝜖
′ (𝐑𝑑). 

The same holds true with 𝒮1+2𝜖 or 𝒮 in place of Σ1+2𝜖 at each occurrence. 

1.2. A suitable twisted convolution. Let 𝑓𝜌 be a distribution on 𝐑𝑑, 𝜙𝜌, (𝜙𝜌)𝑗, 𝑗 = 1,2,3, be suitable test 

functions on 𝐑𝑑, and let 𝐹𝜌 and 𝐺 be a pair of suitable distribution/test function on 𝐑2𝑑. Then the twisted 

convolution 𝐹𝜌 ∗𝑉 𝐺 of 𝐹𝜌 and 𝐺 is defined by 

(𝐹𝜌 ∗𝑉 𝐺)(𝑥, 𝜉) = (2𝜋)−
𝑑

2∬  
𝐑2𝑑
 ∑

𝜌

𝐹𝜌(𝑥 − 𝑦, 𝜉 − 𝜂)𝐺(𝑦, 𝜂)𝑒
−𝑖⟨𝑦,𝜉−𝜂⟩𝑑𝑦𝑑𝜂 

 

= (2𝜋)−
𝑑

2∬  
𝐑2𝑑
 ∑

𝜌

𝐹𝜌(𝑦, 𝜂)𝐺(𝑥 − 𝑦, 𝜉 − 𝜂)𝑒
−𝑖⟨𝑥−𝑦,𝜂⟩𝑑𝑦𝑑𝜂         (1.7) 

The convolution above should be interpreted as 

(𝐹𝜌 ∗𝑉 𝐺)(𝑋) = (2𝜋)
−
𝑑

2⟨𝐹𝜌(𝑋 −⋅)𝑒
−𝑖Φρ(𝑋,⋅), 𝐺⟩ 

= (2𝜋)−
𝑑

2⟨𝐹𝜌, 𝐺(𝑋 −⋅)𝑒
−𝑖Φρ(𝑋,𝑋−⋅)⟩                             (1.7)′ 

whereΦρ(𝑋, 𝑌) = ⟨𝑦, 𝜉 − 𝜂⟩, 𝑋 = (𝑥, 𝜉) ∈ 𝐑
2𝑑 , 𝑌 = (𝑦, 𝜂) ∈ 𝐑2𝑑 . 

when 𝐹𝜌 belongs to a distribution space on 𝐑2𝑑 and 𝐺 belongs to the corresponding test function space. By 

straight-forward computations it follows that 

(𝐹𝜌 ∗𝑉 𝐺) ∗𝑉 𝐻𝜌 = 𝐹𝜌 ∗𝑉 (𝐺 ∗𝑉 𝐻𝜌) (1.8) 

when 𝐹𝜌, 𝐻𝜌 are distributions and 𝐺 is a test function, or 𝐹𝜌, 𝐻𝜌 are test functions and 𝐺 is a distribution. 

Remark 1.4 [38]. Let 𝜖 ≥ 0. An important property of ∗𝑉 above is that if 𝑓𝜌 ∈ Σ1+𝜖
′ (𝐑𝑑) and (𝜙𝜌)𝑗 ∈ Σ1+𝜖(𝐑

𝑑) 

and 𝜙𝜌 ∈ Σ1+𝜖(𝐑
𝑑) ∖ 0, 𝑗 = 1,2,3, then it follows by straight-forward applications of Parseval's formula that 

((𝑉(𝜙𝜌)2(𝜙𝜌)3) ∗𝑉 (𝑉(𝜙𝜌)1𝑓𝜌)) (𝑥, 𝜉) = ((𝜙𝜌)3, (𝜙𝜌)1)𝐿2
⋅ (𝑉(𝜙𝜌)2𝑓𝜌) (𝑥, 𝜉). (1.9) 

and that if 

𝑃𝜙𝜌 ≡ ‖𝜙𝜌‖𝐿2
−2 ⋅ 𝑉𝜙𝜌 ∘ 𝑉𝜙𝜌

∗ (1.10) 

then 

𝑃𝜙𝜌𝐹𝜌 = ‖𝜙𝜌‖𝐿2
−2 ⋅ 𝑉𝜙𝜌𝜙𝜌 ∗𝑉 𝐹𝜌 (1.11) 

when 𝐹𝜌 ∈ Σ1+𝜖
′ (𝐑2𝑑). We observe that 

𝑃𝜙𝜌
∗ = 𝑃𝜙𝜌  and 𝑃𝜙𝜌

2 = 𝑃𝜙𝜌 . (1.12) 

(See e.g. Chapters 11 and 12 in [17].) 

We also remark that if 𝐹𝜌 ∈ Σ1+𝜖
′ (𝐑2𝑑), then 𝐹𝜌 = 𝑉𝜙𝜌𝑓𝜌 for some 𝑓𝜌 ∈ Σ1+𝜖

′ (𝐑𝑑), if and only if 

𝐹𝜌 = 𝑃𝜙𝜌𝐹𝜌 (1.13) 

Furthermore, if (1.13) holds, then 𝐹𝜌 = 𝑉𝜙𝜌𝑓𝜌 with 

𝑓𝜌 = ‖𝜙𝜌‖𝐿2
−2𝑉𝜙𝜌

∗ 𝐹𝜌 (1.14) 

In fact, suppose that 𝑓𝜌 ∈ Σ1+𝜖
′ (𝐑𝑑) and let 𝐹𝜌 = 𝑉𝜙𝜌𝑓𝜌. Then (1.13) follows from (1.9). 

On the other hand, suppose that (1.13) holds and let 𝑓𝜌 be given by (1.14). Then 

𝑉𝜙𝜌𝑓𝜌 = 𝑃𝜙𝜌𝐹𝜌 = 𝐹𝜌 

and the asserted equivalence follows. 

We notice that the same holds true with 𝒮1+𝜖 or 𝒮 in place of Σ1+𝜖 at each occurrence. 

1.3. Mixed norm space of Lebesgue types. A weight on 𝐑𝑑 is a function (𝜔𝜌)0 ∈ 𝐿loc 
∞ (𝐑𝑑) such that 1/

(𝜔𝜌)0 ∈ 𝐿loc 
∞ (𝐑𝑑). The weight (𝜔𝜌)0 on 𝐑𝑑 is called moderate, if there is an other weight 𝑣 on 𝐑𝑑 such that 

𝜔𝜌(𝑥 + 𝑦) ≲ 𝜔𝜌(𝑥)𝑣(𝑦), 𝑥, 𝑦 ∈ 𝐑
𝑑 (1.15) 

The set of moderate weights on 𝐑𝑑 is denoted by 𝒫𝐸(𝐑
𝑑), and if 𝜖 ≥ 0, then 𝒫𝐸,1+𝜖(𝐑

𝑑) is the set of all 

moderate weights (𝜔𝜌)0 on 𝐑𝑑 such that (1.15) holds for 𝑣(𝑦) = 𝑒(1+𝜖)|𝑦|
1
1+𝜖

 for some 𝜖 ≥ 0. We also let 

𝒫𝐸,1+𝜖
1+3𝜖 (𝐑2𝑑) be the set of all weights 𝜔𝜌 such that 

𝜔𝜌(𝑥 + 𝑦, 𝜉 + 𝜂) ≲ 𝜔𝜌(𝑥, 𝑦)𝑒
(1+𝜖)(|𝑦|

1
1+𝜖+|𝜂|

1
1+3𝜖)

 

for some 𝜖 ≥ 0. We recall that if 𝜔𝜌 ∈ 𝒫𝐸(𝐑
𝑑), then there is a constant 𝜖 ≥ −1 such that 



On Fourier Step Multipliers and Multiplications Actingon Quasi-Banach Modulation Spaces 

DOI: 10.35629/0743-12015478                             www.questjournals.org                                                59 | Page 

𝜔𝜌(𝑥 + 𝑦) ≲ 𝜔𝜌(𝑥)𝑒
(1+𝜖)|𝑦|, 𝑥, 𝑦 ∈ 𝐑𝑑 

In particular, 𝒫𝐸,1+𝜖(𝐑
𝑑) = 𝒫𝐸(𝐑

𝑑) when 𝜖 ≤ 0 (see [19]). 

For any weight 𝜔𝜌 on 𝐑2𝑑 and for every 0 < 𝜖 ≤ ∞, we set 

‖𝐹𝜌‖𝐿(𝜔𝜌)
1+𝜖,1+2𝜖

(𝐑2𝑑) ≡ ‖𝐺𝐹𝜌,𝜔𝜌,1+𝜖‖𝐿1+2𝜖(𝐑𝑑)
,  where 𝐺𝐹𝜌,𝜔𝜌,1+𝜖(𝜉) = ‖𝐹𝜌(⋅, 𝜉)𝜔𝜌(⋅, 𝜉)‖𝐿1+𝜖(𝐑𝑑) 

and 

‖𝐹𝜌‖𝐿∗,(𝜔𝜌)
1+𝜖,1+2𝜖

(𝐑2𝑑) ≡ ‖(𝐻𝜌)𝐹𝜌,𝜔𝜌,1+2𝜖‖𝐿1+𝜖(𝐑𝑑)
,  where (𝐻𝜌)𝐹𝜌,𝜔𝜌,1+2𝜖(𝑥) = ‖𝐹𝜌(𝑥,⋅)𝜔𝜌(𝑥,⋅)‖𝐿1+2𝜖(𝐑𝑑), when 𝐹𝜌 

is (complex-valued) measurable function on 𝐑2𝑑. Then 𝐿(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑2𝑑) (𝐿∗,(𝜔𝜌)

1+𝜖,1+2𝜖(𝐑2𝑑)) consists of all 

measurable functions 𝐹𝜌 such that ‖𝐹𝜌‖𝐿(𝜔𝜌)
1+𝜖,1+2𝜖 < ∞(‖𝐹𝜌‖𝐿∗,(𝜔𝜌)

1+𝜖,1+2𝜖 < ∞). 

In similar ways, let Ω1, Ω2 be discrete sets and ℓ0
′ (Ω1 × Ω2) consists of all formal (complex-valued) 

sequences 𝑐 = {𝑐(𝑗, 𝑘)}𝑗∈Ω1,𝑘∈Ω2 . Then the discrete Lebesgue spaces 

ℓ(𝜔𝜌)
1+𝜖,1+2𝜖(Ω1 × Ω2) and ℓ∗,(𝜔𝜌)

1+𝜖,1+2𝜖(Ω1 × Ω2) 

of mixed (quasi-)norm types consists of all 𝑐 ∈ ℓ0
′ (Ω1 × Ω2) such that ‖𝑐‖(𝜔𝜌)

1+𝜖,1+2𝜖(Ω1 × Ω2) < ∞ respectively 

‖𝑐‖ℓ∗,(𝜔𝜌)
1+𝜖,1+2𝜖(Ω1×Ω2)

< ∞. Here 

‖𝑐‖(𝜔𝜌)
1+𝜖,1+2𝜖(Ω1 × Ω2) ≡ ‖𝐺𝐹𝜌,𝜔𝜌,1+𝜖‖ℓ1+2𝜖(Ω2)

,  where 𝐺𝑐,𝜔𝜌,1+𝜖(𝑘) = ‖𝐹𝜌(⋅, 𝑘)𝜔𝜌(⋅, 𝑘)‖ℓ1+𝜖(Ω1) 

and ‖𝑐‖𝐿∗,(𝜔𝜌)
1+𝜖,1+2𝜖(Ω1×Ω2)

≡ ‖(𝐻𝜌)𝑐,𝜔𝜌,1+2𝜖‖ℓ1+𝜖(Ω1)
,  where (𝐻𝜌)𝑐,𝜔𝜌,1+2𝜖(𝑗) = ‖𝑐(𝑗,⋅)𝜔𝜌(𝑗,⋅)‖ℓ1+2𝜖(Ω2), when 

𝑐 ∈ ℓ0
′ (Ω1 × Ω2). 

1.4. Modulation spaces and other Wiener type spaces. The (classical) modulation spaces, essentially 

introduced in [8] are given in the following. (See e.g. [10] for definition of more general modulation spaces.) 

Definition 1.5 [38]. Let 0 < 𝜖 ≤ ∞,𝜔𝜌 ∈ 𝒫𝐸(𝐑
2𝑑) and 𝜙𝜌 ∈ Σ1(𝐑

𝑑) ∖ 0. 

(1) The modulation space 𝑀(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) consists of all 𝑓𝜌 ∈ Σ1

′ (𝐑𝑑) such that 

‖𝑓𝜌‖𝑀(𝜔𝜌)
1+𝜖,1+2𝜖 ≡ ‖𝑉𝜙𝜌𝑓𝜌‖𝐿(𝜔𝜌)

1+𝜖,1+2𝜖
 

is finite. The topology of 𝑀(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) is defined by the (quasi-)norm ‖ ⋅ ‖𝑀(𝜔𝜌)

1+𝜖,1+2𝜖; 

(2) The modulation space (of Wiener amalgam type) 𝑊(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) consists of all 𝑓𝜌 ∈ Σ1

′ (𝐑𝑑) such that 

‖𝑓𝜌‖𝑊(𝜔𝜌)
1+𝜖,1+2𝜖 ≡ ‖𝑉𝜙𝜌𝑓𝜌‖𝐿∗,(𝜔𝜌)

1+𝜖,1+2𝜖
 

is finite. The topology of 𝑊(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) is defined by the (quasi-)norm ‖ ⋅ ‖𝑊(𝜔𝜌)

1+𝜖,1+2𝜖. 

Remark 1.6 [38]. Modulation spaces possess several convenient properties. In fact, let 0 < 𝜖 ≤ ∞,𝜔𝜌 ∈

𝒫𝐸(𝐑
2𝑑) and 𝜙𝜌 ∈ Σ1(𝐑

𝑑) ∖ 0. Then the following is true (see [8,10,12,14,17] and their analyses for 

verifications): 

• the definitions of 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) and 𝑊(𝜔𝜌)

1+2𝜖,1+𝜖(𝐑𝑑) are independent of the choices of 𝜙𝜌 ∈ Σ1(𝐑
𝑑) ∖

0, and different choices give rise to equivalent quasi-norms; 

• the spaces 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) and 𝑊(𝜔𝜌)

1+2𝜖,1+𝜖(𝐑𝑑) are quasi-Banach spaces which increase with (1 + 2𝜖) 

and (1 + 𝜖), and decrease with 𝜔𝜌. If in addition 𝜖 ≥ 0, then they are Banach spaces. 

• Σ1(𝐑
𝑑) ⊆ 𝑀(𝜔𝜌)

1+2𝜖,1+𝜖(𝐑𝑑),𝑊(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) ⊆ Σ1

′ (𝐑𝑑); 

• If in addition 𝜖 ≥ 0, then the 𝐿2(𝐑𝑑) scalar product, (⋅,⋅)𝐿2(𝐑𝑑), on Σ1(𝐑
𝑑) × Σ(𝐑𝑑) is uniquely 

extendable to dualities between 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) and 𝑀

(1/𝜔𝜌)

1+2𝜖

2𝜖
,
1+𝜖

𝜖 (𝐑𝑑), and between 𝑊(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) and 

𝑊
(1/𝜔𝜌)

1+2𝜖

2𝜖
,
1+𝜖

𝜖 (𝐑𝑑). 

If in addition 𝜖 < ∞, then the duals of 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) and 𝑊(𝜔𝜌)

1+2𝜖,1+𝜖(𝐑𝑑) can be identified with 𝑀
(1/𝜔𝜌)

1+2𝜖

2𝜖
,
1+𝜖

𝜖 (𝐑𝑑) 

respectively 𝑊
(1/𝜔𝜌)

1+2𝜖

2𝜖
,
1+𝜖

𝜖 (𝐑𝑑), through the form (⋅,⋅)𝐿2(𝐑𝑑); 

• Let (𝜔𝜌)0(𝑥, 𝜉) = 𝜔𝜌(−𝜉, 𝑥). Then ℱ on Σ1
′ (𝐑𝑑) restricts to a homeomorphism from 𝑀(𝜔𝜌)

1+2𝜖,1+𝜖(𝐑𝑑) to 

𝑊
((𝜔𝜌)0)
1+𝜖,1+2𝜖(𝐑𝑑). 
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1.5. Gabor expansions for modulation spaces. A fundamental property for modulation spaces is that they can 

be discretized in convenient ways by Gabor expansions. For fundamental contributions, see e.g. [5,9,11,14, 16, 

17, 20] and the references therein. Here we present a straight way to obtain such expansions in the case when we 

may find compactly supported Gabor atoms. 

Let 𝜖 ≥ 0. Then 𝒟1+𝜖(𝐑𝑑) is the set of all compactly supported elements in 𝒮1+2𝜖
1+𝜖 (𝐑𝑑). That is, 

𝒟1+𝜖(𝐑𝑑) consists of all 𝜙𝜌 ∈ 𝐶0
∞(𝐑𝑑) such that 

‖𝜕𝛼𝜙𝜌‖𝐿∞
≲ (1 + 𝜖)|𝛼|𝛼!1+𝜖 

holds true for some 𝜖 ≥ 0. We recall that if 𝜖 ≤ 0, then 𝒟1+𝜖(𝐑𝑑) is trivial (i. e. 𝒟1+𝜖(𝐑𝑑) = {0}). If instead 

𝜖 > 0, then 𝒟1+𝜖(𝐑𝑑) is dense in 𝐶0
∞(𝐑𝑑). 

From now on we suppose that 𝜖 > 0, giving that 𝒟1+𝜖(𝐑𝑑) is non-trivial. In view of Sections 1.3 and 

1.4 in [22], we may find 𝜙𝜌, 𝜓𝜌 ∈ 𝒟
1+𝜖(𝐑𝑑) with values in [0,1] such that 

supp𝜙𝜌 ⊆ [−
3

4
,
3

4
]
𝑑

, 𝜙𝜌(𝑥) = 1  when 𝑥 ∈ [−
1

4
,
1

4
]
𝑑

 

and 

∑  

𝑗∈𝐙𝑑

 ∑

𝜌

𝜙𝜌(⋅ −𝑗) = 1 (1.18) 

Let 𝑓𝜌 ∈ (𝒮1+2𝜖
1+𝜖 )′(𝐑𝑑). Then 𝑥 ↦ 𝑓𝜌(𝑥)𝜙𝜌(𝑥 − 𝑗) belongs to (𝒮1+2𝜖

1+𝜖 )′(𝐑𝑑) and is supported in 𝑗 + [−
3

4
,
3

4
]
𝑑

. 

Hence, by periodization it follows from Fourier analysis that 

𝑓𝜌(𝑥)𝜙𝜌(𝑥 − 𝑗) = ∑  

𝜄∈𝜋𝐙𝑑

 𝑐(𝑗, 𝜄)𝑒𝑖⟨𝑥,𝜄⟩, 𝑥 ∈ 𝑗 + [−1,1]𝑑 (1.19) 

where 

𝑐(𝑗, 𝜄) = 2−𝑑(𝑓𝜌, 𝜙𝜌(⋅ −𝑗)𝑒
𝑖⟨⋅,𝜄⟩) = (

𝜋

2
)

𝑑

2
𝑉𝜙𝜌𝑓𝜌(𝑗, 𝜄), 𝑗 ∈ 𝐙

𝑑, 𝜄 ∈ 𝜋𝐙𝑑 

Since 𝜓𝜌 = 1 on the support of 𝜙𝜌, (1.19) gives 

𝑓𝜌(𝑥)𝜙𝜌(𝑥 − 𝑗) = (
𝜋

2
)

𝑑

2
∑  

𝜄∈𝜋𝐙𝑑

∑

𝜌

𝑉𝜙𝜌𝑓𝜌(𝑗, 𝜄)𝜓𝜌(𝑥 − 𝑗)𝑒
𝑖⟨𝑥,𝜄⟩, 𝑥 ∈ 𝐑𝑑 ,                                (1.19)′ 

By (1.18) it now follows that 

𝑓𝜌(𝑥) = (
𝜋

2
)

𝑑

2
∑  

(𝑗,𝜄)∈Λ

 ∑

𝜌

𝑉𝜙𝜌𝑓𝜌(𝑗, 𝜄)𝜓𝜌(𝑥 − 𝑗)𝑒
𝑖⟨𝑥,𝜄⟩, 𝑥 ∈ 𝐑𝑑 (1.20) 

where 

Λ = 𝐙𝑑 × (𝜋𝐙𝑑) (1.21) 
which is the Gabor expansion of 𝑓𝜌 with respect to the Gabor pair ( 𝜙𝜌, 𝜓𝜌 ) and lattice Λ, i.e. with respect to the 

Gabor atom 𝜙𝜌 and the dual Gabor atom 𝜓𝜌. Here the series converges in (𝒮1+2𝜖
1+𝜖 )′(𝐑𝑑). By duality and the fact 

that 𝒟1+𝜖(𝐑𝑑) is dense in (𝒮1+2𝜖
1+𝜖 )′(𝐑𝑑) we also have 

𝑓𝜌(𝑥) = (
𝜋

2
)

𝑑

2
∑  

(𝑗,𝜄)∈Λ

∑

𝜌

 𝑉𝜓𝜌𝑓𝜌(𝑗, 𝜄)𝜙𝜌(𝑥 − 𝑗)𝑒
𝑖⟨𝑥,𝜄⟩, 𝑥 ∈ 𝐑𝑑 (1.22) 

with convergence in (𝒮1+2𝜖
1+𝜖 )′(𝐑𝑑). 

Let 𝑇 be a linear continuous operator from 𝒮1+2𝜖
1+𝜖 (𝐑𝑑) to (𝒮1+2𝜖

1+𝜖 )′(𝐑𝑑) and let 𝑓𝜌 ∈ 𝒮1+2𝜖
1+𝜖 (𝐑𝑑). Then it 

follows from (1.20) that 

(𝑇𝑓𝜌)(𝑥) = (
𝜋

2
)

𝑑

2
∑  

(𝑗,𝜄)∈Λ

∑

𝜌

𝑉𝜙𝜌𝑓𝜌(𝑗, 𝜄)𝑇(𝜓𝜌(⋅ −𝑗)𝑒
𝑖⟨⋅,𝜄⟩)(𝑥) 

and 

𝑇(𝜓𝜌(⋅ −𝑗)𝑒
𝑖⟨⋅,𝜄⟩)(𝑥) = (

𝜋

2
)

𝑑

2
∑  

(𝑘,𝜅)∈Λ

∑

𝜌

(𝑉𝜙𝜌 (𝑇(𝜓𝜌(⋅ −𝑗)𝑒
𝑖⟨⋅,𝜄⟩))) (𝑘, 𝜅)𝜓𝜌(𝑥 − 𝑘)𝑒

𝑖⟨𝑥,𝜅⟩. 

A combination of these expansions show that 

(𝑇𝑓𝜌)(𝑥) = (
𝜋

2
)

𝑑

2
∑  

(𝑗,𝜄)∈Λ

 (𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌) (𝑗, 𝜄)𝜓𝜌(𝑥 − 𝑗)𝑒
𝑖⟨𝑥,𝜄⟩ (1.23) 

where 𝐴 = (𝑎(𝒋, 𝐾))𝒋,𝒌∈Λ is the Λ × Λ-matrix, given by 
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𝑎(𝒋, 𝒌) = (
𝜋

2
)

𝑑

2
(𝑇(𝜓𝜌(⋅ −𝑗)𝑒

𝑖⟨⋅,𝜄⟩), 𝜙𝜌(⋅ −𝑘)𝑒
𝑖⟨⋅,𝜅⟩)

𝐿2(𝐑𝑑)

 when 𝒋 = (𝑗, 𝜄) and 𝒌 = (𝑘, 𝜅).

(1.24) 

By the Gabor analysis for modulation spaces we get the following. See[9,11,14,16,17,32] for details. 

Proposition 1.7 [38]. Let 𝜖 > 0,0 < 𝜖 ≤ ∞,𝜔𝜌 ∈ 𝒫𝐸,1+𝜖
1+𝜖 (𝐑2𝑑), 𝜙𝜌, 𝜓𝜌 ∈ 𝒟

1+𝜖(𝐑𝑑; [0,1]) be such that (1.16), 

(1.17) and (1.18) hold true, and let 𝑓𝜌 ∈ (𝒟
1+𝜖)′(𝐑𝑑). Then the following is true: 

(1) 𝑓𝜌 ∈ 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑), if and only if ‖𝑉𝜙𝜌𝑓𝜌‖ℓ(𝜔𝜌)

1+2𝜖,1+𝜖
(𝐙𝑑×𝜋𝐙𝑑)

; 

(2) 𝑓𝜌 ∈ 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑), if and only if ‖𝑉𝜓𝜌𝑓𝜌‖(𝜔𝜌)

1+2𝜖,1+𝜖
(𝐙𝑑 × 𝜋𝐙𝑑); 

(3) the quasi-norms 

𝑓𝜌 ↦ ‖𝑉𝜙𝜌𝑓𝜌‖ℓ(𝜔𝜌)
1+2𝜖,1+𝜖

(𝐙𝑑×𝜋𝐙𝑑)
 and 𝑓𝜌 ↦ ‖𝑉𝜓𝜌𝑓𝜌‖ℓ(𝜔𝜌)

1+2𝜖,1+𝜖
(𝐙𝑑×𝜋𝐙𝑑)

 

are equivalent to ‖ ⋅ ‖𝑀(𝜔𝜌)
1+2𝜖,1+𝜖. 

The same holds true with 𝑊(𝜔𝜌)
1+2𝜖,1+𝜖

 and ℓ∗,(𝜔𝜌)
1+2𝜖,1+𝜖

 in place of 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖

 respectively ℓ(𝜔𝜌)
1+2𝜖,1+𝜖

 at each 

occurrence. 

Remark 1.8 [38]. There are weights 𝜔𝜌 ∈ 𝒫𝐸(𝐑
2𝑑) such that corresponding modulation spaces 𝑀(𝜔𝜌)

1+2𝜖,1+𝜖(𝐑𝑑) 

and 𝑊(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) do not contain 𝒟1+𝜖(𝐑𝑑) for any choice of 𝜖 > 0. In this situation, it is not possible to find 

compactly supported elements in Gabor pairs which can be used for expanding all elements in 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) 

and 𝑊(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑). 

For a general weight 𝜔𝜌 ∈ 𝒫𝐸(𝐑
2𝑑) which is moderated by the submultiplicative weight 𝑣 ∈ 𝒫𝐸(𝐑

2𝑑), 

we may always find a lattice Λ ∈ 𝐑𝑑 and a Gabor pair (𝜙𝜌, 𝜓𝜌) such that 

𝜙𝜌, 𝜓𝜌 ∈⋂  

𝜖≥0

𝑀(𝑣)
1+2𝜖(𝐑𝑑) 

and 

𝑓𝜌(𝑥) = 𝐶 ∑  

𝑗,𝜄∈Λ

 𝑉𝜙𝜌𝑓𝜌(𝑗, 𝜄)𝜓𝜌(𝑥 − 𝑗)𝑒
𝑖⟨𝑥,𝜄⟩ 

= 𝐶 ∑  

𝑗,𝜄∈Λ

 𝑉𝜓𝜌𝑓𝜌(𝑗, 𝜄)𝜙𝜌(𝑥 − 𝑗)𝑒
𝑖⟨𝑥,𝜄⟩, 𝑓𝜌 ∈ 𝑀(𝜔𝜌)

∞ (𝐑𝑑),        (1.25) 

for some constant 𝐶, where the series convergence with respect to the weak* topology in 𝑀(𝜔𝜌)
∞ (𝐑𝑑). (See [16, 

Theorem S] and some further comments in [32]. See also [11-13] for more facts.) In such approach we still have 

that if 0 < 𝜖 ≤ ∞, then 

 

𝑓𝜌 ∈ 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) ⇔ {𝑉𝜙𝜌𝑓𝜌(𝑗, 𝜄)}𝑗,𝜄∈Λ

∈ ℓ(𝜔𝜌)
1+2𝜖,1+𝜖(Λ × Λ) 

⇔ {𝑉𝜓𝜌𝑓𝜌(𝑗, 𝜄)}𝑗,𝜄∈Λ
∈ ℓ

(𝜔𝜌)
1+2𝜖,1+𝜖(Λ × Λ)                            (1.26) 

𝑓𝜌 ∈ 𝑊(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) ⇔ {𝑉𝜙𝜌𝑓𝜌(𝑗, 𝜄)}𝑗,𝜄∈Λ

∈ ℓ∗,(𝜔𝜌)
1+2𝜖,1+𝜖(Λ × Λ) 

⇔ {𝑉𝜓𝜌𝑓𝜌(𝑗, 𝜄)}𝑗,𝜄∈Λ
∈ ℓ∗,(𝜔𝜌)

1+2𝜖,1+𝜖(Λ × Λ)                           (1.27) 

‖𝑓𝜌‖𝑀(𝜔𝜌)
1+2𝜖,1+𝜖 ≍ ‖𝑉𝜙𝜌𝑓𝜌‖(𝜔𝜌)

1+2𝜖,1+𝜖

(Λ × Λ)‖𝑉𝜓𝜌𝑓𝜌‖(𝜔𝜌)

1+2𝜖,1+𝜖

(Λ × Λ)                              (1.28) 

and 

‖𝑓𝜌‖𝑊(𝜔𝜌)
1+2𝜖.1+𝜖 ≍ ‖𝑉𝜙𝜌𝑓𝜌‖ℓ∗,(𝜔𝜌)

1+2𝜖.1+𝜖(Λ×Λ)
≍ ‖𝑉𝜓𝜌𝑓𝜌‖ℓ∗,(𝜔𝜌)

1+2𝜖.1+𝜖(Λ×Λ)
(1.29) 

Furthermore, if 𝑓𝜌 ∈ 𝑀(𝜔𝜌)
1+2𝜖.1+𝜖(𝐑𝑑) (𝑓𝜌 ∈ 𝑊(𝜔𝜌)

1+2𝜖.1+𝜖(𝐑𝑑)) and in addition 𝜖 < ∞, then the series in (1.25) 

converges with respect to the 𝑀(𝜔𝜌)
1+2𝜖.1+𝜖 quasi-norm (𝑊(𝜔𝜌)

1+2𝜖.1+𝜖 quasi-norm). 

Remark 1.9 [38]. Let (𝜔𝜌)0 ∈ 𝒫𝐸(𝐑
𝑑), 𝜔𝜌 ∈ 𝒫𝐸(𝐑

2𝑑), 0 ≤ 𝜖 ≤ ∞,𝑄𝑑 = [0,1]
𝑑 be the unit cube, and set for 

measurable 𝑓𝜌 on 𝐑𝑑, 

‖𝑓𝜌‖W1+3𝜖(𝜔𝜌,ℓ
1+𝜖) ≡ ‖𝑎0‖ℓ1+𝜖(𝐙𝑑) (1.30) 

when 
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𝑎0(𝑗) ≡ ‖𝑓𝜌 ⋅ (𝜔𝜌)0‖𝐿1+3𝜖(𝑗+𝑄𝑑)
, 𝑗 ∈ 𝐙𝑑 

and measurable 𝐹𝜌 on 𝐑2𝑑, 

‖𝐹𝜌‖W1+3𝜖(𝜔𝜌,ℓ
1+𝜖,1+2𝜖) ≡ ‖𝑎‖ℓ1+𝜖,1+2𝜖(𝐙2𝑑) and  ‖𝐹𝜌‖W(𝜔𝜌,ℓ∗

1+𝜖,1+2𝜖) ≡ ‖𝑎‖ℓ∗
1+𝜖,1+2𝜖(𝐙2𝑑) (1.31) 

w-hen 

𝑎(𝑗, 𝜄) ≡ ‖𝐹𝜌 ⋅ 𝜔𝜌‖𝐿1+3𝜖((𝑗,𝜄)+𝑄2𝑑), 𝑗, 𝜄 ∈ 𝐙
𝑑 

The Wiener space 

W1+3𝜖((𝜔𝜌)0, ℓ
1+𝜖) = W1+3𝜖 ((𝜔𝜌)0, ℓ

1+𝜖(𝐙2)) 

consists of all measurable 𝑓𝜌 ∈ 𝐿loc 
1+3𝜖(𝐑𝑑) such that ‖𝐹𝜌‖W1+3𝜖((𝜔𝜌)0,ℓ

1+𝜖) is finite, and the Wiener spaces 

W1+3𝜖(𝜔𝜌, ℓ
1+𝜖,1+2𝜖) = W1+3𝜖 (𝜔𝜌, ℓ

1+𝜖,1+2𝜖(𝐙2𝑑))  and W1+3𝜖(𝜔𝜌, ℓ∗
1+𝜖,1+2𝜖) = W1+3𝜖 (𝜔𝜌, ℓ∗

1+𝜖,1+2𝜖(𝐙2𝑑)) 

consist of all measurable 𝐹𝜌 ∈ 𝐿loc 
1+3𝜖(𝐑2𝑑) such that ‖𝐹𝜌‖W1+3𝜖(𝜔𝜌,ℓ

1+𝜖,1+2𝜖) respectively ‖𝐹𝜌‖W1+3𝜖(𝜔𝜌,ℓ∗
1+𝜖,1+2𝜖) 

are finite. The topologies are defined through their respectively quasi-norms in (1.30) and (1.31). For 

conveniency we set 

W(𝜔𝜌, ℓ
1+𝜖,1+2𝜖) = W∞(𝜔𝜌, ℓ

1+𝜖,1+2𝜖) and  W(𝜔𝜌, ℓ∗
1+𝜖,1+2𝜖) = W∞(𝜔𝜌, ℓ∗

1+𝜖,1+2𝜖) 

Obviously, W1+3𝜖((𝜔𝜌)0, ℓ
1+𝜖) and W1+3𝜖(𝜔𝜌, ℓ

1+𝜖,1+2𝜖) increase with 1 + 𝜖, 1 + 2𝜖, decrease with (1 + 3𝜖), 

and 

W(𝜔𝜌, ℓ
1+𝜖,1+2𝜖) ↪ 𝐿(𝜔𝜌)

1+𝜖,1+2𝜖(𝐑2𝑑) ∩ Σ1
′ (𝐑2𝑑) ↪ 𝐿(𝜔𝜌)

1+𝜖,1+2𝜖(𝐑2𝑑) ↪ W1+3𝜖(𝜔𝜌, ℓ
1+𝜖,1+2𝜖) (1.32) 

and 
‖ ⋅ ‖W1+3𝜖(𝜔𝜌,ℓ

1+𝜖,1+2𝜖) ≤ ‖ ⋅ ‖𝐿(𝜔𝜌)
1+𝜖,1+2𝜖 ≤ ‖ ⋅ ‖W(𝜔𝜌,ℓ1+𝜖,1+2𝜖), 1 + 3𝜖 ≤ min(1,1 + 𝜖, 1 + 2𝜖). (1.33) 

On the other hand, for modulation spaces we have 

𝑓𝜌 ∈ 𝑀(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑)  ⇔ 𝑉𝜙𝜌𝑓𝜌 ∈ 𝐿(𝜔𝜌)

1+𝜖,1+2𝜖(𝐑2𝑑)  ⇔  𝑉𝜙𝜌𝑓𝜌 ∈ W
1+3𝜖(𝜔𝜌, ℓ

1+𝜖,1+2𝜖) (1.34) 

with 

‖𝑓𝜌‖𝑀(𝜔𝜌)
1+𝜖,1+2𝜖 = ‖𝑉𝜙𝜌𝑓𝜌‖𝐿(𝜔𝜌)

1+𝜖,1+2𝜖
≍ ‖𝑉𝜙𝜌𝑓𝜌‖W1+3𝜖(𝜔𝜌,ℓ

1+𝜖,1+2𝜖)
(1.35) 

The same holds true with 𝑊(𝜔𝜌)
1+𝜖,1+2𝜖 , 𝐿∗,(𝜔𝜌)

1+𝜖,1+2𝜖
 and W(𝜔𝜌, ℓ∗

1+𝜖,1+2𝜖) in place of 𝑀(𝜔𝜌)
1+𝜖,1+2𝜖, 𝐿(𝜔𝜌)

1+𝜖,1+2𝜖
 and 

W(𝜔𝜌, ℓ
1+𝜖,1+2𝜖), respectively, at each occurrence. (For 𝜖 = ∞, see [17] when 0 ≤ 𝜖 ≤ ∞, [14,32] when 0 <

𝜖 ≤ ∞, and for 0 ≤ 𝜖 ≤ ∞, see [35].) 

-- Next we discuss extended Hölder and Young relations for multiplications and convolutions on discrete 

Lebesgue spaces. Here the involved weights should satisfy 

(𝜔𝜌)0
(𝑥) ≤∑

𝜌

∏ 

𝑁

𝑗=1

  (𝜔𝜌)𝑗
(𝑥) (1.36) 

or 

(𝜔𝜌)0
(𝑥1 +⋯+ 𝑥𝑁) ≤ ∑

𝜌

∏ 

𝑁

𝑗=1

  (𝜔𝜌)𝑗
(𝑥𝑗), (1.37) 

and it is convenient to make use of the functional 

𝑅𝑁(𝑝1, … , 𝑝𝑁) = (∑  

𝑁

𝑗=1

 max(1,
1

𝑝𝑗
)) − min

1≤𝑗≤𝑁
 (max (1,

1

𝑝𝑗
)) (1.38) 

The Hölder and Young conditions on Lebesgue exponent are then 

1

1 + 2𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑞𝑗
(1.39) 

respectively 

1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑝𝑗
− 𝑅𝑁(𝑝1, … , 𝑝𝑁) (1.40) 

Proposition 1.10 [38]. Let 0 ≤ 𝜖 ≤ ∞ be such that (1.38), (1.39) and (1.40) hold, (𝜔𝜌)𝑗
∈ 𝒫𝐸(𝐑

𝑑), and let Λ ⊆

𝐑𝑑 be a lattice containing origin. Then the following is true: 

(1) if (1.36) holds true, then the map (𝑎1, … , 𝑎𝑁) ↦ 𝑎1⋯𝑎𝑁 from ℓ0(Λ) × ⋯× ℓ0(Λ) to ℓ0(Λ) extends 

uniquely to a continuous map from ℓ
((𝜔𝜌)1

)

𝑞1 (Λ) × ⋯× ℓ
((𝜔𝜌)𝑁

)

𝑞𝑁 (Λ) to ℓ
((𝜔𝜌)0

)

𝑞0 (Λ), and 
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‖𝑎1⋯𝑎𝑁‖ℓ
((𝜔𝜌)0

)

1+2𝜖 ≤∑

𝜌

∏  

𝑗=1𝑁

  ‖𝑎𝑗‖ℓ
((𝜔𝜌)𝑗

)

𝑞𝑗 , 𝑎𝑗 ∈ ℓ
((𝜔𝜌)𝑗

)

𝑞𝑗
(Λ), 𝑗 = 1,… , 𝑁 (1.41)

 

(2) if (1.37) holds true, then the map (𝑎1, … , 𝑎𝑁) ↦ 𝑎1 ∗ ⋯∗ 𝑎𝑁 from ℓ0(Λ) × ⋯× ℓ0(Λ) to ℓ0(Λ) extends 

uniquely to a continuous map from ℓ
((𝜔𝜌)1

)

𝑝1 (Λ) × ⋯× ℓ
((𝜔𝜌)𝑁

)

𝑝𝑁 (Λ) to ℓ
((𝜔𝜌)0

)

𝑝0 (Λ), and 

‖𝑎1 ∗ ⋯∗ 𝑎𝑁‖ℓ
((𝜔𝜌)0

)

1+𝜖 ≤∑

𝜌

∏  

𝑗=1𝑁

  ‖𝑎𝑗‖ℓ
((𝜔𝜌)𝑗

)

𝑝𝑗 , 𝑎𝑗 ∈ ℓ
((𝜔𝜌)𝑗

)

𝑝𝑗
(Λ), 𝑗 = 1,… , 𝑁 (1.42)

 

The assertion (1) in Proposition 1.10 is the standard Hölder's inequality for discrete Lebesgue spaces. The 

assertion (2) in that proposition is the usual Young's inequality for Lebesgue spaces on lattices in the case when 

𝑝1, … , 𝑝𝑁 ∈ [1,∞]. In order to be self-contained we give a proof when 𝑝1 , … , 𝑝𝑁 are allowed to belong to the full 

interval (0,∞] in Appendix A. 

1.7. Step and Fourier step multipliers. Let 𝑏 ∈ 𝐑+
𝑑  be fixed, Λ𝑏  be the lattice given by 

Λ𝑏 = {(𝑏1𝑛1, … , 𝑏𝑑𝑛𝑑) ∈ 𝐑
𝑑; (𝑛1, … , 𝑛𝑑) ∈ 𝐙

𝑑} (1.43) 
𝑄𝑏  be the 𝑏-cube, given by 

𝑄𝑏 = {(𝑏1𝑥1, … , 𝑏𝑑𝑥𝑑) ∈ 𝐑
𝑑; (𝑥1, … , 𝑥𝑑) ∈ [0,1]

𝑑} (1.44) 
and 𝑎0 ∈ ℓ

∞(Λ𝑏). Then we let the Fourier step multiplier 𝑀ℱ,𝑏,𝑎0  (with respect to 𝑏 and 𝑎0 ) be defined by 

𝑀ℱ,𝑏,𝑎0 ≡ ℱ
−1 ∘ 𝑀𝑏,𝑎0 ∘ ℱ, (1.45) 

where 𝑀𝑏,𝑎0  is the multiplier 

𝑀𝑏,𝑎0: 𝑓𝜌 ↦ ∑  

𝑗∈Λ𝑏

 𝑎0(𝑗)𝜒𝑗+𝑄𝑏𝑓𝜌 (1.46) 

Here 𝜒Ω is the characteristic function of Ω. 

 

 

II. Step and Fourier step multipliers on modulation spaces 

We deduce continuity properties for step and Fourier step multipliers on modulation spaces. In contrast 

to [3], the results presented here permit Lebesgue exponents to be smaller than one 

We begin with step multipliers when acting on modulation spaces. Here involved Lebesgue exponents 

should fullfil 
1

1 + 2𝜖
−

1

1 + 3𝜖
≥ max (

1

1 + 𝜖
− 1,0) (2.1) 

Theorem 2.1 (see [38]). Let 0 ≤ 𝜖 ≤ ∞, 0 < 𝜖 ≤ ∞, 1 + 𝜖, 1 + 2𝜖 ∈ (min(1,1 + 𝜖),∞) be such that (2.1) 

holds, 𝑏 > 0, (𝜔𝜌)0
∈ 𝒫𝐸(𝐑

𝑑) and 𝜔𝜌(𝑥, 𝜉) = (𝜔𝜌)0
(𝑥), 𝑥, 𝜉 ∈ 𝐑𝑑. Let 𝑎0 ∈ ℓ

∞(Λ𝑏). Then the following is 

true: 

(1) 𝑀𝑏,𝑎0  is continuous on 𝑊(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑); 

(2) 𝑀𝑏,𝑎0  is continuous from 𝑀(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑) to 𝑀(𝜔𝜌)

1+𝜖,1+𝜖(𝐑𝑑). 

We observe that the conditions on (1 + 𝜖) in Theorem 2.1 implies that 𝜖 > 0, since otherwise (2.1) should lead 

to 1 + 𝜖 ≤ min(1 + 𝜖, 1), which contradicts the assumptions on (1 + 𝜖). 
We need the following lemma for the proof of Theorem 2.1. 

Lemma 2.2 [38]. Let 0 < 𝜖 < ∞ and 𝜃 ∈ (0,1) be such that 

𝜃 +
1

1 + 𝜖
= 1 +

1

1 + 2𝜖
(2.2) 

and suppose that 𝑎 = {𝑎(𝑗)}𝑗∈𝐙𝑑 ⊆ 𝐂 satisfies 

|𝑎(𝑗)| ≲ (⟨𝑗1⟩⋯ ⟨𝑗𝑑⟩)
−𝜃 

Then the map 𝑏 ↦ 𝑎 ∗ 𝑏 from ℓ0(𝐙
𝑑) to ℓ0

′ (𝐙𝑑) is uniquely extendable to a continuous mapping from ℓ1+𝜖(𝐙𝑑) 
to ℓ1+2𝜖(𝐙𝑑). 

We observe that the conditions in Lemma 2.2 implies that 1 + 𝜖 < 1 + 2𝜖. 

Lemma 2.2 is a straight-forward consequence of [22, Theorem 4.5.3]. In fact, by that theorem we have 

for 

ℎ(𝑥) = (|𝑥1|⋯ |𝑥𝑑|)
−1 and ℎ0(𝑥) = (⟨𝑥1⟩⋯ ⟨𝑥𝑑⟩)

−1 (2.3) 
that 

‖∑

𝜌

𝑓𝜌 ∗ ℎ
𝜃‖

𝐿1+2𝜖(𝐑𝑑)

≲∑

𝜌

‖𝑓𝜌‖𝐿1+𝜖(𝐑𝑑) 

when (2.2) holds. Since 0 < ℎ0(𝑥) < ℎ(𝑥), we obtain 
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‖∑

𝜌

𝑓𝜌 ∗ ℎ0
𝜃‖

𝐿1+2𝜖(𝐑𝑑)

≤∑

𝜌

‖|𝑓𝜌| ∗ ℎ
𝜃‖
𝐿1+2𝜖(𝐑𝑑)

≲∑

𝜌

‖𝑓𝜌‖𝐿1+𝜖(𝐑𝑑) (2.4) 

which gives suitable boundedness properties for 𝑓𝜌 ↦ 𝑓𝜌 ∗ ℎ0
𝜃 . 

We also have 

‖(𝑔𝜌)𝑎‖𝐿1+𝜖(𝐑𝑑)
= ‖𝑎‖ℓ1+𝜖(𝐙𝑑), (𝑔𝜌)𝑎(𝑥) = ∑  

𝑗∈𝐙𝑑

𝑎(𝑗)𝜒𝑗+[0,1]𝑑(𝑥) 

By a straight-forward combination of this estimate with (2.4) we obtain 

‖𝑏 ∗ ℎ0
𝜃‖
ℓ1+2𝜖(𝐙𝑑)

≲ ‖𝑏‖ℓ1+𝜖(𝐙𝑑) 

where now * denotes the discrete convolution. The continuity assertions in Lemma 2.2 now follows from 

‖𝑏 ∗ 𝑎‖ℓ1+2𝜖(𝐙𝑑) ≲ ‖|𝑏| ∗ ℎ0
𝜃‖
ℓ1+2𝜖(𝐙𝑑)

≲ ‖𝑏‖ℓ1+𝜖(𝐙𝑑) 

and the uniqueness assertions follows from the fact that ℓ0(𝐙
𝑑) is dense in ℓ1+𝜖(𝐙𝑑) when 𝜖 < ∞. 

Proof of Theorem 2.1. By straight-forward computations it follows that if (𝜔𝜌)𝑏(𝑥, 𝜉) = 𝜔𝜌(𝑏𝑥, 𝑏
−1𝜉), then 

𝑓𝜌 ∈ 𝑊(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑), if and only if 𝑓𝜌(𝑏 ⋅) ∈ 𝑊((𝜔𝜌)𝑏)

1+𝜖,1+2𝜖(𝐑𝑑), and 

‖𝑓𝜌‖𝑊(𝜔𝜌)
1+𝜖,1+2𝜖 ≍ ‖𝑓𝜌(𝑏 ⋅)‖𝑊

((𝜔𝜌)𝑏)
1+𝜖,1+2𝜖 

and similarly with 𝑀1+𝜖,1+2𝜖 in place of 𝑊1+𝜖,1+2𝜖 at each occurrence. This reduce ourself to the case when 𝑏 =
1. 

Let 𝜙𝜌, 𝜓𝜌 and Λ be the same as in (1.16)-(1.18) and (1.21). By (1.24) we have 

𝑀𝑏,𝑎0𝑓𝜌(𝑥) = (
𝜋

2
)

𝑑

2
∑  

(𝑗,𝜄)∈Λ

 ∑

𝜌

(𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌)) (𝑗, 𝜄)𝑒
𝑖⟨𝑥,𝜄⟩𝜓𝜌(𝑥 − 𝑗), (2.5) 

where 𝐴 = (𝑎(𝒋, 𝐾))𝒋,𝒌∈Λ is the matrix with elements 

𝑎(𝒋, 𝒌) = (
𝜋

2
)

𝑑

2
(𝑀𝑏,𝑎0𝑒

𝑖⟨⋅,𝜄⟩𝜓𝜌(⋅ −𝑗), 𝑒
𝑖⟨⋅,𝜅⟩𝜙𝜌(⋅ −𝑘)),

 when 𝒋 = (𝑗, 𝜄) ∈ Λ, 𝒌 = (𝑘, 𝜅) ∈ Λ.

 

Let 𝑄 = [0,1]𝑑 and 

Ω𝑚 = {𝑗 ∈ 𝐙
𝑑; |𝑗𝑛| ≤ 𝑚 for every 𝑛 ∈ {1, … , 𝑑}},𝑚 ∈ 𝐙+ 

By the support properties of 𝜙𝜌 and 𝜓𝜌 we have 

𝑎(𝒋, 𝒌) = 0  when 𝑗 − 𝑘 ∉ Ω2, 
and for 𝑗 − 𝑘 ∈ Ω2 we get 

|𝑎(𝒋, 𝒌)| ≍ |∫  
𝐑𝑑
 ∑

𝜌

𝑀𝑏,𝑎0(𝑒
−𝑖⟨⋅,𝜅−𝜄⟩𝜓𝜌(⋅ −𝑗))(𝑦)𝜙𝜌(𝑦 − 𝑘)𝑑𝑦|

 = |∫  
𝐑𝑑
 ∑

𝜌

(∑  

𝑙∈𝐙𝑑

 𝑎0(𝑙)𝜒𝑄(𝑦 − 𝑙)𝑒
−𝑖⟨𝑦,𝜅−𝜄⟩𝜓𝜌(𝑦 − 𝑗)𝜙𝜌(𝑦 − 𝑘)𝑑𝑦)|

 = |∫  
𝐑𝑑
 ∑

𝜌

(∑ 𝑎0(𝑙)𝜒𝑄(𝑦 − (𝑙 − 𝑘))𝑒
−𝑖⟨𝑦,𝜅−𝜄⟩𝜓𝜌(𝑦 − (𝑗 − 𝑘))𝜙𝜌(𝑦)𝑑𝑦)|

 ≤∑

𝜌

∑ |𝑎0(𝑙)| ⋅ |∫  
𝐑𝑑
  (𝜒𝑄(𝑦 − (𝑙 − 𝑘))𝑒

−𝑖⟨𝑦,𝜅−𝜄⟩𝜓𝜌(𝑦 − (𝑗 − 𝑘))𝜙𝜌(𝑦)𝑑𝑦)|

 

≤∑

𝜌

‖𝑎0‖ℓ∞(𝐙𝑑)∑ |(𝜒𝑄(⋅ −(𝑙 − 𝑘)), 𝑒
−𝑖⟨⋅,𝜅−𝜄⟩𝜓𝜌(⋅ −(𝑗 − 𝑘))𝜙𝜌)𝐿2(𝐑𝑑)

|           (2.6) 

where the last three sums are taken over all 𝑙 ∈ 𝐙𝑑 such that 𝑙 − (𝑗 − 𝑘) ∈ Ω3. 

We have to estimate 

|(𝜒𝑄(⋅ −(𝑙 − 𝑘)), 𝑒
−𝑖⟨⋅,𝜅−𝜄⟩𝜓𝜌(⋅ −(𝑗 − 𝑘))𝜙𝜌)𝐿2(𝐑𝑑)

| 

when 𝑗 − 𝑘 ∈ Ω2 and 𝑙 − (𝑗 − 𝑘) ∈ Ω3. By Parseval's formula we get 
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∑

𝜌

∣ (𝜒𝑄(⋅ −(𝑙 − 𝑘)), 𝑒
−𝑖⟨⋅,𝜅−𝜄⟩𝜓𝜌(⋅ −(𝑗 − 𝑘))𝜙𝜌)𝐿2(𝐑𝑑) ∣

=∑

𝜌

|(𝑒−𝑖⟨𝑙−𝑘,⋅⟩𝑔𝜌, 𝑉𝜓𝜌𝜙𝜌(𝑗 − 𝑘,⋅ −(𝜄 − 𝜅)))
𝐿2(𝐑𝑑)

|

 

where 

𝑔𝜌(𝜉) = (2𝜋)
−
𝑑

2𝑒−
𝑖

2
(𝜉1+⋯+𝜉𝑑)sinc(𝜉1/2)⋯ sinc(𝜉𝑑/2) 

Here 

sinc𝑡 = {

sin 𝑡

𝑡
, 𝑡 ≠ 0

1, 𝑡 = 0
 

is the sinc function. 

Since 

sinc𝑡 ≲ ⟨𝑡⟩−1 and |𝑉𝜓𝜌𝜙𝜌(𝑗 − 𝑘, 𝜉 − (𝜄 − 𝜅))| ≲ 𝑒
−(1+𝜖)|𝜉−(𝜄−𝜅)|

1
1+𝜖

 

we obtain 

∣ (𝜒𝑄(⋅ −(𝑙 − 𝑘)), 𝑒
−𝑖⟨⋅,𝜅−𝜄⟩𝜓𝜌(⋅ −(𝑗 − 𝑘))𝜙𝜌)𝐿2(𝐑𝑑)∣

≤ ∫  
𝐑𝑑
∑

𝜌

  |𝑔𝜌(𝜉)| ⋅ |𝑉𝜓𝜌𝜙𝜌(𝑗 − 𝑘, 𝜉 − (𝜄 − 𝜅))| 𝑑𝜉

≲ ∫  
𝐑𝑑
 ℎ0(𝜉)𝑒

−(1+𝜖)|𝜉−(𝜄−𝜅)|
1
1+𝜖𝑑𝜉

= ∫  
𝐑𝑑
 ℎ0(𝜉 + 𝜄 − 𝜅)𝑒

−(1+𝜖)|𝜉|
1
1+𝜖𝑑𝜉

≤ ℎ0(𝜄 − 𝜅)∫  
𝐑𝑑
  ⟨𝜉1⟩⋯ ⟨𝜉𝑑⟩𝑒

−(1+𝜖)|𝜉|
1
1+𝜖𝑑𝜉 ≍ ℎ0(𝜄 − 𝜅)

 

Here ℎ0 is given by (2.3), and we have used 

ℎ0(𝜉 + 𝜂) = (⟨𝜉1 + 𝜂1⟩⋯ ⟨𝜉𝑑 + 𝜂𝑑⟩)
−1 ≤ (⟨𝜂1⟩⋯ ⟨𝜂𝑑⟩)

−1⟨𝜉1⟩⋯ ⟨𝜉𝑑⟩. 
By inserting this into (2.6) we get 

|𝑎(𝒋, 𝒌)| ≲ ∑  

𝑙∈(𝑗−𝑘)+Ω3

ℎ0(𝜄 − 𝜅)(⟨𝜄1 − 𝜅1⟩⋯ ⟨𝜄𝑑 − 𝜅𝑑⟩)
−1 = 7𝑑ℎ0(𝜄 − 𝜅) 

Hence, 

|𝑎(𝒋, 𝒌)| ≲ {
ℎ0(𝜄 − 𝜅), 𝑗 − 𝑘 ∈ Ω2
0, 𝑗 − 𝑘 ∉ Ω2

(2.7) 

If 𝑐(𝑗, 𝜄) = |𝑉𝜙𝜌𝑓𝜌(𝑗, 𝜄)|, then (2.7) gives 

|(𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌) (𝑗, 𝜄)| ≲ ∑  

𝑘∈𝑗+Ω2

 ( ∑  

𝜅∈𝜋𝐙𝑑

 ℎ0(𝜄 − 𝜅)𝑐(𝑘, 𝜅)) 

= ∑  

𝑘∈𝑗+Ω2

  (ℎ0 ∗ 𝑐(𝑘,⋅))(𝜄) = ∑  

𝑘∈Ω2

  (ℎ0 ∗ 𝑐(𝑗 + 𝑘,⋅))(𝜄)(2.8) 

and Lemma 2.2 gives 

‖(𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌) (𝑗,⋅)‖ℓ1+2𝜖(𝜋𝐙𝑑)
≲ ∑  

𝑘∈Ω2

 ‖ℎ0 ∗ 𝑐(𝑗 + 𝑘,⋅)‖ℓ1+2𝜖(𝜋𝐙𝑑)  

                              ≲ ∑  

𝑘∈Ω2

 ‖𝑐(𝑗 + 𝑘,⋅)‖ℓ1+2𝜖(𝜋𝐙𝑑) 

By applying the ℓ((𝜔𝜌)0)
1+𝜖  norm on the last inequality and raise it to the power 1 + 𝜖 = min(1,1 + 𝜖), we obtain 

‖∑

𝜌

(𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌)‖

ℓ∗,(𝜔𝜌)
1+𝜖,1+2𝜖

(Λ)

1+𝜖

≲ ∑  

𝑘∈Ω2

 ∑

𝜌

‖𝑐(⋅ +(𝑘, 0))‖
ℓ∗,(𝜔𝜌)
1+𝜖,1+2𝜖

(Λ)
1+𝜖

 

= ∑  

𝑘∈Ω2

 ∑

𝜌

‖𝑐‖
ℓ
∗,(𝜔𝜌(⋅−(𝑘,0)))

1+𝜖,1+2𝜖 (Λ)
1+𝜖 ≍ ∑  

𝑘∈Ω2

 ∑

𝜌

‖𝑐‖
ℓ
∗,(𝜔𝜌)
1+𝜖,1+2𝜖(Λ)
1+𝜖 = 5𝑑∑

𝜌

‖𝑐‖
ℓ
∗,(𝜔𝜌)
1+𝜖,1+2𝜖(Λ)
1+𝜖 . (2.9) 

Here we have used the fact that the number of elements in Ω2 is equal to 5𝑑. 

The asserted continuity in (1) now follows in the case when 𝜖 < ∞ by combining (2.9) and the facts that 
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‖𝑉𝜙𝜌𝑓𝜌‖ℓ∗,(𝜔𝜌)
1+𝜖,1+2𝜖

(Λ)
≍ ‖𝑓𝜌‖𝑊(𝜔𝜌)

1+𝜖,1+2𝜖 and ‖(𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌)‖
ℓ∗,(𝜔𝜌)
1+𝜖,1+2𝜖

(Λ)
≍ ‖𝑀𝑏,𝑎0𝑓𝜌‖𝑊(𝜔𝜌)

1+𝜖,1+2𝜖 . 

The uniqueness of the map 𝑀𝑏,𝑎0  on 𝑊(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) follows from the fact that finite sequences in (1.22) are 

dense in 𝑊(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) gives. The case when 𝜖 = ∞ now follows from the case when 𝜖 = 0 and duality, and 

(1) follows. 

In order to prove (2) we first consider the case when 𝜖 < ∞. By applying the ℓ
((𝜔𝜌)0

)

1+𝜖  norm with 

respect to the 𝑗 variable in (2.8), we get 

‖∑

𝜌

(𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌) (⋅, 𝜄)‖

ℓ
((𝜔𝜌)0

)

1+𝜖

≲

(

 ∑  

𝑗∈𝐙𝑑

∑

𝜌

 (∑  

𝑘∈Ω2

 (ℎ0 ∗ (𝑐(𝑗 + 𝑘,⋅))(𝜄)(𝜔𝜌)0
(𝑗))

1+𝜖

)

1

1+𝜖

≍ ∑  

𝑘∈Ω2

 ∑

𝜌

(ℎ0
1+𝜖 ∗ (∑  

𝑗∈𝐙𝑑

 (𝑐(𝑗 + 𝑘,⋅)(𝜔𝜌)0
(𝑗 + 𝑘))

1+𝜖

)

1

)(𝜄)

= ∑  

𝑘∈Ω2

  (ℎ0
1+𝜖 ∗ 𝑐0

1+𝜖)(𝜄) ≍ (ℎ0
1+𝜖 ∗ 𝑐0

1+𝜖)(𝜄)

 

where 𝑐0(𝜄) = ‖𝑐(⋅, 𝜄)‖ℓ
((𝜔𝜌)0

)

1+𝜖 . 

Let 1 + 𝜖 = (1 + 𝜖)−11 + 2𝜖, 1 + 2𝜖 = (1 + 𝜖)−1(1 + 2𝜖) and 𝑢 = (1 + 𝜖)−1. Then (2.2) holds with 

(1 + 𝜖) and (1 + 2𝜖) in place of (1 + 𝜖) and (1 + 2𝜖), respectively. Hence by applying the ℓ1+2𝜖 norm on the 

last estimates, Lemma 2.2 gives 

‖𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌‖ℓ(𝜔𝜌)
1+𝜖,1+2𝜖

1+𝜖

≲ ‖ℎ0
𝜃 ∗ 𝑐0

1+𝜖‖
ℓ1+2𝜖

≲ ‖𝑐0
1+𝜖‖ℓ1+𝜖 = ‖𝑐0‖ℓ1+2𝜖

1+𝜖  

The asserted continuity in (2) now follows in the case when 𝜖 < ∞ by combining (2.9) and the facts that 

‖𝑉𝜙𝜌𝑓𝜌‖ℓ(𝜔𝜌)
1+𝜖,1+2𝜖

(Λ)
≍ ‖𝑓𝜌‖𝑀(𝜔𝜌)

1+𝜖,1+2𝜖 and ‖(𝐴 ⋅ 𝑉𝜙𝜌𝑓𝜌)‖ℓ(𝜔𝜌)
1+𝜖,1+2𝜖

(Λ)
≍ ‖𝑀𝑏,𝑎0𝑓𝜌‖𝑀(𝜔𝜌)

1+𝜖,1+2𝜖 

The uniqueness assertions as well as the continuity in the case 𝜖 = ∞ follow by similar arguments as in the 

proof of (1).  

By the links between 𝑀(𝜔𝜌)
1+𝜖,1+2𝜖(𝐑𝑑) and 𝑊(𝜔𝜌)

1+𝜖,1+2𝜖(𝐑𝑑) via the Fourier transform, explained in 

Remark 1.6, the following result follows from Theorem 2.1 and Fourier transformation.  

Theorem 2.3 [38]. Let 0 < 𝜖 < ∞, 0 < 𝜖 ≤ ∞, 1 + 𝜖, 1 + 𝜖 ∈ (min(1,1 + 𝜖),∞) be such that 
1

1 + 𝜖
−

1

1 + 𝜖
≥ max (

1

1 + 𝜖
− 1,0) (2.10) 

𝑏 > 0, 𝑎0 ∈ ℓ
∞(Λ𝑏), (𝜔𝜌)0 ∈ 𝒫𝐸,1+𝜖(𝐑

𝑑) and 𝜔𝜌(𝑥, 𝜉) = (𝜔𝜌)0(𝜉), 𝑥, 𝜉 ∈ 𝐑
𝑑. Then the following is true: 

(1) 𝑀ℱ,𝑏,𝑎0  is continuous on 𝑀(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑); 

(2) 𝑀ℱ,𝑏,𝑎0  is continuous from 𝑊(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑) to 𝑊(𝜔𝜌)

1+𝜖,1+𝜖(𝐑𝑑). 

We observe that Theorem 2.3 generalizes [3, Theorem 1] and [37, Theorem 4.16]. 

 

III. Multiplications and convolutions of quasi-BanachModulation Spaces 
We extend the multiplication and convolution properties on modulation spaces in [8,30] to allow the 

Lebesgue exponents to belong to the full interval (0,∞] instead of [1,∞], and to allow general moderate 

weights. There are several approaches in the case when the involved Lebesgue exponents belong to [1,∞] (see 

[4,8,11,21,27,30] ). There are also some results when such exponents belong to the full interval (0,∞] (see [1, 

2, 14, 25, 26, 32]). Here we remark that our results in this section cover several of these earlier results. For 

example, we observe that Theorem 3.2 below extends [1 Proposition 3.1]. 

We recall that convolutions and multiplications on Σ1(𝐑
𝑑) are commutative and associative. That is, 

for any 𝑁 ≥ 1, (𝑓𝜌)1
, … , (𝑓𝜌)𝑁

∈ Σ1(𝐑
𝑑) and 𝑗, 𝑘 ∈ {1, … , 𝑁} one has 

(𝑓𝜌)1
⋯(𝑓𝜌)𝑁

= ((𝑓𝜌)1
⋯(𝑓𝜌)𝑗

) ⋅ ((𝑓𝜌)𝑗+1
⋯(𝑓𝜌)𝑁

)  and (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

= (𝑔𝜌)1
⋯(𝑔𝜌)𝑁

 

when 

(𝑔𝜌)𝑚
= (𝑓𝜌)𝑚

, (𝑔𝜌)𝑗
= (𝑓𝜌)𝑘

 and (𝑔𝜌)𝑘
= (𝑓𝜌)𝑗

, 𝑚 ≠ 𝑗, 𝑘 

and similarly for convolutions in place of multiplications at each occurrence. 
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Because of possible lacks of density properties, we do not always reach the uniqueness when extending 

the convolutions and multiplications from the case when each (𝑓𝜌)𝑗
 belong to Σ1(𝐑

𝑑) to the case when each 

(𝑓𝜌)𝑗
 belong to suitable modulation spaces. In some cases we manage the uniqueness by replacing the (quasi-

)norm convergence by a weaker convergence, the socalled narrow convergence (see [28,29,31]). In the other 

situations we define multiplications and convolutions in terms of short-time Fourier transforms, in similar ways 

as in [30]. 

Let (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

∈ Σ1(𝐑
𝑑) be fixed such that 

((𝜙𝜌)1
⋯(𝜙𝜌)𝑁

, (𝜙𝜌)0
)
𝐿2
= (2𝜋)−(𝑁−1)

𝑑

2 (3.1) 

and let (𝑓𝜌)1
, … , (𝑓𝜌)𝑁

, 𝑔𝜌 ∈ Σ1(𝐑
𝑑). Then the multiplication (𝑓𝜌)1

⋯(𝑓𝜌)𝑁
 can be expressed by 

((𝑓𝜌)1
⋯(𝑓𝜌)𝑁

, 𝜑𝜌)
𝐿2(𝐑𝑑)

=∬  
𝐑𝑑×𝐑𝑁𝑑

∑

𝜌

 (∏  

𝑁

𝑗=1

  (𝐹𝜌)𝑗
(𝑥, 𝜉𝑗))Φρ(𝑥, 𝜉1 +⋯+ 𝜉𝑁)𝑑𝑥𝑑𝜉 

= ∫ ⋯∫  
𝐑(𝑁+1)𝑑

 ∑

𝜌

(∏ 

𝑁

𝑗=1

  (𝐹𝜌)𝑗
(𝑥, 𝜉𝑗))Φρ(𝑥, 𝜉1 +⋯+ 𝜉𝑁)𝑑𝑥𝑑𝜉1⋯𝑑𝜉𝑁(3.2) 

for every 𝜑𝜌 ∈ Σ1(𝐑
𝑑), where 

(𝐹𝜌)𝑗
= 𝑉(𝜙𝜌)𝑗

(𝑓𝜌)𝑗
 and Φρ = 𝑉(𝜙𝜌)0

𝜑𝜌. (3.3) 

We observe that (3.2) is the same as 

(𝐹𝜌)0
(𝑥, 𝜉) = ((𝑉(𝜙𝜌)1

(𝑓𝜌)1
) (𝑥,⋅) ∗ ⋯∗ (𝑉(𝜙𝜌)𝑁

(𝑓𝜌)𝑁
) (𝑥,⋅)) (𝜉) (3.2)′ 

where 

(𝐹𝜌)0
(𝑥, 𝜉) = (‖(𝜙𝜌)0

‖
𝐿2
)
−2

⋅ 𝑉(𝜙𝜌)0
((𝑓𝜌)1

⋯(𝑓𝜌)𝑁
) (𝑥, 𝜉) (3.4) 

and that we may extract (𝑓𝜌)0
= (𝑓𝜌)1

⋯(𝑓𝜌)𝑁
 by the formula 

(𝑓𝜌)0
= 𝑉(𝜙𝜌)0

∗ (𝐹𝜌)0
(3.5) 

In the same way, let (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

∈ Σ1(𝐑
𝑑) be fixed such that 

((𝜙𝜌)1
∗ ⋯∗ (𝜙𝜌)𝑁

, (𝜙𝜌)0
)
𝐿2
= 1 (3.6) 

and let (𝑓𝜌)1
, … , (𝑓𝜌)𝑁

, 𝑔𝜌 ∈ Σ1(𝐑
𝑑). Then the convolution (𝑓𝜌)1

∗ ⋯∗ (𝑓𝜌)𝑁
 can be expressed by 

((𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

, 𝜑𝜌)
𝐿2(𝐑𝑑)

=∬  
𝐑𝑁𝑑×𝐑𝑑

 ∑

𝜌

(∏  

𝑁

𝑗=1

  (𝐹𝜌)𝑗
(𝑥𝑗 , 𝜉))Φρ(𝑥1 +⋯+ 𝑥𝑁 , 𝜉)𝑑𝑥𝑑𝜉 

= ∫ ⋯∫  
𝐑(𝑁+1)𝑑

 ∑

𝜌

(∏ 

𝑁

𝑗=1

  (𝐹𝜌)𝑗
(𝑥𝑗 , 𝜉))Φρ(𝑥1 +⋯+ 𝑥𝑁 , 𝜉)𝑑𝑥1⋯𝑑𝑥𝑁𝑑𝜉                  (3.7) 

for every 𝜑𝜌 ∈ Σ1(𝐑
𝑑), where (𝐹𝜌)𝑗

 and Φρ are given by (3.3). We observe that (3.7) is the same as 

(𝐹𝜌)0
(𝑥, 𝜉) = ((𝑉(𝜙𝜌)1

(𝑓𝜌)1
) (⋅, 𝜉) ∗ ⋯ ∗ (𝑉(𝜙𝜌)𝑁

(𝑓𝜌)𝑁
) (⋅, 𝜉)) (𝑥) (3.7)′ 

where 

(𝐹𝜌)0
= (‖(𝜙𝜌)0

‖
𝐿2
)
−2

𝑉(𝜙𝜌)0
((𝑓𝜌)1

∗ ⋯∗ (𝑓𝜌)𝑁
) (3.8) 

and that we may extract (𝑓𝜌)0
= (𝑓𝜌)1

∗ ⋯∗ (𝑓𝜌)𝑁
 from (3.5). 

Definition 3.1 [38]. Let (𝑓𝜌)1
, … , (𝑓𝜌)𝑁

∈ Σ1
′ (𝐑𝑑). 

(1) Let (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

∈ Σ1(𝐑
𝑑) be fixed and such that (3.1) holds, and suppose that the integrand in 

(3.2) belongs to 𝐿1(𝐑(𝑁+1)𝑑) for every 𝜑𝜌 ∈ Σ1(𝐑
𝑑), where (𝐹𝜌)𝑗

= 𝑉(𝜙𝜌)𝑗
(𝑓𝜌)𝑗

 and Φρ =

𝑉(𝜙𝜌)0
𝜑𝜌, 𝑗 = 1, … , 𝑁. Then (𝑓𝜌)0

≡ (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

∈ Σ1
′ (𝐑𝑑) is defined by (3.2); 
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(2) Let (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

∈ Σ1(𝐑
𝑑) be fixed and such that (3.6) holds, and suppose that the integrand in 

(3.7) belongs to 𝐿1(𝐑(𝑁+1)𝑑) for every 𝜑𝜌 ∈ Σ1(𝐑
𝑑), where (𝐹𝜌)𝑗

= 𝑉(𝜙𝜌)𝑗
(𝑓𝜌)𝑗

 and Φρ =

𝑉(𝜙𝜌)0
𝜑𝜌, 𝑗 = 1, … , 𝑁. Then (𝑓𝜌)0

≡ (𝑓𝜌)1
∗ ⋯∗ (𝑓𝜌)𝑁

∈ Σ1
′ (𝐑𝑑) is defined by (3.7). 

Next we discuss convolutions and multiplications for modulation spaces, and start with the following 

convolution result for modulation spaces. Here the conditions for the involved weight functions are given by 

(𝜔𝜌)0
(𝑥, 𝜉1 +⋯+ 𝜉𝑁) ≲∑

𝜌

∏ 

𝑁

𝑗=1

  (𝜔𝜌)𝑗
(𝑥, 𝜉𝑗), 𝑥, 𝜉1, … , 𝜉𝑁 ∈ 𝐑

𝑑 (3.9) 

or by 

(𝜔𝜌)0
(𝑥1 +⋯+ 𝑥𝑁 , 𝜉) ≲ ∑

𝜌

∏ 

𝑁

𝑗=1

  (𝜔𝜌)𝑗
(𝑥𝑗 , 𝜉), 𝑥1, … , 𝑥𝑁 , 𝜉 ∈ 𝐑

𝑑 (3.10) 

For multiplications of elements in modulation spaces we need to swap the conditions for the involved Lebesgue 

exponents compared to (1.39) and (1.40). That is, these conditions become 

1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑝𝑗
,
1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑞𝑗
− 𝑅1+𝜖,𝑁(𝑞1, … , 𝑞𝑁) (3.11) 

or 

1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑝𝑗
,
1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑞𝑗
− 𝑅𝑁(𝑞1, … , 𝑞𝑁) (3.12) 

where 

𝑅1+𝜖,𝑁(𝑞1, … , 𝑞𝑁) = (∑  

𝑁

𝑗=1

 
1

𝑟𝑗
) − min

1≤𝑗≤𝑁
 (
1

𝑟𝑗
) , 𝑟𝑗 = min(1,1 + 𝜖, 1 + 𝜖) (3.13) 

and 
𝑅𝑁(𝑞1, … , 𝑞𝑁) = 𝑅1,𝑁(𝑞1, … , 𝑞𝑁) (3.14) 

Evidently, 𝑅1+𝜖,𝑁(𝑞1, … , 𝑞𝑁) = 𝑅𝑁(𝑞1, … , 𝑞𝑁) when 𝜖 ≥ 0. 

Theorem 3.2 [38]. Let 𝐼𝑁 = {1,… , 𝑁}, (𝜔𝜌)𝑗
∈ 𝒫𝐸(𝐑

2𝑑) and 0 ≤ 𝜖 ≤ ∞, 𝑗 ∈ 𝐼𝑁, be such that (3.9), (3.11) and 

(3.13) hold. Then ((𝑓𝜌)1
, … , (𝑓𝜌)𝑁

) ↦ (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

 in Definition 3.1 (1) restricts to a continuous, associative 

and symmetric map from 𝑀
((𝜔𝜌)1

)

𝑝1,𝑞1 (𝐑𝑑) × ⋯×𝑀
((𝜔𝜌)𝑁

)

𝑝𝑁,𝑞𝑁 (𝐑𝑑) to 𝑀
((𝜔𝜌)0

)

𝑝0,𝑞0 (𝐑𝑑), and 

‖(𝑓𝜌)1
⋯(𝑓𝜌)𝑁

‖
𝑀
((𝜔𝜌)0

)

𝑝0,𝑞0
≲∑

𝜌

∏ 

𝑁

𝑗=1

 ‖(𝑓𝜌)𝑗
‖
𝑀
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗
,
(𝑓𝜌)𝑗

∈ 𝑀
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗 (𝐑𝑑), 𝑗 ∈ 𝐼𝑁 (3.15) 

Moreover, (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

 in (3.2) is independent of the choice of (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

 in Definition 3.1 (1). 

Theorem 3.3 [38]. Let 𝐼𝑁 = {1,… , 𝑁}, (𝜔𝜌)𝑗
∈ 𝒫𝐸(𝐑

2𝑑) and 0 ≤ 𝜖 ≤ ∞, 𝑗 ∈ 𝐼𝑁, be such that (3.9), (3.12) and 

(3.14) hold. Then ((𝑓𝜌)1
, … , (𝑓𝜌)𝑁

) ↦ (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

 in Definition 3.1 (1) restricts to a continuous, associative 

and symmetric map from 𝑊
((𝜔𝜌)1

)

1+𝜖,1+𝜖(𝐑𝑑) × ⋯×𝑊
((𝜔𝜌)𝑁

)

𝑝𝑁,𝑞𝑁 (𝐑𝑑) to 𝑊
((𝜔𝜌)0

)

1+𝜖,1+𝜖(𝐑𝑑), and 

‖(𝑓𝜌)1
⋯(𝑓𝜌)𝑁

‖
𝑊
((𝜔𝜌)0

)

1+𝜖,1+𝜖
≲∑

𝜌

∏ 

𝑁

𝑗=1

 ‖(𝑓𝜌)𝑗
‖
𝑊
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗
, (𝑓𝜌)𝑗

∈ 𝑊
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗 (𝐑𝑑), 𝑗 ∈ 𝐼𝑁 (3.16) 

Moreover, (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

 in (3.2) is independent of the choice of (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

 in Definition 3.1 (1). 

The corresponding results for convolutions are the following. Here the conditions on the involved 

Lebesgue exponents are swapped as 

1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑝𝑗
− 𝑅1+𝜖,𝑁(𝑝1, … , 𝑝𝑁),

1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑞𝑗
(3.17) 

or 

1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑝𝑗
− 𝑅𝑁(𝑝1, … , 𝑝𝑁),

1

1 + 𝜖
≤∑  

𝑁

𝑗=1

 
1

𝑞𝑗
(3.18) 
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Theorem 3.4 (see [38]). Let 𝐼𝑁 = {1,… , 𝑁}, (𝜔𝜌)𝑗
∈ 𝒫𝐸(𝐑

2𝑑) and 0 ≤ 𝜖 ≤ ∞, 𝑗 ∈ 𝐼𝑁, be such that (3.10), 

(3.14) and (3.18) hold. Then ((𝑓𝜌)1
, … , (𝑓𝜌)𝑁

) ↦ (𝑓𝜌)1
∗ ⋯∗ (𝑓𝜌)𝑁

 in Definition 3.1(2) restricts to a 

continuous, associative and symmetric map from 𝑀
((𝜔𝜌)1

)

1+𝜖,1+𝜖(𝐑𝑑) × ⋯×𝑀
((𝜔𝜌)𝑁

)

𝑝𝑁,𝑞𝑁 (𝐑𝑑) to 𝑀
((𝜔𝜌)0

)

1+𝜖,1+𝜖(𝐑𝑑), and 

‖(𝑓𝜌)1
∗ ⋯∗ (𝑓𝜌)𝑁

‖
𝑀
((𝜔𝜌)0

)

1+𝜖,1+𝜖
≲∑

𝜌

∏ 

𝑁

𝑗=1

 ‖(𝑓𝜌)𝑗
‖
𝑀
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗
,
(𝑓𝜌)𝑗

∈ 𝑀
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗 (𝐑𝑑), 𝑗 ∈ 𝐼𝑁 (3.19) 

Moreover, (𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

 in (3.7) is independent of the choice of (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

 in Definition 3.1 (2). 

Theorem 3.5(see [38]). Let 𝐼𝑁 = {1,… , 𝑁}, (𝜔𝜌)𝑗
∈ 𝒫𝐸(𝐑

2𝑑) and 0 ≤ 𝜖 ≤ ∞, 𝑗 ∈ 𝐼𝑁, be such that (3.10), (3.13) 

and (3.17) hold. Then ((𝑓𝜌)1
, … , (𝑓𝜌)𝑁

) ↦ (𝑓𝜌)1
∗ ⋯∗ (𝑓𝜌)𝑁

 in Definition 3.1(2) restricts to a continuous, 

associative and symmetric map from 𝑊
((𝜔𝜌)1

)

1+𝜖,1+𝜖(𝐑𝑑) × ⋯×𝑊
((𝜔𝜌)𝑁

)

𝑝𝑁,𝑞𝑁 (𝐑𝑑) to 𝑊
((𝜔𝜌)0

)

1+𝜖,1+𝜖(𝐑𝑑), and 

‖(𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

‖
𝑊
((𝜔𝜌)0

)

1+𝜖,1+𝜖
≲∑

𝜌

∏ 

𝑁

𝑗=1

 ‖(𝑓𝜌)𝑗
‖
𝑊
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗
, (𝑓𝜌)𝑗

∈ 𝑊
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗 (𝐑𝑑), 𝑗 ∈ 𝐼𝑁 (3.20) 

Moreover, (𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

 in (3.7) is independent of the choice of (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

 in Definition 3.1 (2). 

For the proofs of Theorems 3.2√3.5 we need the following proposition. Here recall [11,13,17,25,26] and 

Remark 1.4 for some facts concerning the operators 𝑃𝜙𝜌 and 𝑉𝜙𝜌
∗ . 

Proposition 3.6(see [38]). Let 0 ≤ 𝜖 ≤ ∞,𝜔𝜌 ∈ 𝒫𝐸(𝐑
2𝑑), 𝜙𝜌 ∈ Σ1(𝐑

𝑑) ∖ 0 and 𝑃𝜙𝜌 be the projection in 

Remark 1.4 . Then 𝑃𝜙𝜌 from Σ1
′ (𝐑2𝑑) to Σ1

′ (𝐑2𝑑), and 𝑉𝜙𝜌
∗  from Σ1

′ (𝐑2𝑑) to Σ1
′ (𝐑𝑑) restrict to continuous 

mappings 

𝑃𝜙𝜌 :W (𝜔𝜌, ℓ
1+2𝜖,1+𝜖(𝐙2𝑑)) → 𝑉𝜙𝜌 (𝑀(𝜔𝜌)

1+2𝜖,1+𝜖(𝐑𝑑)) ↪ W(𝜔𝜌, ℓ
1+2𝜖,1+𝜖(𝐙2𝑑)) , (3.21)

𝑃𝜙𝜌 :W (𝜔𝜌, ℓ∗
1+2𝜖,1+𝜖(𝐙2𝑑)) → 𝑉𝜙𝜌 (𝑊(𝜔𝜌)

1+2𝜖,1+𝜖(𝐑𝑑)) ↪ W(𝜔𝜌, ℓ∗
1+2𝜖,1+𝜖(𝐙2𝑑)) , (3.22)

𝑉𝜙𝜌
∗ :W (𝜔𝜌, ℓ

1+2𝜖,1+𝜖(𝐙2𝑑)) → 𝑀(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) (3.23)

 

and 

𝑉𝜙𝜌
∗ :W (𝜔𝜌, ℓ∗

1+2𝜖,1+𝜖(𝐙2𝑑)) → 𝑊(𝜔𝜌)
1+2𝜖,1+𝜖(𝐑𝑑) (3.24) 

For 𝜖 ≥ 0, i. .e. the case when all spaces are Banach spaces, proofs of Proposition 3.6 can be found in e.g. [17] 

as well as in abstract forms in [11]. In the general case when 𝜖 ≥ 0, proofs of Proposition 3.6 are essentially 

given in [14,26]. In order to be self-contained we here present a short proof. 

Proof. By Remark 1.4, the result follows if we prove (3.21) and (3.22), i.e., it suffices to prove 

‖∑

𝜌

𝑃𝜙𝜌𝐹𝜌‖

W(𝜔𝜌,ℓ
1+2𝜖,1+𝜖)

≲∑

𝜌

‖𝐹𝜌‖W(𝜔𝜌,ℓ1+2𝜖,1+𝜖), 𝐹𝜌 ∈ W(𝜔𝜌, ℓ
1+2𝜖,1+𝜖(𝐙2𝑑)) (3.25) 

and 

‖∑

𝜌

𝑃𝜙𝜌𝐹𝜌‖

W(𝜔𝜌,ℓ∗
1+2𝜖,1+𝜖)

≲∑

𝜌

‖𝐹𝜌‖W(𝜔𝜌,ℓ∗
1+2𝜖,1+𝜖), 𝐹𝜌 ∈ W(𝜔𝜌, ℓ∗

1+2𝜖,1+𝜖(𝐙2𝑑)) (3.26) 

We only prove (3.25). The estimate (3.26) follows by similar arguments and is left. 

Let 

𝑎𝑗 = ‖𝐹𝜌‖𝐿∞(𝑗+𝑄2𝑑) and 𝑏𝑗 = ‖𝑉𝜙𝜌𝜙𝜌‖𝐿∞(𝑗+𝑄2𝑑)
. 

Since 𝑉𝜙𝜌𝜙𝜌 ∈ Σ1(𝐑
2𝑑), Proposition 1.10 gives 

‖𝑃𝜙𝜌𝐹𝜌‖W(𝜔𝜌,ℓ1+2𝜖,1+𝜖)
≲ ‖𝑎 ∗ 𝑏‖ℓ1+2𝜖,1+𝜖 ≲ ‖𝑏‖ℓmin(1,1+2𝜖,1+𝜖)‖𝑎‖ℓ1+2𝜖,1+𝜖 ≍ ‖𝐹𝜌‖W(𝜔𝜌,ℓ1+2𝜖,1+𝜖) 

Theorems 3.2 and 3.3 are Fourier transformations of Theorems 3.4 and 3.5. Hence it suffices to prove the last 

two theorems. 

Proof of Theorems 3.4 and 3.5. First we prove (3.19). Suppose (𝑓𝜌)𝑗
∈ 𝑀

((𝜔𝜌)𝑗
)

𝑝𝑗,𝑞𝑗 (𝐑𝑑), and consider the cubes 

𝑄𝑑,1+𝜖 = [0,1 + 𝜖]
𝑑 and 𝑄 = 𝑄𝑑,1 = [0,1]

𝑑 

Then 

0 ≤ 𝜒𝑘1+𝑄 ∗ ⋯∗ 𝜒𝑘𝑁+𝑄 ≤ 𝜒𝑘1+⋯+𝑘𝑁+𝑄𝑑,𝑁 , 𝑘1, … 𝑘𝑁 ∈ 𝐙
𝑑 
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Let 

𝐺1(𝑥, 𝜉)= (𝑉(𝜙𝜌)1
(𝑓𝜌)1

(⋅, 𝜉) ∗ ⋯ ∗ 𝑉(𝜙𝜌)𝑁
(𝑓𝜌)𝑁

(⋅, 𝜉)) (𝑥)

𝐺2(𝑥, 𝜉)= (|𝑉(𝜙𝜌)1
(𝑓𝜌)1

(⋅, 𝜉)| ∗ ⋯ ∗ |𝑉(𝜙𝜌)𝑁
(𝑓𝜌)𝑁

(⋅, 𝜉)|) (𝑥)

𝑎𝑗(𝑘, 𝜅)= ‖𝑉(𝜙𝜌)𝑗
(𝑓𝜌)𝑗

‖
𝐿∞((𝑘,𝜅)+𝑄2𝑑,1)

 

and 

𝑏(𝑘, 𝜅) = ‖𝐺2‖𝐿∞((𝑘,𝜅)+𝑄2𝑑,1) 

Then 

‖𝑉(𝜙𝜌)0
∗ 𝐺1‖

𝑀
((𝜔𝜌)0

)

1+2𝜖,1+𝜖
≍ ‖𝑃(𝜙𝜌)0

𝐺1‖
W((𝜔𝜌)0

,ℓ1+2𝜖,1+𝜖)
≲ ‖𝐺1‖W((𝜔𝜌)0,ℓ

1+2𝜖,1+𝜖) 

≤ ‖𝐺2‖W((𝜔𝜌)0,ℓ
1+2𝜖,1+𝜖)

≍ ‖𝑏‖ℓ
((𝜔𝜌)0

)

1+2𝜖,1+𝜖 ,                                     (3.27) 

and 

‖(𝑓𝜌)𝑗
‖
𝑀
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗
≍ ‖𝑎𝑗‖ℓ

((𝜔𝜌)𝑗
)

𝑝𝑗,𝑞𝑗 (3.28)
 

in view of [32, Proposition 3.4] (see also Theorem 3.3 in [14]) and Proposition 3.6. 

By (3.7) we have 

𝐺2(𝑥, 𝜆) ≤ ∑  

𝑘1,…,𝑘𝑁∈𝐙
𝑑

 (∏  

𝑁

𝑗=1

 𝑎𝑗(𝑘𝑗 , 𝜆)) (𝜒𝑘1+𝑄 ∗ ⋯𝜒𝑘𝑁+𝑄)(𝑥) 

≤ ∑  

𝑘1,…,𝑘𝑁∈𝐙
𝑑

 (∏  

𝑁

𝑗=1

 𝑎𝑗(𝑘𝑗 , 𝜆))𝜒𝑘1+⋯+𝑘𝑁+𝑄𝑑,𝑁(𝑥)                         (3.29) 

We observe that 

𝜒𝑘1+⋯+𝑘𝑁+𝑄𝑑,𝑁(𝑥) = 0  when 𝑥 ∉ 𝑙 + 𝑄𝑑 , (𝑘1, … , 𝑘𝑁) ∉ Ω𝑙 , 

where 

Ω𝑙 = {(𝑘1, … , 𝑘𝑁) ∈ 𝐙
𝑁𝑑; 𝑙𝑗 −𝑁 ≤ 𝑘1,𝑗 +⋯+ 𝑘𝑁,𝑗 ≤ 𝑙𝑗 + 1} 

and 

𝑘𝑛 = (𝑘𝑛,1, … , 𝑘𝑛,𝑑) ∈ 𝐙
𝑑 and 𝑙 = (𝑙1, … , 𝑙𝑑) ∈ 𝐙

𝑑, 𝑛 = 1,… , 𝑁. 

Hence, if 𝑥 = 𝑙 in (3.29), we get 

𝑏(𝑙, 𝜆) ≤ ∑  
(𝑘1,…,𝑘𝑁)∈Ω𝑙

 (∏  

𝑁

𝑗=1

 𝑎𝑗(𝑘𝑗, 𝜆)) 

≤ ∑  

𝑚∈𝐼𝑁+1

  (𝑎1(⋅, 𝜆) ∗ ⋯∗ 𝑎𝑁(⋅, 𝜆))(𝑙 − 𝑁𝑒0 +𝑚)        (3.30) 

where 𝑒0 = (1,… ,1) ∈ 𝐙
𝑑 and 𝐼𝑁 = {0,… , 𝑁}

𝑑. By multiplying with (𝜔𝜌)0
(𝑙, 𝜆), using (3.10), the fact that 𝐼𝑁 is 

a finite set and that (𝜔𝜌)0
 is moderate, we obtain 

𝑏(𝑙, 𝜆)(𝜔𝜌)0
(𝑙, 𝜆) ≤ ∑  

𝑚∈𝐼𝑁+1

∑

𝜌

  (𝑎1(⋅, 𝜆) ∗ ⋯∗ 𝑎𝑁(⋅, 𝜆))(𝑙 − 𝑁𝑒0 +𝑚)(𝜔𝜌)0
(𝑙, 𝜆)

 ≤ ∑  

𝑚∈𝐼𝑁+1

∑

𝜌

  (𝑎1(⋅, 𝜆) ∗ ⋯∗ 𝑎𝑁(⋅, 𝜆))(𝑙 − 𝑁𝑒0 +𝑚)(𝜔𝜌)0
(𝑙 − 𝑁𝑒0 +𝑚, 𝜆)

 ≲ ∑  

𝑚∈𝐼𝑁+1

 ∑

𝜌

((𝑎1(⋅, 𝜆)(𝜔𝜌)1
(⋅, 𝜆)) ∗ ⋯∗ (𝑎𝑁(⋅, 𝜆)(𝜔𝜌)𝑁

(⋅, 𝜆))) (𝑙 − 𝑁𝑒0 +𝑚)

 

Hence (3.30) gives 

𝑏(𝜔𝜌)0
(𝑙, 𝜆) ≲ ∑  

(𝑘1,…,𝑘𝑁)∈Ω𝑙

 ∑

𝜌

(∏  

𝑁

𝑗=1

 𝑎𝑗,(𝜔𝜌)𝑗
(𝑘𝑗, 𝜆)) 

= ∑  

𝑚∈𝐼𝑁+1

 ∑

𝜌

(𝑎1,(𝜔𝜌)1
(⋅, 𝜆) ∗ ⋯∗ 𝑎𝑁,(𝜔𝜌)𝑁

(⋅, 𝜆)) (𝑙 − 𝑁𝑒0 +𝑚)     (3.30)′ 
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where 

𝑎𝑗,(𝜔𝜌)𝑗
(𝑘, 𝜅) = 𝑎𝑗(𝑘, 𝜅)(𝜔𝜌)𝑗

(𝑘, 𝜅)  and 𝑏(𝜔𝜌)0
(𝑘, 𝜅) = 𝑏(𝑘, 𝜅)(𝜔𝜌)0

(𝑘, 𝜅). 

If we apply the ℓ1+2𝜖 quasi-norm on (3.30) with respect to the 𝑙 variable, then Proposition 1.10 (2) and the fact 

that 𝐼𝑁+1 is a finite set give 

‖𝑏(𝜔𝜌)0
(⋅, 𝜆)‖

ℓ1+2𝜖
≲ ‖ ∑  

𝑚∈𝐼𝑁+1

 ∑

𝜌

(𝑎1,(𝜔𝜌)1
(⋅, 𝜆) ∗ ⋯ ∗ 𝑎𝑁,(𝜔𝜌)𝑁

(⋅, 𝜆)) (⋅ −𝑁𝑒0 +𝑚)‖

ℓ1+2𝜖

≲ ∑  

𝑚∈𝐼𝑁+1

∑

𝜌

 ‖(𝑎1,(𝜔𝜌)1
(⋅, 𝜆) ∗ ⋯∗ 𝑎𝑁,(𝜔𝜌)𝑁

(⋅, 𝜆)) (⋅ −𝑁𝑒0 +𝑚)‖
ℓ1+2𝜖

 ≈ ‖𝑎1,(𝜔𝜌)1
(⋅, 𝜆) ∗ ⋯∗ 𝑎𝑁,(𝜔𝜌)𝑁

(⋅, 𝜆)‖
ℓ1+2𝜖

 ≤ ‖𝑎1,(𝜔𝜌)1
(⋅, 𝜆)‖

ℓ1+2𝜖
⋯‖𝑎𝑁,(𝜔𝜌)𝑁

(⋅, 𝜆)‖
ℓ𝑝𝑁

 

By applying the ℓ1+𝜖 quasi-norm and using Proposition 1.10 (1) we now get 

‖𝑏(𝜔𝜌)0
‖
ℓ1+2𝜖,1+𝜖

≲ ‖𝑎1,(𝜔𝜌)1
‖
ℓ1+2𝜖,1+𝜖

⋯‖𝑎𝑁,(𝜔𝜌)𝑁
‖
ℓ𝑝𝑁 ,𝑞𝑁

 

This is the same as 

‖𝐺2‖𝐿
((𝜔𝜌)0

)

1+2𝜖,1+𝜖 ≲ ‖(𝐹𝜌)1‖𝐿
((𝜔𝜌)1

)

1+2𝜖,1+𝜖⋯‖(𝐹𝜌)𝑁‖𝐿
((𝜔𝜌)𝑁

)

𝑝𝑁,𝑞𝑁  

A combination of this estimate with (3.27) and (3.28) gives that (𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

 is well-defined and that 

(3.19) holds. 

Next we prove (3.20). Let (1 + 𝜖) = min(1,1 + 𝜖). Then (3.30)' gives 

𝑏(𝜔𝜌)0
(𝑙, 𝜆)1+𝜖 ≲ ∑  

(𝑘1,…,𝑘𝑁)∈Ω𝑙

∑

𝜌

 (∏  

𝑁

𝑗=1

 𝑎𝑗,(𝜔𝜌)𝑗
(𝑘𝑗 , 𝜆)

1+𝜖
)

= ∑  

𝑚∈𝐼𝑁+1

 ∑

𝜌

(𝑎1,(𝜔𝜌)1
(⋅, 𝜆)1+𝜖 ∗ ⋯∗ 𝑎𝑁,(𝜔𝜌)𝑁

(⋅, 𝜆)1+𝜖) (𝑙 − 𝑁𝑒0 +𝑚)

 

By applying the ℓ1 norm with respect to the 𝜆 variable and using Minkowski's and Hölder's inequalities we 

obtain 

‖𝑏(𝜔𝜌)0
(𝑙,⋅)‖

ℓ1+𝜖

1+𝜖

= ‖𝑏(𝜔𝜌)0
(𝑙,⋅)1+𝜖‖

ℓ1
≲ ∑  
(𝑘1,…,𝑘𝑁)∈Ω𝑙

∑

𝜌

 ‖∏  

𝑁

𝑗=1

 𝑎𝑗,(𝜔𝜌)𝑗
(𝑘𝑗 ,⋅)

1+𝜖
‖

ℓ1

≤ ∑  
(𝑘1,…,𝑘𝑁)∈Ω𝑙

∑

𝜌

 (∏  

𝑁

𝑗=1

 𝑐𝑗,(𝜔𝜌)𝑗
(𝑘𝑗)

1+𝜖
) = ∑  

𝑚∈𝐼𝑁+1

∑

𝜌

  (𝑐1,(𝜔𝜌)1
1+𝜖 ∗ ⋯∗ 𝑐𝑁,(𝜔𝜌)𝑁

1+𝜖 ) (𝑙 − 𝑁𝑒0 +𝑚),

 

where 

𝑐𝑗,(𝜔𝜌)𝑗
(𝑘) = ‖𝑎𝑗,(𝜔𝜌)𝑗

(𝑘,⋅)1+𝜖‖
ℓ
𝑞𝑗/1+𝜖

1/1+𝜖

= ‖𝑎𝑗,(𝜔𝜌)𝑗
(𝑘,⋅)‖

ℓ
𝑞𝑗

 

An application of the ℓ1+2𝜖/1+𝜖 quasi-norm on the last inequality and using Proposition 1.10 (2) now gives 

‖𝑏(𝜔𝜌)0
‖
ℓ∗
1+𝜖,1+2𝜖

1+𝜖

≲ ∑  

𝑚∈𝐼𝑁+1

 ∑

𝜌

‖(𝑐1,(𝜔𝜌)1
1+𝜖 ∗ ⋯ ∗ 𝑐𝑁,(𝜔𝜌)𝑁

1+𝜖 ) (⋅ −𝑁𝑒0 +𝑚)‖
ℓ1+2𝜖/1+𝜖

≍ ‖𝑐1,(𝜔𝜌)1
1+𝜖 ∗ ⋯∗ 𝑐𝑁,(𝜔𝜌)𝑁

1+𝜖 ‖
ℓ1+2𝜖/1+𝜖

≤ ‖𝑐1,(𝜔𝜌)1
1+𝜖 ‖

ℓ1+2𝜖/1+𝜖
⋯‖𝑐𝑁,(𝜔𝜌)𝑁

1+𝜖 ‖
ℓ𝑝𝑁/1+𝜖

= (‖𝑐1,(𝜔𝜌)1
‖
ℓ1+2𝜖

⋯‖𝑐𝑁,(𝜔𝜌)𝑁
‖
ℓ𝑝𝑁
)
1+𝜖

 

which is the same as 

‖𝐺2‖𝐿
∗,((𝜔𝜌)0

)

1+2𝜖,1+𝜖 ≲ ‖(𝐹𝜌)1‖𝐿
∗,((𝜔𝜌)1

)

1+2𝜖,1+𝜖 ⋯‖(𝐹𝜌)𝑁‖𝐿
∗,((𝜔𝜌)𝑁

)

𝑝𝑁,𝑞𝑁  

which in particular shows that (𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

 is well-defined. Since 

‖(𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

‖
𝑊
((𝜔𝜌)0

)

1+2𝜖,1+𝜖
≍ ‖𝐺‖𝐿

∗,((𝜔𝜌)0
)

1+2𝜖,1+𝜖  and ‖(𝑓𝜌)𝑗
‖
𝑊
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗
≍ ‖(𝐹𝜌)𝑗‖𝐿

∗,((𝜔𝜌)𝑗
)

𝑝𝑗,𝑞𝑗 , 𝑗 = 1, … , 𝑁, we get 

(3.20). 
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We need to prove the associativity, symmetry and invariance with respect to (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

 in 

Definition 3.1. We observe that if 

𝑟𝑗 = max(𝑝𝑗 , 1) and 𝑠𝑗 =
𝑞𝑗

1 + 𝜖
, 1 + 𝜖 = min

0≤𝑗≤𝑁
 (𝑞𝑗), 𝑗 = 1,… , 𝑁, 

then 𝑀
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗 (𝐑𝑑) ⊆ 𝑀
((𝜔𝜌)𝑗

)

𝑟𝑗,𝑠𝑗 (𝐑𝑑), 𝑗 = 1,… , 𝑁. By straight-forward computations it follows that if (3.17) or 

(3.18) hold, then (3.17) respectively (3.18) still hold with 𝑟𝑗 and 𝑠𝑗 in place of 𝑝𝑗 and 𝑞𝑗, respectively, 𝑗 =

1,… , 𝑁, for some 0 ≤ 𝜖 ≤ ∞. This reduce ourself to the case when 𝑝𝑗 , 𝑞𝑗 ∈ [1,∞] for every 𝑗 = 0,… , 𝑁, in 

which case all modulation spaces are Banach spaces. We observe that Lemmas 5.2-5.4 and their proofs in [30] 

still hold true when (𝜔𝜌)𝑗
 are allowed to belong to the class 𝒫𝐸(𝐑

2𝑑), provided the involved window functions 

𝜒𝑗  belong to Σ1(𝐑
𝑑), and all distributions are allowed to belong to Σ1

′  instead of 𝒮′. The the associativity, 

symmetric assertions and invariant properties with respect to the choice of (𝜙𝜌)0
, … , (𝜙𝜌)𝑁

 in Definition 3.1 

now follows from these modified Lemmas 5.2-5.4 in [30] and their proofs. This gives the results. 

Remark 3.7 [38]. Suppose that 𝑝j, 𝑞𝑗  and (𝜔𝜌)𝑗
 are the same as in Theorems 3.2 3.5, and that 𝑝𝑗 + 𝑞𝑗 = ∞ for 

at most one 𝑗 ∈ {1, … , 𝑁}. Then it follows that extensions of the mappings ((𝑓𝜌)1
, … , (𝑓𝜌)𝑁

) ↦ (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

 

and ((𝑓𝜌)1
, … , (𝑓𝜌)𝑁

) ↦ (𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

 from Σ1(𝐑
𝑑) × ⋯× Σ1(𝐑

𝑑) to Σ1(𝐑
𝑑) in Theorems 3.2-3.5 are 

unique. 

In fact, by the proof of Theorem 3.8 below, we may assume that 𝑝𝑗 , 𝑞𝑗 ≥ 1 for every 𝑗. If 𝑝𝑗 , 𝑞𝑗 < ∞ 

for every 𝑗 ∈ {1, … , 𝑁}, then the uniquenesses follow from (3.15), (3.16), (3.19), (3.20) and the fact that Σ1(𝐑
𝑑) 

is dense in each 𝑀
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗 (𝐑𝑑) and 𝑊
((𝜔𝜌)𝑗

)

𝑝𝑗,𝑞𝑗 (𝐑𝑑) for 𝑗 ∈ {1, … , 𝑁}. For the general situation, the assertion 

follows from the previous case and duality. 

Evidently, Theorems 3.2, 3.5 show that multiplications and convolutions on Σ1(𝐑
𝑑) can be extended to 

involve suitable quasi-Banach modulation spaces. Remark 3.7 shows that in most situations, these extensions 

from products on Σ1(𝐑
𝑑) are unique. For the multiplication and convolution mappings in Theorems 3.2 and 3.5 

we can say more. 

Theorem 3.8(see [38]). Let (𝜔𝜌)𝑗
∈ 𝒫𝐸(𝐑

2𝑑) and 𝑝𝑗 , 𝑞𝑗 ∈ (0,∞] and 𝑗 ∈ {0, … , 𝑁}. Then the following is true: 

(1) if (3.9), (3.11) and (3.13) hold, then ((𝑓𝜌)1
, … , (𝑓𝜌)𝑁

) ↦ (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

 from Σ1(𝐑
𝑑) × ⋯× Σ1(𝐑

𝑑) 

to Σ1(𝐑
𝑑) is uniquely extendable to a continuous map from 𝑀

((𝜔𝜌)1
)

1+2𝜖,1+𝜖(𝐑𝑑) × ⋯×𝑀
((𝜔𝜌)𝑁

)

𝑝𝑁,𝑞𝑁 (𝐑𝑑) to 

𝑀
((𝜔𝜌)0

)

1+2𝜖,1+𝜖(𝐑𝑑), and (3.15) holds; 

(2) if (3.10), (3.13) and (3.17) hold, then ((𝑓𝜌)1
, … , (𝑓𝜌)𝑁

) ↦ (𝑓𝜌)1
∗ ⋯ ∗ (𝑓𝜌)𝑁

 from Σ1(𝐑
𝑑) × ⋯×

Σ1(𝐑
𝑑) to Σ1(𝐑

𝑑) is uniquely extendable to a continuous map from 𝑊
((𝜔𝜌)1

)

1+2𝜖,1+𝜖(𝐑𝑑) × ⋯×

𝑊
((𝜔𝜌)𝑁

)

𝑝𝑁,𝑞𝑁 (𝐑𝑑) to 𝑊
((𝜔𝜌)0

)

1+2𝜖,1+𝜖(𝐑𝑑), and (3.20) holds; 

The problems with uniqueness in Theorem 3.8 appear when one or more Lebesgue exponents are equal to 

infinity, since Σ1(𝐑
𝑑) fails to be dense in corresponding modulation spaces. In these situations we shall use 

narrow convergence, introduced in [28], and is a weaker form of convergence than the norm convergence. 

Definition 3.9 [38]. Let 𝜔𝜌 ∈ 𝒫𝐸(𝐑
2𝑑), 0 ≤ 𝜖 ≤ ∞, 𝑓𝜌, (𝑓𝜌)𝑗

∈ 𝑀(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑), 𝑗 ≥ 1 and let 

(𝐻𝜌)𝑓𝜌 ,𝜔𝜌,1+𝜖(𝜉) ≡ ‖𝑉𝜙𝜌𝑓𝜌(⋅, 𝜉)𝜔𝜌(⋅, 𝜉)‖𝐿1+𝜖(𝐑𝑑)
 

Then (𝑓𝜌)𝑗 is said to converge to 𝑓𝜌 narrowly as 𝑗 → ∞, if the following conditions are fulfilled: 

(1) (𝑓𝜌)𝑗 → 𝑓𝜌 in Σ1
′ (𝐑𝑑) as 𝑗 → ∞; 

(2) (𝐻𝜌)(𝑓𝜌)𝑗,𝜔𝜌,1+𝜖 → (𝐻𝜌)𝑓𝜌,𝜔𝜌,1+𝜖 in 𝐿1+𝜖(𝐑𝑑) as 𝑗 → ∞. 

The following result is a special case of Theorem 4.17 in [31]. The proof is therefore omitted. 

Proposition 3.10 [38]. Let 𝜔𝜌 ∈ 𝒫𝐸(𝐑
2𝑑) and 0 ≤ 𝜖 ≤ ∞ be such that 𝜖 < ∞. Then Σ1(𝐑

𝑑) is dense in 

𝑀(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑) with respect to the narrow convergence. 

We also need the following generalization of Lebesgue's theorem, which follows by a straight-forward 

application of Fatou's lemma. 

Lemma 3.11 [38]. Let 𝜇 be a positive measure on a measurable set Ω, {(𝑓𝜌)𝑗}𝑗=1
∞

 and {(𝑔𝜌)𝑗}𝑗=1
∞

 be sequences 

in 𝐿1(𝑑𝜇) such that (𝑓𝜌)𝑗 → 𝑓𝜌 a. e., (𝑔𝜌)𝑗 → 𝑔𝜌 in 𝐿1(𝑑𝜇)as 𝑗 tends to infinity, and that |(𝑓𝜌)𝑗| ≤ (𝑔𝜌)𝑗 for 

every 𝑗 ∈ 𝐍. Then (𝑓𝜌)𝑗 → 𝑓𝜌 in in 𝐿1(𝑑𝜇) as 𝑗 tends to infinity. 
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Remark 3.12 [38]. The narrow convergence is especially interesting when 𝜖 = ∞. Let 𝜔𝜌 ∈ 𝒫𝐸(𝐑
2𝑑), 0 ≤ 𝜖 ≤

∞,𝜙𝜌 ∈ Σ1(𝐑
𝑑) and 𝑓𝜌 ∈ 𝑀(𝜔𝜌)

∞,1+𝜖(𝐑𝑑), (𝑓𝜌)𝑗 ∈ Σ1(𝐑
𝑑) converges to 𝑓𝜌 narrowly as 𝑗 → ∞, and let (𝐻𝜌)𝑓𝜌,𝜔𝜌,∞ 

be the same as in Definition 3.9, Then we may choose these (𝑓𝜌)𝑗 such that 

lim
𝑗→∞

 𝑉𝜙𝜌(𝑓𝜌)𝑗(𝑥, 𝜉) = 𝑉𝜙𝜌𝑓𝜌(𝑥, 𝜉), |𝑉𝜙𝜌𝑓𝜌(𝑥, 𝜉)𝜔𝜌(𝑥, 𝜉)| ≤ (𝐻𝜌)𝑓𝜌,𝜔𝜌,∞(𝜉) 

and lim
𝑗→∞

 ‖(𝐻𝜌)(𝑓𝜌)𝑗,𝜔𝜌,∞ − (𝐻𝜌)𝑓𝜌,𝜔𝜌,∞‖𝐿1+𝜖
= 0                                       (3.31) 

(See [31, Theorem 4.17] and its proof.) It is then possible to apply Lemma 3.11 in integral expressions 

containing 𝑉𝜙𝜌(𝑓𝜌)𝑗(𝑥, 𝜉) and 𝑉𝜙𝜌𝑓𝜌(𝑥, 𝜉) and perform suitable limit processes. 

Proof of Theorem 3.8. Since (2) is the Fourier transform of (1), it suffices to prove (1). 

The existence of the extension follows from Theorem 3.2. Since 𝑀(𝜔𝜌)
1+𝜖,1+𝜖(𝐑𝑑) increases with (1 + 𝜖), 

we may assume that equality is attained in (3.11) and that 𝑝0 = ⋯𝑝𝑁 = ∞. By replacing 𝑞𝑗 with 

𝑟𝑗 = max(1, 𝑞𝑗) 

it follows from (3.11) that for 𝑟0 =
𝑞0

1+𝜖
≥ 1 and some 𝜖 ≥ 0, 

1

1 + 𝜖
≤∑  

𝑁

𝑗=1

1

𝑟𝑗
− 𝑁 + 1 

and that 

𝑀
((𝜔𝜌)𝑗

)

∞,𝑞𝑗 (𝐑𝑑) ⊆ 𝑀
((𝜔𝜌)𝑗

)

∞,𝑟𝑗 (𝐑𝑑) 

Suppose (𝑔𝜌)1
, (𝑔𝜌)2

∈ 𝑀
((𝜔𝜌)𝑗

)

∞,𝑞𝑗 (𝐑𝑑) are such that (𝑔𝜌)1
 equals (𝑔𝜌)2

 as elements in 𝑀
((𝜔𝜌)𝑗

)

∞,𝑟𝑗 (𝐑𝑑). Then 

(𝑔𝜌)1
 is also equal to (𝑔𝜌)2

 as elements in 𝑀
((𝜔𝜌)𝑗

)

∞,𝑞𝑗 (𝐑𝑑). Hence it suffices to prove the uniqueness of the 

product (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

∈ 𝑀
((𝜔𝜌)0

)

∞,1+𝜖 (𝐑𝑑) of (𝑓𝜌)𝑗
∈ 𝑀

((𝜔𝜌)𝑗
)

∞,𝑞𝑗 (𝐑𝑑), 𝑗 = 1,… , 𝑁, when additionally 𝜖 ≥ 0, i.e., 

1

𝑞1
+⋯+

1

𝑞𝑁
= 𝑁 − 1 +

1

𝑞0
, 𝑞0, … , 𝑞𝑁 ∈ [1,∞] (3.32) 

In particular, all involved modulation spaces are Banach spaces. 

Let 𝑗0 ∈ {1, … , 𝑁} be chosen such that 𝑞𝑗 ≤ 𝑞𝑗0  for every 𝑗 ∈ {1, … , 𝑁}. Then 𝑗 < ∞ when 𝑗 ≠ 𝑗0. 

The product (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

 is uniquely defined and can be obtained through (3.2) for every 𝜑𝜌 ∈

Σ1(𝐑
𝑑) when (𝑓𝜌)𝑗

∈ Σ1(𝐑
𝑑) and (𝑓𝜌)𝑗0

∈ 𝑀
((𝜔𝜌)𝑗0

)

∞,𝑞𝑗0 (𝐑𝑑), 𝑗 ≠ 𝑗0. For general (𝑓𝜌)𝑗
∈ 𝑀

((𝜔𝜌)𝑗
)

∞,𝑞𝑗 (𝐑𝑑), choose 

(𝑓𝜌)𝑗,𝑘
∈ Σ1(𝐑

𝑑), 𝑘 = 1,2, … such that (𝑓𝜌)𝑗,𝑘
 converges to (𝑓𝜌)𝑗

 narrowly as 𝑘 tends to infinity, and that (3.31) 

holds with (𝑓𝜌)𝑗
 and (𝑓𝜌)𝑗,𝑘

 in place of 𝑓𝜌 and (𝑓𝜌)𝑗
, respectively. Then it follows by replacing (𝑓𝜌)𝑗

 by (𝑓𝜌)𝑗,𝑘
 

when 𝑗 ≠ 𝑗0 in (3.2) and applying Lemma 3.11 on the integral in (3.2) that 

ℓ(𝜑𝜌) ≡ lim
𝑘→∞

  ((𝑓𝜌)1,𝑘
⋯(𝑓𝜌)𝑁,𝑘

, 𝜑𝜌) 

exists and defines an element in 𝑓𝜌 ∈ Σ1
′ (𝐑𝑑). This shows that the only possibility to define (𝑓𝜌)1

⋯(𝑓𝜌)𝑁
 in a 

continuous way is to put (𝑓𝜌)1
⋯(𝑓𝜌)𝑁

= 𝑓𝜌, and the asserted uniqueness follows. 

 

IV. Extensions and variations 
We extend the results on step and Fourier step multipliers to certain so-called curve step and Fourier 

curve step multipliers. That is a generalized form of step and Fourier step multipliers, where the constants 𝑎0(𝑗) 
in the definition of 𝑀𝑏,𝑎0  and 𝑀ℱ,𝑏,𝑎0  are replaced by certain nonconstant functions or even distributions. In the 

end we are able to generalize Theorems 2.1 and 2.3 to such multipliers. These achievements are based on 

Hölder-Young relations for multiplications and convolutions in Section 3, In the case of trivial weights and all 

modulation spaces are Banach spaces, our results are similar to [3, Theorem 6] and [27, Proposition 4.12]. 

The multipliers and Fourier multipliers which we consider are given in the following. 

Definition 4.1 [38]. Let 𝑏 ∈ 𝐑+
𝑑  be fixed, Λ𝑏  and 𝑄𝑏  be given by (1.43) and (1.44), and let 

𝑎0 ≡ {𝑎0(𝑗,⋅)}𝑗∈Λ𝑏 ⊆ 𝐶
∞(𝐑𝑑) (4.1) 

be such that 

(∑  

𝑗∈Λ𝑏

 𝑎0(𝑗,⋅)𝜒𝑗+𝑄𝑏) ∈ Σ1
′ (𝐑𝑑). 

Then the multiplier 
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𝑀𝑏,𝑎0: 𝑓𝜌 ↦ ∑  

𝑗∈Λ𝑏

 𝑎0(𝑗,⋅)𝜒𝑗+𝑄𝑏𝑓𝜌, (1.46)′ 

from 𝐶∞(𝐑𝑑) to 𝐿loc 
∞ (𝐑𝑑) is called slope step multiplier with respect to 𝑏 and 𝑎0. The Fourier multiplier 

𝑀ℱ,𝑏,𝑎0 ≡ ℱ
−1 ∘ 𝑀𝑏,𝑎0 ∘ ℱ, (1.45)′ 

is called slope step Fourier multiplier with respect to 𝑏 and 𝑎0. 

First we perform some studies of 

𝑇𝜓𝜌𝑎0 ≡ ∑  

𝑗∈Λ𝑏

 𝑎0(𝑗,⋅)𝜓𝜌(⋅ −𝑗) (4.2) 

where 𝜓𝜌 ∈ 𝒮(𝐑
𝑑) is suitable. The conditions on the sequence (4.1) that we have in mind are that for fixed 

(𝜔𝜌)0
∈ 𝒫𝐸(𝐑

𝑑) and 0 ≤ 𝜖 ≤ ∞, the functions 

𝔟𝑎0,𝛼(𝑥) ≡ sup
𝛽≤𝛼

 (sup
𝑗∈Λ𝑏

 |(𝜕𝑥
𝛽
𝑎0)(𝑗, 𝑥)|) (4.3) 

should belong to 𝐿1+𝜖(𝐑𝑑) for every 𝛼 ∈ 𝐍𝑑, or that for some or for every 𝜖 ≥ 0, the function 

𝔟𝑎0,1+𝜖(𝑥) ≡ sup
𝛼∈𝐍𝑑

 (sup
𝑗∈Λ𝑏

  |
(𝜕𝑥
𝛼𝑎0)(𝑗, 𝑥)

(1 + 𝜖)|𝛼|𝛼!1+𝜖
|) (4.4) 

should belong to 𝐿1+𝜖(𝐑𝑑). 
Proposition 4.2(see [38]). Let 𝑏 ∈ 𝐑+

𝑑  be fixed, Λ𝑏  be given by (1.43), 𝜖 > 0, (4.1) be a sequence of functions 

on 𝐶∞(𝐑𝑑), 𝜓𝜌 ∈ 𝒮(𝐑
𝑑), and let 𝑇𝜓𝜌𝑎0, 𝔟𝑎0,𝛼 and 𝔟𝑎0,1+𝜖 be given by (4.2)-(4.4) when 𝛼 ∈ 𝐍𝑑 and 𝜖 ≥ 0. Then 

the following is true: 

(1) if 𝔟𝑎0,𝛼 ∈ 𝐿loc 
∞ (𝐑𝑑) for 𝛼 = (0,… ,0) ∈ 𝐍𝑑, then the series in (4.2) is locally uniformly convergent and 

defines an element in 𝐶(𝐑𝑑); 
(2) if 𝔟𝑎0,𝛼 ∈ 𝐿loc 

∞ (𝐑𝑑) for every 𝛼 ∈ 𝐍𝑑, then 𝑇𝜓𝜌𝑎0 ∈ 𝐶
∞(𝐑𝑑) and 

|(𝜕𝛼𝑇𝜓𝜌𝑎0) (𝑥)| ≲ 𝔟𝑎0,𝛼(𝑥), 𝑥 ∈ 𝐑
𝑑 

for every 𝛼 ∈ 𝐍𝑑; 

(3) if in addition 𝜓𝜌 ∈ 𝒮1+𝜖
1+𝜖(𝐑𝑑) and 𝔟𝑎0,ℎ0 ∈ 𝐿loc 

∞ (𝐑𝑑), then 

|(𝜕𝛼𝑇𝜓𝜌𝑎0) (𝑥)| ≲ (1 + 𝜖)
𝛼𝛼!1+𝜖 𝔟𝑎0,ℎ0(𝑥), 𝑥 ∈ 𝐑

𝑑 

for some 𝜖 ≥ 0; 

(4) if in addition 𝜓𝜌 ∈ Σ1+𝜖
1+𝜖(𝐑𝑑), 𝑐 > 1 and 𝔟𝑎0,ℎ0 ∈ 𝐿loc 

∞ (𝐑𝑑), then 

|(𝜕𝛼𝑇𝜓𝜌𝑎0) (𝑥)| ≲ (𝑐ℎ0)
𝛼𝛼!1+𝜖 𝔟𝑎0,ℎ0(𝑥), 𝑥 ∈ 𝐑

𝑑  

Proof. We only prove (1) and (4). The other assertions follow by similar arguments and are left for the reader. 

Let Λ = Λ𝑏 , 𝛼 = (0, … ,0) ∈ 𝐍
𝑑 and suppose that 𝔟𝑎0,𝛼 ∈ 𝐿loc 

∞ (𝐑𝑑). We have 

∑ 

𝑗∈Λ

∑

𝜌

|𝑎0(𝑗, 𝑥)𝜓𝜌(𝑥 − 𝑗)| ≤ 𝔟𝑎0,𝛼(𝑥)∑  

𝑗∈Λ

∑

𝜌

|𝜓𝜌(𝑥 − 𝑗)| ≍ 𝔟𝑎0,𝛼(𝑥), 

which shows that (4.2) is locally uniformly convergent. Since 𝑎0(𝑗,⋅) and 𝜓𝜌(⋅ −𝑗) are continuous functions, it 

follows that 𝑇𝜓𝜌𝑎0 in (4.2) is continuous. 

Next suppose additionally that 𝜓𝜌 ∈ Σ1+𝜖
1+𝜖(𝐑𝑑) and consider 𝑓𝜌 = 𝑇𝜓𝜌𝑎0. For every 𝛼 ∈ 𝐍𝑑, 𝜀 > 0 and 

𝜖 > −1, we have 

|(𝜕𝛼𝑓𝜌)(𝑥)|≤∑  

𝑗∈Λ

 ∑  

𝛾≤𝛼

 ∑

𝜌

(
𝛼

𝛾
) |𝜕𝛼−𝛾𝑎0(𝑗, 𝑥)||𝜕

𝛾𝜓𝜌(𝑥 − 𝑗)|

≲ 𝔟𝑎0,ℎ0(𝑥)∑  

𝑗∈Λ

 ∑  

𝛾≤𝛼

 (
𝛼

𝛾
) ℎ0

|𝛼−𝛾|
(𝛼 − 𝛾)!1+𝜖 𝜀|𝛾|𝛾′𝑒−(1+𝜖)|𝑥−𝑗|

1
1+𝜖

≤ (ℎ0 + 𝜀)
|𝛼|𝛼!1+𝜖 𝔟𝑎0,ℎ0(𝑥)∑  

𝑗∈Λ

  𝑒−(1+𝜖)|𝑥−𝑗|
1
1+𝜖 ≍ (ℎ0 + 𝜀)

|𝛼|𝛼!1+𝜖 𝔟𝑎0,ℎ0(𝑥)

 

and the result follows. 

In the next result we show that if 𝔟𝑎0,𝛼 or 𝔟𝑎0,1+𝜖 in the previous proposition belong to 

W1 ((𝜔𝜌)0
, ℓ1+𝜖), then for 𝑇𝜓𝜌𝑎0 in (4.2) we have 

𝑇𝜓𝜌𝑎0 ∈ 𝑀((𝜔𝜌)1+𝜖)
1+𝜖,1+𝜖 (𝐑𝑑)⋂ 𝑊

((𝜔𝜌)1+𝜖
)

1+𝜖,1+𝜖 (𝐑𝑑) (4.5) 

and 
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‖𝑇𝜓𝜌𝑎0‖𝑀
((𝜔𝜌)1+𝜖

)

1+𝜖,1+𝜖
+ ‖𝑇𝜓𝜌𝑎0‖𝑊

((𝜔𝜌)1+𝜖
)

1+𝜖,1+𝜖
≲ max
|𝛼|≤𝑁

 ‖𝔟𝑎0,𝛼‖W1((𝜔𝜌)0
,ℓ1+𝜖)

(4.6)
 

or 

‖𝑇𝜓𝜌𝑎0‖𝑀
((𝜔𝜌)1+𝜖

)

1+𝜖,1+𝜖
+ ‖𝑇𝜓𝜌𝑎0‖𝑊

((𝜔𝜌)1+𝜖
)

1+𝜖,1+𝜖
≲ ‖𝔟𝑎0,1+𝜖‖W1((𝜔𝜌)0

,ℓ1+𝜖)
(4.7)

 

See also Remark 1.9 for notations. 

Proposition 4.3(see [38]). Let (𝜔𝜌)0
∈ 𝒫𝐸(𝐑

𝑑), Λ ⊆ 𝐑𝑑 , 𝜖 > 0, 𝑇𝜓𝜌𝑎0, 𝔟𝑎0,𝛼, 𝔟𝑎0,1+𝜖 and 𝜓𝜌 be the same as in 

Proposition 4.2, and let 0 ≤ 𝜖 ≤ ∞. Then the following is true: 

(1) if in addition (𝜔𝜌)0
∈ 𝒫(𝐑𝑑), 𝔟𝑎0,𝛼 ∈ W

1 ((𝜔𝜌)0
, ℓ1+𝜖) for every 𝛼 ∈ N𝑑, and 𝜗1+𝜖(𝑥, 𝜉) =

(𝜔𝜌)0
(𝑥)⟨𝜉⟩1+𝜖 when 𝜖 ≥ 0, then (4.5) and (4.6) hold; 

(2) if in addition (𝜔𝜌)0
∈ 𝒫𝐸,1+𝜖

0 (𝐑𝑑), 𝜓𝜌 ∈ 𝒮1+𝜖
1+𝜖(𝐑𝑑), 𝔟𝑎0,1+𝜖 ∈ W

1 ((𝜔𝜌)0
, ℓ1+𝜖) for some 𝜖 ≥ 0, and 

𝜗1+𝜖(𝑥, 𝜉) = (𝜔𝜌)0
(𝑥)𝑒(1+𝜖)|𝜉|

1
1+𝜖

 when 𝜖 ≥ 0, then (4.5) and (4.7) hold for some 𝜖 ≥ 0; 

(3) if in addition (𝜔𝜌)0
∈ 𝒫𝐸,1+𝜖(𝐑

𝑑), 𝜓𝜌 ∈ Σ1+𝜖
1+𝜖(𝐑𝑑), 𝔟𝑎0,1+𝜖 ∈ W

1 ((𝜔𝜌)0
, ℓ1+𝜖) for every 𝜖 ≥ 0, and 

𝜗1+𝜖(𝑥, 𝜉) = (𝜔𝜌)0
(𝑥)𝑒(1+𝜖)|𝜉|

1
1+𝜖

 when 𝜖 ≥ 0, then (4.5) and (4.7) hold for every 𝜖 > −1. 

Proof. We only prove (2). The other assertions follow by similar arguments and are left for the reader. 

Let 𝑓𝜌 = 𝑇𝜓𝜌𝑎0, (𝜓𝜌)𝑗 = 𝜓𝜌(⋅ −𝑗) and 𝜙̃ρ(𝑥) = 𝜙𝜌(−𝑥). Since 

(𝑉𝜙𝜌𝑓𝜌) (𝑥, 𝜉) = 𝑒
−𝑖⟨𝑥,𝜉⟩ (𝑉𝜙̂𝜌𝑓𝜌) (𝜉, −𝑥) 

we get 

(𝑉𝜙𝜌𝑓𝜌) (𝑥, 𝜉) =𝑒
−𝑖⟨𝑥,𝜉⟩∑ 

𝑗∈Λ

 (𝑉𝜙̂𝜌ℱ((𝜓𝜌)𝑗𝑎0(𝑗,⋅))) (𝜉, −𝑥)

=𝑒−𝑖⟨𝑥,𝜉⟩∑ 

𝑗∈Λ

 ℱ−1 (ℱ((𝜓𝜌)𝑗𝑎0(𝑗,⋅)) ⋅ 𝜙̂ρ(⋅ −𝜉)) (𝑥)

= (2𝜋)−
𝑑

2𝑒−𝑖⟨𝑥,𝜉⟩∑ 

𝑗∈Λ

 (((𝜓𝜌)𝑗𝑎0(𝑗,⋅)) ∗ (𝜙̃ρ ⋅ 𝑒
𝑖⟨⋅,𝜉⟩)) (𝑥)

 

Hence, Leibnitz rule, integrations by parts and Proposition 1.1 give 

|𝜉𝛼 (𝑉𝜙𝜌𝑓𝜌) (𝑥, 𝜉)| ≲∑  

𝑗∈Λ

  |(((𝜓𝜌)𝑗
𝑎0(𝑗,⋅)) ∗ (𝜙̃ρ ⋅ (𝐷𝑥

𝛼𝑒𝑖⟨⋅,𝜉⟩))) (𝑥)|

≤∑
𝛼!

𝛾1! 𝛾2! 𝛾3!
(|(𝜕𝛾1(𝜓𝜌)𝑗

) (𝜕𝛾2𝑎0(𝑗,⋅))| ∗ |𝜕
𝛾3𝜙̃𝜌|) (𝑥)

≲∑ 3|𝛼|1 + 𝜖|𝛾1+𝛾2+𝛾3|(𝛾1! 𝛾2! 𝛾3!)
1+𝜖 ((𝑒−(1+𝜖)|⋅−𝑗|

1
1+𝜖𝔟𝑎0,1+𝜖) ∗ 𝑒

−(1+𝜖)|⋅|
1
1+𝜖) (𝑥)

≤ (9(1 + 𝜖))|𝛼|𝛼!1+𝜖∑ 

𝑗∈Λ

 ((𝑒−(1+𝜖)|⋅−𝑗|
1
1+𝜖𝔟𝑎0,1+𝜖) ∗ 𝑒

−(1+𝜖)|⋅|
1
1+𝜖) (𝑥)

  (9(1 + 𝜖))|𝛼|𝛼!1+𝜖 (𝔟𝑎0,1+𝜖 ∗ 𝑒
−(1+𝜖)|⋅|

1
1+𝜖) (𝑥)

 

Here the second and third sums are taken with respect to all 𝑗 ∈ Λ and all 𝛾1, 𝛾2, 𝛾3 ∈ 𝐍
𝑑 such that 𝛾1 + 𝛾2 +

𝛾3 = 𝛼. 

This implies that for some constant 𝐶 which is independent of 1 + 𝜖, and 𝛼 we have 

(
|𝜉|

1

1+𝜖

(𝐶(1 + 𝜖))
1

1+𝜖

)

𝑘

|𝑉𝜙𝜌𝑓𝜌(𝑥, 𝜉)|

1

1+𝜖
≲ 2−𝑘 ((𝔟𝑎0,1+𝜖 ∗ 𝑒

−(1+𝜖)|⋅|
1
1+𝜖) (𝑥))

1

1+𝜖

 

and by taking the sum over all 𝑘 ≥ 0 we land on 

|𝑉𝜙𝜌𝑓𝜌(𝑥, 𝜉)𝑒
𝑟(1+𝜖)|𝜉|

1
1+𝜖
| ≲ (𝔟𝑎0,1+𝜖 ∗ 𝑒

−(1+𝜖)|⋅|
1
1+𝜖) (𝑥), 𝑟(1+𝜖) =

1 + 𝜖

(𝐶(1 + 𝜖))
1

1+𝜖

 

By multiplying with (𝜔𝜌)0
 and using that (𝜔𝜌)0

(𝑥 + 𝑦) ≲ (𝜔𝜌)0
(𝑥)𝑒(1+𝜖)|𝑦|

1
1+𝜖

 for every 𝜖 ≥ 0, we obtain 
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|𝑉𝜙𝜌𝑓𝜌(𝑥, 𝜉)𝜗𝑟(1+𝜖)(𝑥, 𝜉)| ≲ ((𝔟𝑎0,1+𝜖(𝜔𝜌)0
) ∗ 𝑒−(1+𝜖)|⋅|

1
1+𝜖) (𝑥), 𝑟(1+𝜖) =

1 + 𝜖

(𝐶(1 + 𝜖))
1

1+𝜖

(4.8) 

for some 𝜖 ≥ 0. 

By applying [32, Proposition 2.5] on the last inequality we obtain 

‖𝑉𝜙𝜌𝑓𝜌‖W(𝜗𝑟(1+𝜖) ,ℓ
1+𝜖,∞)

+ ‖𝑉𝜙𝜌𝑓𝜌‖W(𝜗𝑟(1+𝜖) ,ℓ∗
1+𝜖,∞)

≲ ‖𝑒−(1+𝜖)|⋅|
1
1+𝜖‖

W(1,ℓmin(1,1+𝜖))
‖𝔟𝑎0,1+𝜖‖W(𝜗𝑟(1+𝜖) ,ℓ

1+𝜖)
 

The result now follows for general 0 ≤ 𝜖 ≤ ∞ from the relations ‖𝑉𝜙𝜌𝑓𝜌‖W(𝜗𝑟(1+𝜖) ,ℓ
1+𝜖,∞)

≍ ‖𝑓𝜌‖𝑀1+𝜖,∞,  and 

𝑀
(𝜗2(1+𝜖))
1+𝜖,∞ (𝐑𝑑) ↪ 𝑀(𝜗1+𝜖)

1+𝜖,1+𝜖(𝐑𝑑) ↪ 𝑀(𝜗1+𝜖)
1+𝜖,∞(𝐑𝑑), and similarly with 𝑊(𝜔𝜌)

1+𝜖,1+𝜖
 and ℓ∗

1+𝜖,1+𝜖 spaces in place of 

𝑀(𝜔𝜌)
1+𝜖,1+𝜖

 and ℓ1+𝜖,1+𝜖 spaces. 

We have now the following extension of Theorem 2.1. Here involved Lebesgue exponents and weight 

functions should fullfil 
1

1 + 3𝜖
−

1

1 + 2𝜖
≤

1

1 + 𝜖
,
1

1 + 2𝜖
−

1

1 + 3𝜖
≥ max (

1

1 + 3𝜖
− 1,0) (4.9) 

and 

(𝜔𝜌)0,2
(𝑥) ≲ (𝜔𝜌)0,1

(𝑥)(𝜔𝜌)0
(𝑥) (4.10) 

Theorem 4.4(see [38]). Let 0 ≤ 𝜖 ≤ ∞, 0 < 𝜖 ≤ ∞, 1 + 2𝜖, 1 + 3𝜖 ∈ (min(1,1 + 3𝜖),∞) be such that (4.9) 

holds, 𝑏 > 0, (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

 be weights on 𝐑𝑑 such that (4.10) holds true, 𝜔𝜌(𝑥, 𝜉) = (𝜔𝜌)0
(𝑥) and 

(𝜔𝜌)𝑗
(𝑥, 𝜉) = (𝜔𝜌)0,𝑗

(𝑥), 𝑗 = 1,2, 𝑥, 𝜉 ∈ 𝐑𝑑 . Let 𝑎0 in (4.1) be such that Λ = Λ𝑏  and 𝑎0(𝑗,⋅) ∈ 𝐶
∞(𝐑𝑑) for 

every 𝑗 ∈ Λ𝑏 , and let 𝔟𝑎0,𝛼 and 𝔟𝑎0,1+𝜖 be given by (4.3) and (4.4). Also suppose that one of the following 

conditions hold true: 

(i) 𝔟𝑎0,𝛼 ∈ W
1 ((𝜔𝜌)0

, ℓ1+𝜖) for every 𝛼 ∈ 𝐍𝑑, and (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

∈ 𝒫(𝐑𝑑), 𝑗 = 1,2; 

(ii) 𝔟𝑎0,1+𝜖 ∈ W
1 ((𝜔𝜌)0

, ℓ1+𝜖) for some 𝜖 ≥ 0, and (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

∈ 𝒫𝐸,1+𝜖
0 (𝐑𝑑), 𝑗 = 1,2 ; 

(iii) 𝔟𝑎0,1+𝜖 ∈ W
1 ((𝜔𝜌)0

, ℓ1+𝜖) for every 𝜖 ≥ 0, and (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

∈ 𝒫𝐸,1+𝜖(𝐑
𝑑), 𝑗 = 1,2 . 

Then the following is true: 

(1) 𝑀𝑏,𝑎0  is continuous from 𝑊
((𝜔𝜌)1

)

1+2𝜖,1+𝜖(𝐑𝑑) to 𝑊
((𝜔𝜌)2

)

1+3𝜖,1+𝜖(𝐑𝑑); 

(2) 𝑀𝑏,𝑎0  is continuous from 𝑀
((𝜔𝜌)1

)

1+2𝜖,1+2𝜖(𝐑𝑑) to 𝑀
((𝜔𝜌)2

)

1+3𝜖,1+3𝜖(𝐑𝑑). 

Proof. We only prove the result when (iii) holds. The other cases follow by similar arguments and is left for the 

reader. 

Let 𝜓𝜌 ∈ Σ1+𝜖
1+𝜖(𝐑𝑑) be such that 𝜓𝜌 = 1 on 𝑄𝑏  and supported in a neighbourhood of 𝑄𝑏 , and let 

Λ1, … , Λ𝑁 be sublattices of Λ = Λ𝑏  such that ⋃  𝑁
𝑗=1 Λ𝑗 = Λ  and  supp𝜓𝜌(⋅ −𝑘1)⋂ supp𝜓𝜌(⋅ −𝑘2) =

∅, 𝑘1, 𝑘2 ∈ Λ𝑗 , 𝑘1 ≠ 𝑘2, for every 𝑗 = 1,… , 𝑁. Then 

𝑀𝑏,𝑎0 =∑  

𝑁

𝑗=1

𝑆𝑗 , 

where 𝑆𝑗 = 𝑆2,𝑗 ∘ 𝑆1,𝑗, with 𝑆1,𝑗 and 𝑆2,𝑗 being the multiplication operators with the functions 

(𝜑𝜌)1,𝑗 ≡ ∑  

𝑘∈Λ𝑗

∑

𝜌

𝑎0(𝑘,⋅)𝜓𝜌(⋅ −𝑘)  and (𝜑𝜌)2,𝑗 ≡ ∑  

𝑘∈Λ𝑗

𝜒𝑄𝑏(⋅ −𝑘) 

respectively. The result follows if we prove the asserted continuity properties for 𝑆𝑗 in place of 𝑀𝑏,𝑎0 . 

By Proposition 4.3 it follows that (𝜑𝜌)1,𝑗 ∈ 𝑀(𝜗1+𝜖)
1+𝜖,1−𝜖(𝐑𝑑) ∩𝑊(𝜗1+𝜖)

1+𝜖,1−𝜖(𝐑𝑑) for every 0 ≤ 𝜖 ≤ 1 and 

𝜖 ≥ 0. Hence, if we choose (1 − 𝜖) small enough, Theorems 3.2 and 3.3 show that 𝑆1,𝑗 is continuous from 

𝑊
((𝜔𝜌)1

)

1+2𝜖,1−𝜖(𝐑𝑑) to 𝑊
((𝜔𝜌)2

)

1+3𝜖,1−𝜖(𝐑𝑑), and from 𝑀
((𝜔𝜌)1

)

1+2𝜖,1+2𝜖(𝐑𝑑) to 𝑀
((𝜔𝜌)2

)

1+3𝜖,1+2𝜖(𝐑𝑑). In view of Theorem 2.1 one 

has that 𝑆2,𝑗 is continuous on 𝑊
((𝜔𝜌)2

)

1+3𝜖,1−𝜖(𝐑𝑑), and from 𝑀
((𝜔𝜌)2

)

1+3𝜖,1+2𝜖(𝐑𝑑) to 𝑀
((𝜔𝜌)2

)

1+3𝜖,1+3𝜖(𝐑𝑑), for every 𝑗. By 

combining these mapping properties it follows that 𝑆𝑗 is continuous from 𝑊
((𝜔𝜌)1

)

1+2𝜖,1−𝜖(𝐑𝑑) to 𝑊
((𝜔𝜌)2

)

1+3𝜖,1−𝜖(𝐑𝑑), and 

from 𝑀
((𝜔𝜌)1

)

1+2𝜖,1+2𝜖(𝐑𝑑) to 𝑀
((𝜔𝜌)2

)

1+2𝜖,1+3𝜖(𝐑𝑑) for every 𝑗, and the result follows. 

By Fourier transforming the latter result we obtain the following extension of Theorem 2.3, The details 

are left for the reader. Here 
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1

1 + 3𝜖
−

1

1 + 2𝜖
≤

1

1 − 𝜖
 and 

1

1 + 2𝜖
−

1

1 + 3𝜖
≥ max (

1

1 + 3𝜖
− 1,0) (4.11) 

Theorem 4.5 [38]. Let 0 ≤ 𝜖 ≤ ∞, 0 < 𝜖 < ∞, 1 + 2𝜖, 1 + 3𝜖 ∈ (min(1,1 + 3𝜖),∞) be such that (4.11) holds, 

𝑏 > 0, (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

 be weights on 𝐑𝑑 such that (4.10) holds true, 𝜔𝜌(𝑥, 𝜉) = (𝜔𝜌)0
(𝜉) and (𝜔𝜌)𝑗

(𝑥, 𝜉) =

(𝜔𝜌)0,𝑗
(𝜉), 𝑗 = 1,2, 𝑥, 𝜉 ∈ 𝐑𝑑. Let (𝑓𝜌)0 in (4.1) be such that Λ = Λ𝑏  and 𝑎0(𝑗,⋅) ∈ 𝐶

∞(𝐑𝑑) for every 𝑗 ∈ Λ𝑏, 

and let 𝔟𝑎0,𝛼 and 𝔟𝑎0,1+𝜖 be given by (4.3) and (4.4). Also suppose that one of the following conditions hold 

true: 

(i) 𝔟𝑎0,𝛼 ∈ W
1 ((𝜔𝜌)0

, ℓ1+𝜖) for every 𝛼 ∈ N𝑑 , and (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

∈ 𝒫(𝐑𝑑), 𝑗 = 1,2; 

(ii) 𝔟𝑎0,1+𝜖 ∈ W
1 ((𝜔𝜌)0

, ℓ1+𝜖) for some 𝜖 ≥ 0, and (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

∈ 𝒫𝐸,1+𝜖
0 (𝐑𝑑), 𝑗 = 1,2 ; 

(iii) 𝔟𝑎0,1+𝜖 ∈ W
1 ((𝜔𝜌)0

, ℓ1+𝜖) for every 𝜖 ≥ 0, and (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

∈ 𝒫𝐸,1+𝜖(𝐑
𝑑), 𝑗 = 1,2 . 

Then the following is true: 

(1) 𝑀ℱ,𝑏,𝑎0  is continuous from 𝑀
((𝜔𝜌)1

)

1+𝜖,1+2𝜖(𝐑𝑑) to 𝑀
((𝜔𝜌)2

)

1+𝜖,1+3𝜖(𝐑𝑑); 

(2) 𝑀ℱ,𝑏,𝑎0  is continuous from 𝑊
((𝜔𝜌)1

)

1+2𝜖,1+2𝜖(𝐑𝑑) to 𝑊
((𝜔𝜌)2

)

1+2𝜖,1+3𝜖(𝐑𝑑). 

We observe that Theorems 4.4 and 4.5 include the following extensions of Theorems 2.1 and 2.3. 

Corollary 4.6 [38]. Let 0 ≤ 𝜖 ≤ ∞, 0 < 𝜖 ≤ ∞, 1 + 2𝜖, 1 + 3𝜖 ∈ (min(1,1 + 𝜖),∞) be such that (4.9) hold, 

𝑏 > 0, (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

∈ 𝒫𝐸(𝐑
𝑑) be such that (4.10), (𝜔𝜌)𝑗

(𝑥, 𝜉) = (𝜔𝜌)0,𝑗
(𝑥), 𝑗 = 1,2, 𝑥, 𝜉 ∈ 𝐑𝑑 , 𝑥, 𝜉 ∈ 𝐑𝑑 , 

and let 𝑎0 ∈ ℓ((𝜔𝜌)0)
1+𝜖 (Λ𝑏). Then the following is true: 

(1) 𝑀𝑏,𝑎0  is continuous from 𝑊
((𝜔𝜌)1

)

1+2𝜖,1+𝜖(𝐑𝑑) to 𝑊
((𝜔𝜌)2

)

1+3𝜖,1+𝜖(𝐑𝑑); 

(2) 𝑀𝑏,𝑎0  is continuous from 𝑀
((𝜔𝜌)1

)

1+2𝜖,1+2𝜖(𝐑𝑑) to 𝑀
((𝜔𝜌)2

)

1+3𝜖,1+3𝜖(𝐑𝑑). 

Corollary 4.7 [38]. Let 0 ≤ 𝜖 ≤ ∞, 1 + 2𝜖, 1 + 3𝜖 ∈ (min(1,1 + 𝜖),∞), 0 < 𝜖 ≤ ∞ be such that (4.11) hold, 

𝑏 > 0, (𝜔𝜌)0
, (𝜔𝜌)0,𝑗

∈ 𝒫𝐸(𝐑
𝑑) be such that (4.10) holds, (𝜔𝜌)𝑗

(𝑥, 𝜉) = (𝜔𝜌)0,𝑗
(𝜉), 𝑗 = 1,2, 𝑥, 𝜉 ∈ 𝐑𝑑 , 𝑥, 𝜉 ∈

𝐑𝑑, and let 𝑎0 ∈ ℓ((𝜔𝜌)0)
1+𝜖 (Λ𝑏). Then the following is true: 

(1) 𝑀ℱ,𝑏,𝑎0  is continuous from 𝑀
((𝜔𝜌)1

)

1+𝜖,1+2𝜖(𝐑𝑑) to 𝑀
((𝜔𝜌)2

)

1+𝜖,1+3𝜖(𝐑𝑑); 

(2) 𝑀ℱ,𝑏,𝑎0  is continuous from 𝑊
((𝜔𝜌)1

)

1+2𝜖,1+2𝜖(𝐑𝑑) to 𝑊
((𝜔𝜌)2

)

1+3𝜖,1+3𝜖(𝐑𝑑). 

Proof of Corollaries 4.6 and 4.7. Let 𝜓𝜌 ∈ Σ1
1+𝜖(𝐑𝑑) be compactly supported and chosen such that 𝜓𝜌 = 1 on 

𝑄𝑏 . Then the results follow by letting 𝑎0(𝑗,⋅) = 𝑎0(𝑗)𝜓𝜌(⋅ −𝑗) in Theorems 4.4 and 4.5. The details are left for 

the reader. 
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