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Abstract
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I.  Introduction
We discuss nonlinear operations f; = F(f;), that is, the composition of functions F and f;. Let X be a

function space. Then does the nonlinear operation map X to the same space X ? For the simplest case F(z) =
z?%, that is, F(f;) = f{#, the answer is yes when X is a multiplication algebra. From this observation, we
immediately obtain the affirmative answer to this question for any entire functions F(z) and multiplication
algebras X. The typical examples of multiplication algebras are L'*€-Sobolev spaces Hi*¢(R™)(0 < € < o)
with s > n/1 + € and Besov spaces By "' *?¢(R™)(0 < € < ) with s > n/1 + € (see Propositions the two
follows).
When F fails to satisfy the analyticity [19], answering this question is not so straightforward. Then however
have an affirmative answer by virtue of the theory of paradifferential operators introduced by [3] and developed
by [9]. The main argument is to write the composition F(f;) in the form of a linear operation

F(f) = My, (x, D),
(assuming that F(0) = 0, f; € H1T¢(R™) is real-valued, and s > n/1 + € to be embedded in L®(R™)), where
Mg f,(x, D) is a pseudo-differential operator of the Hérmander class S?,. Since pseudo-differential operators of
this class are H1*¢-bounded for s > 0, we get the following result (see [19]):
Theorem A([9, Theorem 1]). Let 0 < € < o and s > n/1 + €. Assume that f;: R" - R, f; € H}*¢(R"),F €
C%(R) and F(0) = 0. Then, we have F(f;) € H1T¢(R").
Remark 1.1 [19]. We can state Theorem A in an explicit form (see, e.g., Taylor [17, Section 3.1]):

I 1
1 FGllgre < CIFlgrssgy Y (14 NS )full g

l L
where Q = {¢t: |t| < C'||fi|| =}, and the constants C and C’ are universal.

By the same argument, we have a similar conclusion for Besov spaces (see [13]), and a result for
complex-valued sequence of functions f;: R® — C can be also stated considering the nonlinear operation f; ~
F(Ref;,Imf;) with two-variable functions F(s,t), although here we only consider real-valued functions
fi: R™ = R just for the sake of simplicity.

We establish a similar result for modulation spaces R™). Modulation spaces are relatively
new function spaces introduced by [4] in 1980's to measure the decaying and regularity properties of a function
or distribution in a way different from L'*€-Sobolev spaces or Besov spaces. The main idea of modulation
spaces is to consider the space variable and the variable of its Fourier transform simultaneously, while they are
treated independently in L'*€-Sobolev spaces and Besov spaces. Because of their nature, modulation spaces

1+€,1+2€
M; (
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have wide several significant properties. For example, the Schodinger propagator e!P ” and the wave

propagator e“?l map the modulation space M "<**%¢ to the same space ([1]), which means, we have no loss of
regularity when we work on modulation spaces, while it is not true for L'*¢-Sobolev spaces H1*¢ or Besov
spaces Be T2 (see [10]). When we try to utilize this advantage for nonlinear analysis, it is indispensable to
ask whether the nonlinear operation also maps Mz %€ to itself.

We know that modulation spaces M t¢1*2€(R™)(0 < € < ) with s > % (with s = 0 whene =0)

are multiplication algebras, where € = 0 (Proposition 3.3), hence nonlinear operation f; = F(f;) maps these
spaces to themselves when F(z) is fully entire. Then it is natural to expect the same conclusion for non-analytic
F as is the case for L**¢-Sobolev spaces and Besov spaces. Unfortunately, it is not obvious because the
argument of paradifferential operators does not work in this case because pseudodifferential operators of class

Sﬁ s With § > 0 have exotic mapping property and are not MM 2€ bounded (see [15]). Furthermore, if F(z) is

not necessarily analytic, a negative answer for M;Jre'l is known. In fact, [2] established that the nonlinear

operation f; = F(Ref;, Imf;) is a mapping on Mg'l (R™) if and only if F is real analytic and F(0,0) = 0, and [8]

generalized this result to the case M; *e1 with 0 < € < oo although it is restricted to the case when n = 1. On

the other hand, it is still possible for general Mi*'*?¢(R™) with 0 < € < o0 and s > % when F is not

analytic. Our main result states that it is affirmative for (1 + €) in a range away from € = O(see [19]):
Theorem 1.1 [19]. Let 0 < e < 0,0<e<o0 (or e =00 ) and s > % Assume that fi:R" - R, f; €
MIFTE2E(RM), F € C*(R) and F(0) = 0. Then, we have F(f;) € Mt 2€(R™).

. 2 . . .
We remark that the condition s > Tn; (with s = 0 when € = 0 ) is necessary for modulation spaces

MITEI2€(R™) to be multiplication algebras ([6]). See also Appendix B. We also remark that Theorem 1.1 is

reduced to the following result due to the local equivalence between the modulation spaces M. *'*%€ and the
Fourier Lebesgue spaces FLLY :

Theorem 1.2 [19]. Let 0 < ¢ < 0 and s > ——. Assume that f;: R" — R, f; € FLL*(R™), F € C*(R) and
F(0) = 0. Then, we have F(f;) € FLL*¢(R™).

Finally, see [12] which also discusses the non-analytic nonlinear operations, but on modulation spaces
with quasi-analytic regularity.

We introduce basic notations of function spaces and their properties which we used. We list examples
of multiplication algebras as a starting point of our argument. We prove the theorem of nonlinear operation on
Fourier Lebesgue spaces. We lift it to the case of modulation spaces by using the local equivalence between
Fourier Lebesgue spaces and modulation spaces. This equivalence is a well-known fact but the proof is given in
Appendix A for the sake of self-containedness. In Appendix B, necessity for Fourier Lebesgue spaces and
modulation spaces to be multiplication algebras is considered (see [19]).

II.  Preliminaries

2.1. Basic notations

We denote by R,Z and Z,the sets of reals, integers and non-negative integers, respectively. The
notation a S b means a < Cbh with a constant C > 0 which may be different in each occasion, and a ~ b means
asbandbsSa For0<e< 00,? is the dual number of (1 + €). We write (x) = (1 + |x|*)*/? for x € R"
and [s] = max{n € Z:n < s} fors € R.

We denote the Schwartz space of rapidly decreasing smooth functions on R™ by § = S(R™) and its
dual, the space of tempered distributions, by §' = §'(R™). The Fourier transform and the inverse Fourier
transform of f; € §(R™) are given by

A . " 1 .
FRO=AO = [ D et hiedrand i) = i) = g [ DT e i@
R R 5
respectively. For m € §'(R™), the Fourier multiplier operator is given by
m(D)f; = FHm - Ffi] = (F~'m) * f;
and for s € R the Bessel potential by (I — A)S/2f; = F1[(-)s - Ff;] for f; € S(R™).

We will use some function spaces. The space of smooth functions with compact support on R" is
denoted by C5° = C°(R™). The Lebesgue space L1*¢ = [1*€(R™) is equipped with the norm

1/1+€
Ifill 1+e = (fR Z Iﬁ-(x)l“edx)
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for 0 < e < oo. If € = oo, ||f;|| .0 = esssup |fi(x)|. Moreover, we denote the L'*€-Sobolev space Hl*¢ by
xeR™

HI*€(R™) = {ﬁ- € 8" R™: [Ifillgare = [|(1 = )| oae < oo} for 0 < € < o and s € R, and the (weighted)
Fourier Lebesgue space FLL€ by FLLT¢(R™) = {fi € S'(RM): Ifillppa+e = ||(-)5fi||L1+E < 00} for0<e<o
and s € R. We remark that H2 = FL2. Moreover, by the Holder inequality, we have FLLt¢(R") & HZ(R") if

0 < e <ooand n(— - —) < s — §. Note that the second condition is equivalent to § < n/2 + (s - T) From
this relation, we immediately see the followmg
Proposition 2.1 [19]. Let 0 < € < oo, > — and n/2<s<n/2+ (s - E) Then, we have

TL?”(R”) o Hi(R™) © L*(R™)
For 0 < e < o0 and s € R, we denote by £1*€ the set of all complex number sequences {ay }xezn such that

1/14+€
I{awkezn |l pa+e = (Z (k)5(1+6)|ak|1+6> <o

kezn
if € < 0, and |[{ay}keznllee = sup (k)*|ay| < oo if € = co. For the sake of simplicity, we will write [|all ,1+e
KeZ™
instead of the more correct notation [[{ay}rezn llp1+e.

We end by mentioning a key fact on the boundedness of Fourier multiplier operators invented by [7,
Theorem 9].

Proposition 2.2 [19]. Let 0 < € < o0 and s > n/2 + €. Then, if ——

oo when € = 0, we have

2(2+e) ( +e

<l+e<——= when6¢00r0<6<

1D M@ fillysve S Imllgzee Y. lfllase

L 13
for all m € H2*¢(R™) and all f; € L**¢(R™).
Remark 2.1 [19]. In Proposition 2.2, we excluded € = oo for the case € = 0. This comes from that S is not
dense in L. In this case, we regard m(D)f; as the convolution (F~1m)  f;. Then, this is well-defined since
H2(R™) & FLY(R™) for s > n/2, and thus Proposition 2.2 holds for € = oo and € = 0. In fact, if s > n/2,

» m(D)ﬁ||Loo=”Z FEmy s fll < IFmla ) flle S il . Wfilles

L® i i
holds for all m € H2(R") and all f; € L*(R™).
2.2. Modulation spaces
We give the definition of modulation spaces which were introduced by [4] (see also [5]). We fix a
functions (called a window functions) g; € S(R™) \ {0} and denote the short-time Fourier transform of f; €
§'(R™) with respect to g; by

GO =] D e gt nf@

We will sometimes write V;,[f;] when the form of f; is complicated. For 0 < € < o0 and s € R, the modulation
space My T41*2€ is defined by

fi € 8'(R™: ||Z ﬁIIM1+e1+ze—IIZ KO Vaufie Ol secupllsracqay) <

1+€,1+2€

1+€ 1+26(Rn) _

We note that the definition of modulatlon spaces is mdependent of the choice of window functions. Mg
are Banach spaces and Sc Mttt s In particular, S is dense

. 1+€1+2€ 1+€,1+2 1+€,1+2¢€)’
in M;T¢'*2€ if 0 <€ < oo. For 0 <€ < oo, the dual space of M;"“'** can be seen as (M;*¢'**¢) =
1+€ 1+2€

M_?' ¢ | Moreover, we have the following complex interpolation theorem. If 0 < 8 < 1,s = (1 —0)s; +
0s,,1/1+e=(1-0)/1+€e+60/1+2 ad 1/1+2e=(1-6)/1+3e+60/1+4e, we have

(Mgret*se, Mg e 1+46)(9 = MI*S1*2€ As a further elementary property, we note the following embedding
proved by [4, Proposition 6.5].

Proposition 2.3 [19]. Let 0 <¢,1+ 26,1+ 36,1+ 4e < and s;,s, € R. Then, we have M511+6'1+36 (&Y
M2 for 1+ e <14+ 26,1+3e<1+4eands; > s,.

S2
2.3. Besov spaces

We here give the definition of Besov spaces (see also [18, Section 2.3]). Let ¢ € S(R™) satisfy that
@ =1 on {&:]&] £1/2} and suppe c {&: || < 1}. We put Y = ¢(-/2) — ¢(-), and then see that suppy c
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{¢:1/2 < |¢] < 2}. Moreover, we set @; = o(-/27) and Y= Y(-/27) for j € Z,, and denote the Fourier
multiplier operators with respect to them by

Sifi = @;(D)f; and A;f; = Y;(D)f;

¢+Z Y =1 andsoﬁ-+z Z A= f,
j=0 j=0 i

and also that A;f; = S;,1f; — Sjf;. By using these notations, for 0 < e < o and s € R, the Besov space
BIFO1*2€ is defined by

We remark that

1/1+2€
1+2€

BIMER™) = £ € 8'RY: [fillpressee = ISofillase +( - " 250429y % <o
j=o0 i

Note that the norm of the Besov space is read with the usual modification for € = oo. Besov spaces also have
basic properties like modulation spaces, namely, completeness, density, duality and interpolation. However, we
omit mentioning the details and see [18, Section 2.3].

1. Multiplication algebras
We collect some properties called multiplication algebras. A function space X is said to be a
multiplication algebra if for all f;, g; € X the product f; - g; exists and belongs to X, and if the inequality ||f; -
illx S Wfillx - lgillx holds for all f;, g; € X. See [18, Section 2.8]. The following results on L'*€¢-Sobolev and
Besov spaces are well-known (see, e.g., [14, Chapter II, Theorem 2.1] and [18, Theorem 2.8.3]).
Proposition 3.1 [19]. Let 0 < € < oo and s > n/1 + €. Then, we have

||Z fi Gilluzse S D" Wfillagse - Ngillzse

L
for all f;, g; € HIT¢(R™).
Proposition 3.2 [19]. Let 0 < € < o0 and s > n/1 + €. Then, we have
|| Z ﬁ 'gi||351+e,1+25 <S Z ||fi||le+e,1+ze . ||gl-||Bs1+e,1+ze
i i

for all f;, g; € BLTE1T2€(R™).

Some of modulation spaces are also multiplication algebras (see, e.g., [4, Remark 6.4 and Proposition
6.9] and [16, Proposition 3.2]).

Proposition 3.3 [19]. Let 0 < € < coand s > % Then, we have

||Z fir Gillygrervee 5 D" [fillygrensae - gillygrensae

i

for all f,, g; € M1+ 1+2‘€(IR") and
1) figillgrer 5D Willyases - lgullygves
i i

for all f;, g; € Ma*** (R™).
Finally, we give the following counterpart for Fourier Lebesgue spaces.
Proposition 3.4 (see [19]). Let 0 < e < oo and s > 1"—66 Then, we have

+
1D, fo il S ) Wilrugee - Nl
i i

for all f;, g; € FLLY¢(R™), and
1) figilleiy s ). Wiy - gillssy

i i
for all f;, g; € FLH(R™).
Proof. From the inequality (£)° < (¢ —n)® + (n)® forany &, € R™ and s > 0, we have
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Ifi - 9illprave~

3
'3

Then, we have by the Young and Hdlder inequalities

1. firgillrigees D 1O Fllawe - 1Gillia + ). Will - 1Y Gulave
i i i

4

@ Y A& -m- g

()

fRn € =m°1fi§ =mI - 1gimldn

L1+E(R?)

J-]Rn i€ =m - m)*1gi(m)ldn

()

= § fillzra+e - 1CYT5I axellgillppave + E NCTE 2eell fill ppate - 1gillppates
- L€ : L€
l L
. . . ne
which yields from the assumption s > Py that || Y; f; “Gillprare S i Ifill zra+e - lgillpra+e. Here, we
remark that, in the case € = 0, ||(-)™°|| 1+e is finite even if s = 0, which gives the conclusion for e = 0 and s =
L €

0.

IV. Proof of Theorem 1.2

We begin with an observation which will be used in the proof of Theorem 1.2. Put

N K
GO =F© - ) FOO) “.1)
k=1 '
for any N € N, where F € C*(R) and F(0) = 0. Then, we see that G(0) = G(0) = --- = 6™ (0) = 0, and
have
N f
FR =G+ ) > FO0) (42)
k=1 i '

In order to obtain Theorem 1.2, we will prove that the right hand side of (4.2) belongs to FL1*€. However, it is
trivial that the second term belongs to FLL*€, since FLL*¢(R") with s > % is a multiplication algebra (see

Proposition 3.4). Hence, Theorem 1.2 is reduced to the following statement.

4
Proposition 4.1 [19]. Let 0 < € < 00 and s > "9 Assume that f;: R" - R, f; € FIZ(RM),G € C*(R)

4
and G(0) = GM(0) = - = G+ (0) = 0. Then, we have G(f,) € FL3  (R™).

Before starting the proof of Proposition 4.1, we transform G (f;) to a more manageable alternative
2—€

expression, which was provided by [9, Section 2]. We first remark that f; € FL2~¢(R") © H;Te (R™) holds for
€ < 0, and that f; € FL2T¢(R"™) & HZ(R™) for € > 0 and Z <§< Z + (E) (see Proposition 2.1). They imply
that f; belongs to By’ 1(R™), hence to L* (R™), and so f; is a bounded uniformly continuous function. Then Sifi
converges uniformly to f; as j = oo, and G(f;) = G (}lLI?OSJﬁ) = }li_)rgG(iji). By the mean value theorem and

the fact S;,1 f; = S;f; + A f;, we have

()= GGofd+ ). Y [6(Siaf) = 6(5£))]
=0 1

= G(Sof)) +Z J Z GO(S;f; + tAf)dt - A f; = G(Sof) +Z Z m; - A,
=0 0 i j=0 i
where we set ' }
m; = JO Do GO+ eayfi)de (43)

Moreover, we decompose m; into the low and high frequency parts. Recall from Section 2.3 that ¢(¢) +
Y_o W(27™E&) = 1 for any ¢ € R™. Then, it follows that

(p(C-fzf)"'Z w(“%)ﬂ

m=0
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for any £ € R™, where C is a sufficiently large constant. Using this decomposition, we have
(oo} (oo}

D D
= o(em)m+ 2, ez m =0+ ), pim

m
m=0 m=0
where we set

D D
=0 () o v pim = 8 (g7 (44)
Therefore, G (f;) is expressed in the following form:

G(fi>=a(soﬁ->+iz Aﬁ+z Z D, Pim A (45)
=0 1

j=0 m=0 i
From now on, we give estimates for each term of the expression (4.5) without specifying constants explicitly.
(We however remark that these implicit constants may depend on ||fi|| 5 2+e.)

We start by stating two lemmas. The ﬁrst one is for q; in (4.4).
Lemma 4.1 (see [19]). Let 0 < € < 00,5 > "= and n/2 < § < n/2 + (s - —) Suppose that f; € FLL*€(R™)

and all the assumptions of G are the same as in Proposmon 4.1. Then, we have
”q]” 1+e$11f0<€<1

for any j € Z, . Here, the implicit constants are 1ndependent of jEZ,.
Proof. We first consider the estimate with 0 < e < 1. Set (f;);. = S;f; + tA;f;. Recalling the definition of m;
from (4.3), we have

1
ol sse syl sse < [ D" 16Oz ased
Hg € H, € 0 & H€
Observe that
[62sel % (1720l + el 1¢,||L1)Z I s

S (IF gl + 7~ 1¢||L1)Z ||ﬁ||n1+e<z 1fillzee,

i
1+e

which means that (f;);, € H,¢ for any j € Z,and any t € [0,1]. Then, using Theorem A and Remark 1.1
together with the assumptions G € C®(R) and G (0) = 0, we have

> G“)((fl);t) LS 6@ mﬂ(mz (T + 1005l NGl e

i

+1
s IIGIIC[sJ+3(g)Z CERTAT S [TA e

14
where Q = {t:|t| S ||fi|l.=}. Note that the last quantity is finite since f; € FLLT¢(R™) & L”(R™) for s > %
and the smooth function G € C*(R) is measured by C[51*3 on the closed and bounded domain Q. Therefore, we
have ||q]|| e S1for0<e<1.
H €

S
We next consider the estimate with 0 < € < oo. This is, however, immediately given by the same

argument as above. In fact, since we already know from Proposition 2.1 that f; € FL2*¢(R™) & HZ(R™) &
L*(R™), we have by Theorem A and Remark 1.1

> 6O((y) <||G<2>||C[s]+lm)z (L Nl N el

i
< ||G||C[s]+3(mz

+1
S||G||C[s]+3m)z (1 + WAl gz
<

1for0<e < oo,

1
T+ AN 1Al

L
Note that the last quantity is finite. Hence, we obtain ||q i || 2

The second one is concerned with p; , in (4.4).
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Lemma 4.2 [19]. Let 0 < € < 0o, > and n/2<s§<n/2+ (s — —) Suppose that f; € FLI*¢(R™) and

all the assumptions of G are the same as in Proposmon 4.1. Then, we have
Ipjml e s2mEHDif0<e<
Hg €
Ipjmll 2 = 270D if 0 <€ < o0
§
for any j,m € Z,. Here, the implicit constants are independent of j, m € Z,.
To prove Lemma 4.2, we prepare the following:
Lemma 4.3 (see [19]). Let 0 < e < 00,5 > % and n/2 <§<n/2+ (s - ﬁ), and let a € Z} satisfy that
|a| = [s] + 1. Suppose that f; € FLL*€(R™) and all the assumptions of G are the same as in Proposition 4.1.
Then, we have
||8“m]|| e S 2/ if 0 <e<1
[|o“m, || <s2/BHDif 0 <e< o

for any j € Z, . Here, the implicit constants are 1ndependent of jEZ,.
Proof. We first consider the case 0 < € < 1. Set (f;);, = S;f; + tA;f;. Then we have by Proposition 3.1

1
Joem| sees [ D7 (6 (Gs] ssec
s i s
x|

DI I I W G e R o e L O e

p=1 ai+-+ay=a

where |a| = [s] + 1. Observe that for § € Z%

> 0G| LS (1770 ol + el [ wll,) DL WA ase S 20N ifilpee
- = - H € -
i HSE s i

1+€

l
which also means that (f;);, € H;¢ for any j € Z,and any t € [0,1]. Therefore, by using Theorem A and

Remark 1.1 together with the assumptions G € C*(R) and G®(0) = --- = GIs1*2)(0) = 0, we have for u =
S[s]+1

Z GO 0)

[s]+1
e ||G(ﬂ+2>||cm+1(mz (1 NGl sel] sse
S

+1
S G llgusismaay ). (1 IAIEEfillzee

l
where Q = {t: |t| S |Ifill.=}. Note that the last quantity makes sense surely since f; € FLI*¢(R™) & L*(R")
for s > f and G € C”(R) is considered on the closed and bounded domain . Hence, we obtain
[s]+1

lom| e < Z > Z @1 fllgygee) =+ (Il fll g goe) = 271D

u=1 a;+-+ay=a
which completes the proof for0<e<1.
We next consider the case 0 < € < oo. Repeating the same lines as above, since we already know from
Proposition 2.1 that f; € FL2*€(R™) & HZ(R™) & L*(R"), we have for § € Z%

> G| sF 1 ol +elF 1 wll) Y Wil S 2 Wfullegzee

i H§2 i

and by Theorem A and Remark 1.1 forpy =1,---,[s] + 1
‘Z G(/A+1)((fl)] t)H < ”G(u+2)” [S]“(Q)Z 1 + ”(ﬁ)]t”[s]ﬂ) ”(fi)j,t”ng

H.Z

+1
S6llewstisgy Y (14 WAL fullzgzee
i

Hence, we obtain ||6"‘mj||H2 < 2J0S1D for 0 < € < 0.
3

Proof of Lemma 4.2. By the moment condition of 1 and a Taylor expansion, we have
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Pjm(x) =C™ - 20FMM [ 3h(C - 274 ™y - my(x — y)dy
Rn

=Cn . 2U+mn w(c 27 my) smy(x — y) — Z ﬂ(a“m,)(x) dy

la|<M
Rn
= (! M-1 a
M , 1 - M1 (8%m;)(x — ty)dt p dy
V= al J,
where M = [s] + 1. Taking the ( ) norm of both sides, we have
pjmll sse
H €

S

1
i 2j+my)| Cy|lsi+t Z ||(6“mj)(x - ty)|| Lie dtdy

0 Hg (R})

< 2(j+m)n f
]RTL

la|=[5]+1

~ -Gl < [ wo- |y|[s]“dy) > ey ase
R" Hy €
|a/=T5+1 s
~ 2=GHm)([s]+1) Z ll0%my]| 1+
Ja=T51+1 "t
Since we have ||0* m]” 1te < 2/0s1*Y for 0 < € < 1 by Lemma 4.3, we obtain ||P;m|| ite s 27D, By

S
the same manner as above we also have ||p]m|| 2 < 27D for 0 < € < 0.

We prove Proposition 4.1.
Proof of Proposition 4.1. We recall the alternative form of G(fi) given in (4.5), that is,

Gcfl)—c(soflﬂzz a- Aﬁ+zzz Dim - Byf;

j=0 m=0 i
and prove that the function G(f;) belongs to fF L1*€, which will be archived by three steps. In the first and
second steps, we consider the second and third summations, and then consider G (S, f;) in the last step.
Step 1: We first consider the case € < 0. Taking the FL1*€-norm of the second summation in (4.5), we have
14+€ 1/1+€
> Flagaf] YL @y e anlo| (4:6)
7 =0 Live =0 "0 T =0
where Q, = {£:2¢ < |§] < 2P*1}if £ # 0 and Q, = {&: |€| < 2}. We remark that
suppF[q; - &ifi] < (&: 1§l < € - 271}
since fF[qj -Ajfi] = [(p (ﬁ) r’ﬁj] * [wjfl] This means that on the domain Q{,.‘F[qj . Ajfi] always vanishes
unless j =€ —N(j =0if £ =0,---,N), where N is a constant which depends only on C > 1 (roughly, 2¥ ~ C
). Hence, the right hand side of (4.6) is equal to

1+e 1/1+€
oo

Z Jﬂ Z (§yre Z Fla; - 8i£]O|  dg (4.7)

j=t—-N
where the inner summation should be read as Y72, if £ =0,---,N. Then, using the Holder inequality to the
inner summation, we have

1 1/1+€
4.7) s Zf 2fs(L+e) Z Z 215(1+e)|7_~[q] Afl](f)|1+e . Z 2‘1'5(%) e
j=t-N i vl
© ) 1/1+€
s ZJ- Z Z 2}S(1+e)|j:~[q} Afz](f)|1+6
=0 "¢ ;SN

i
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i 2Js(1+e€) fRnZ | iy fz](f)|1+e " (4.8)
j=0 i

Here, in the last inequality, we used the fact that R™ = UjZ, Q,. Now, we observe that

Z Fla; - ,f] PRACI78A

i i
where §;(x) = q;(—x). Then, we see that the last quantity of (4.8) is equal to
1/14+€

ZZ 25049 g D[ - £l (49)

Apply Proposition 2.2 with € = 1 for0<e< ; and with € = 0 for 0 < € < oo to (4.9). Here, we note that the

L1+E L1+E

assumption 0 < € Sg is used to assure the conditions (Ef:e)) -te % and € = 0 in Proposition 2.2.
Then, we have
4+33E
Z Z 25564/13+0)| g, ||‘*/f+§i||¢] f,|| if 0<e<2/3
(4.9) = 4 1/2+€
2+e 2+€ .
Z Z 205C+9)lqy |1 s - Al if0<e<o

n(1+:) ) Thus, we obtain from Lemma 4.1

- 1/2+€
@ s> > 2oy A
j=0 i

Since it follows that 3172 |1/)j|2+€ S 1 (ife < o0 ) and 2/ ~ () on the support of Y, we realize that
1/2+€ 1/2+€

S Y oy, A ZZ @RI ) S Wl
j=0 i :

4

where § is the number satlsfylng thatn/2 < §<n/2+ (s —

for 0 < € < oo, which gives the desired result for the case 0 < € < oo.
We next consider the case € = co. However, this case is obtained similarly to the above. In fact, we
have

sup <f>szz Fla, - 8£1©)| = sup | sup2* Z > Flaaflol ). (4.10)

el j=t-N 1
since each (), is d1s_|01nt. Recalling from Lemma 4.1 that ||q j”Hz < 1 holds independently of j € Z,, we have
by Remark 2.1

> e sAO1S Y. ol el OFle 527507 Willag

i i s i
Hence, we obtain

ES Flaafl©ls2e YD 2 e s Y il
j=t-N i j=t-N i i

for any £ € Z,, where all the implicit constants above are independent of £ € Z, . Substituting this estimate into
(4.10), we have the desired result for the case € = co.
Combining all the calculations above, we obtain for 0 < € <

iz a; - Af <o (4.11)
=0 7

FL2*E
Step 2: We first consider the case € < 0. As in Step 1, we take the FLL*€-norm of the third summation in (4.5).
Then, using the dyadic decomposition, we have
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1/1+€

© © o » © 1+e
> > F|) p,-,m-Ajfil SO [ 20NN Fow sl d
j=0 i m=0 pive  M=0 \£=0 Qe j=0 i

where Q, = {£:2¢ < |§]| < 2¢*1} if £ # 0 and Q, = {&:|§| < 2}. Considering the support of T[pj,m . Ajfi],
since we have

SuppFpjm C {€:C -2/t < [§] < € - 2/*™+ 1} and
suppF|[4;fi] € {&:2771 < |§| < 2741}
we see that
SUppF[pjm - Ajfi] € {&:C - 2¥m=2 < |¢| < C - 2/7m+2}
This implies that on the domain Q,, the function F [p im 4 fi] always vanishes unless j, ¢, m € Z satisfy that
j+m+N—-2<f£<j+m+N+1, where N is the constant which depends only on C > 1. Put A =
{j€EZ;:t—m—-N—-1<j<¥—m—N+ 2}, where this set is read as A= @ if £ —m — N + 2 < 0. Then,

0 < #A < 4. Hence, the right hand side of (4.12) is equivalent to

o 1/1+€

Z if z z 20|, - i £]()] T dE (4.13)

m=0 \#=0 "% jea 1
Then, we have by the Fubini-Tonelli theorem

- - 1/1+€
(4.13)32 2ms j ZZ 25O\ F ;- A £ g
=0 R =0 T
- - 1/1+€
_ z oms z 2js(1+6)z IIT[p,-,m-A,-ﬁ]Iliffe (4.14)
i

m=0 j=0
Using the identity ||T[p]-,m . Ajfi]”LHE = ||p';“m(D)[1/)j -fi]“LHE, where p,7,(x) = pj(—x), we see that the
last quantity of (4.14) is equal to

© 1/1+€
2,2 Z 2 POl Al 415)
m=0
As in Step 1, we have
©0 © 1/2+€
2 4
doams( 3N 2O sl - AP, if 0<e<2/3
m=0 j=0 i Hsl+3e L3
(4.9) = 1/2+€
Z 2ms Z 2 bl A D
n(l+e )

forn/2<s§<n/2+ (s iy ) Hence, recalling the properties that }.72, |1/1j|2+6 S 1 (ife < ) and 2/ ~
(¢) on suppy;, we have by Lemma 4.2

1/2+€

_ . A2+€
(4.15) < Z 2ms . 2-m((sl+1) Z Z 255y - fil| e < Z | fill z2+e
m=0 j=0 i i

for 0 < € < oo, which gives the desired result for the case 0 < € < co.
We next consider the case € = oo, which is obtained similarly to the above. In fact, we have

Z pj,m'Ajfil @] s sup ?;{’{,Z Z“Z Z 1P [p)m - 8] ©)]

JEA i

sup |(¢)°

EeR™

j=0 m=0
(see above for the definition of the sets ), and A ). Recalling from Lemma 4.2 that ||pj,m||H2 < 27+ holds

independently of j, m € Z, and following the same lines as in Step 1, we have

‘Z Flom A S Ipimlle ). Wiille 52770275 " ifilge

i i i
Hence, we obtain

DOI: 10.35629/0743-12017994 www.questjournals.org 88 | Page

,(4.12)



A survey on the Nonlinear operations on a class of modulation spaces

DAL SRICIED YRS I S TR S I

m=0 jeA i JEA i i
for any € € Z,. This gives the desired result for the case € = 0.
Combining all the calculations above, we obtain for 0 < € <

DD et <o (4.16)
j=0 m=0 i TL§+
4
Step 3: Lastly, we prove that G(S,f;) € F L§+E. Observe that
1
GO = Y GO Sofdde-Sfi =)y, Sof
05 7

4 4
where my, = [} % 6D (¢ - Sofi)dt. Then, since FL & FLT for r = s and (§) S 1+ [& ]+ + &I
for r = 0, we have by Proposition 2.2 for 0 < € < 2/3

> @ FES sy Iy Sofilll s+ ) D |F [0 Gy, s
i =1

i e T

4
L3t

L3
n [s]+1

s Imole - filll s+, D0 > lFm @ e £]
=1 pu=0 i

i

4
L3t€

n [s]+1
7 U [s]+1- #
<2 il el gt D00, D Botml eael]6 o £ s
i =1 u=0 i
n [s]+1
u
<> Al _+eZ Z lozmy | s
L
and have for 0 < € <
n [s]+1
D @ FGGA| s> M s D D okmel,
7 L3te ; FLs ¥=1 u=o

where we used the notation h(§) = h(—¢§). Moreover, as in the proof of Lemma 4.3, Theorem A yields that for

u=01,[s]+1
u
HZ olmy| sz Z 1filljzee <0 if 0< e <1
i HST v=0 I

u
s .
Y oatml =YY Wil <o fo<esw
L HZ v=0 i

since the assumption f; € FL:*¢ with s > E gives that for g € Z%, ||Zl- aﬁ(soﬁ)” 2t S fillpzre if

0<e<1,and|X; aﬁ(SOfi)”HZ S Y fillgz+e if 0 < € < co. Hence, we obtain ”G(Sofl)”TLZ+e < oo,

By Steps 1-3, we conclude that G(f;) € FL2*€ if f; € FLZ*,
Now, we give the proof of Theorem 1.2.
Proof of Theorem 1.2. As is stated at the beginning, F(ﬁ) with F € C*(R) and F(0) = 0 is given by

F(f) = G(f) +Z Z FoL

for any N > 0, where G € C*(R) and G(0) = G(l)(O) = .. = ™M (0) = 0. Choosing N = [s] + 2, we obtain
4

from Proposition 4.1 that G(f;) € IFL?E if ;eF Li . The second one is shown by Proposition 3.4. In fact,
since F € C”(R), we have |F(k)(0)| < 1, so that it follows that

N N
7
L
Y@ SN e, <o
=1 i Mgy k=1 1 FL3

4 4 4
if f; € TL?:e. Hence, we obtain that F (f;) € TL§+E iff; € TLere
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V.  Proof of Theorem 1.1
As in Section 4, F(f;) is expressed in the following form:

F(f) = 6(f) + Z Z FoL, (5.1)
for any N € N, where G(0) = GV (0) = - = ¢ (O) = 0 Applymg a Taylor expansion to G, we have
G(f) =f¥ - H(f), where H(f;) = mfo Z 1 -N1eM(of)de (5.2)

4
1+es+e |
Note that H € C*(R) and H(0) = 0. Hence, we mainly prove that G(f;) in (5.2) belongs to M, reste if f; €
4
1+e~ . .
M, *e 3+E. In order to prove this, we prepare the following lemma:

Lemma 5.1 (see [19]). Let 0 < € < o0 and s > %, and let N be an arbitrary natural number. Suppose that G is

4
the function in (5.2), f; € MS1 €37 and real-valued functions ¢, P € C(R™) satisfy that ¢ = 1 on suppe.
Then, we have

PRRGRAIDIER)

i

N
= e vafiedlls,.,
3t€(mpn i L3 (]Rf)
(RE)
for any x € R™. Here, the implicit constant is independent of x € R™.
Proof. We first observe from (5.2) and the assumption ¢(- —x) = 1 on supp¢ (- —x) that

Vo G(D](x, §)= J}an e ¥t — x) - G(P(t — x)fi())dt
B fw Z e Pt = x) - (Bt — D) - H(B (e — )fi(6))de

=Y (00 BC -0 HEC—0N]E©

4
Multiplying the weight (£)° to both sides and taking the L3*“-norm with respect to the &-variable, we have by
Proposition 3.4

”Z GUADIETS
i (e

=2, WerFloc =0 @C 0" - H@C IO gy
i 3

SZ i —x)II e N —x)ﬁll e NH@C 0l T

S
It obviously follows that [|¢(- —x)|| 4,.~1 and [|P(: —x)fl|| 4, ||(E)5V¢f,(x, O ..

F13 FL3 137(Rg)’
consider ||H(¢(- —x)f) || 4, to obtain the conclusion. By Lemma A. 1 and Proposition 3.3, we have
3

S

||Z B¢ -0l 1+€~||Z BC =Sl e +E~Z I TP

where the 1mp1101t constants are both mdependent of x E R™. Then recallmg that H € C oo(]R) and H(0) = 0,
we have sup ||H(P( —x))I| 4, <o by Theorem 1.2if 0 < € < oo.
xERM FL3

S

We only

Hence, we obtain

PRRGRAU GRS

i

N
<

~

13¢(R)
Here, recalling all the proofs in Section 4, we see that ||H (¢ (- —x)f;)|

F

f SV~ i (X, .
Sl RICR2l

actually taken larger than N. However, the explicit expression is not important, since it is sufficient to
understand that the order can be chosen arbitrarily large as we want. Hence, we here omitted the details.
Now, we are in a position to prove Theorem 1.1.

PRRGEAACE?

i

4
1374 (wg)

4, can be estimated by a polynomial

S

This implies that the explicit order of the power in the right hand side can be
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Proof of Theorem 1.1. We recall the expressions (5.1) and have by Proposition 3.3
N

[ FUON et SNGUDIN et + ||fi||k1,,61+E (5.3)
3 3 3
7 Mg Mg k=1 1 Mg

3(14+€) 4+3e€
4+3€ " 3(1+¢€)
cases € = o and € < o0, or € < o and € = oo in Theorem 1.1, since such N cannot be taken in those cases.

We first consider ||G (f)|| forthecase 1 + € < §+ €. Let real-valued functions ¢, ¢ € C5°(R™)
M

Here, we choose N € N such that N > [max( )] + 1, and it should be remarked that we exclude the

4
1+€,§+E
S

satisfy that ¢ = 1 on supp¢. Then, we have by the Minkowski inequality for integrals and Lemma 5.1

12, GO et D |||(5)5V¢[G(ﬁ-)](x,€)||L§+E(

Dl e
N
< rvane ot =Y mevares|| s
i Plprewry ML st my
Since Na_, > lte=1+ €, we have by Proposition 2.3
3te€ 3
N
1) GO s S ). ‘ leyrvafie ol m, ||,
Z Mg i L3 ®DI e (rp)

SZ ||||<€>SVa>ﬁ(x'f)||L1+f<R¥>

We next assume that % +e< g + 2€ < . As above, Proposition 2.3 and Lemma 5.1 yield that

1D G st S Y NGHIN 3,55
7 Mg i Mg 7

Since Na__ > g + 2e > g + €, we use Proposition 2.3 again and obtain
3

1) GO sz S D MOV ) |

4

. z §
4 ~ Wfill™ .2
L3+E(R?) MSl+E,3+E

i

N

[GRAZCL] P

Ng

n
r) L 3RY

4
L§+€(R¥)

) Z !

~ Nfill ", 4
4 ioe
L§+6(R?) : Ms3+ze,3+e

Therefore, for 0 < € < o (or € = ), we have [|[G(f)Il , .2, S ||fi||N1+ei+e-
M, 3 3

N

N
Collecting all the estimates above, we obtain ||F(f;)|| ,, 2, < 0. This is the desired conclusion.
M '3

Appendix A. Local equivalence between modulation and Fourier Lebesgue spaces

We state that modulation spaces are locally equivalent to Fourier Lebesgue spaces. The corresponding
result for s = 0 was already proved by [11, Lemma 1], and the weighted case is obtained by following the same
argument. However, we give a proof.

Lemma A.1 (see [19]). Let 0 <€ < oo and s € R. Suppose that y € S(R™) \ {0} satisfies that suppy C
{x:|x — xo| < R}. Then, we have ||y - fi”MSl+e,1+26 ~ |lx - fill g a+2e. Here, the implicit constant is independent
of x, € R™, but depends on R > 0.

Proof. Put (f;), = x - f;- We first prove the S part. Choose ¢ € S(R™) \ {0} satisfying that supp¢ < {x: |x| <

R}. Then, we see that Vd)[(fi))(](x: &) always vanishes unless x € R™ satisfies that |x — xy| < 2R. Using the
identity |V¢ [(fl) X] (x,¢& )| = |¢A)(D =), x) |, we have by the Holder and Hausdorff-Young inequalities

‘ > Vsl

Multiplying the weight (£)° to both sides, using the inequality (£)* < (t)*(t — &)/ and taking the L'*2¢-norm
with respect to the -variable, we have by the Young inequality

- HZ X)) - Vo [ (D) G )

L1+ZE([R;L) L1+26(1R;rcl)

SRV 80 =000 . SR 18 =8 FIEDAO ],
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HZ Vol () .9 SRV K= 3 = O - OFODION e,

i

LY*TE(RY) L1+2¢(RY)

= RS (ORI * (ONFIGAD e
SRS O F

We next prove the = part. Choose ¢ € S(R™) satisfying that supp¢p = 1 on {x: |x| < 2R}. Then, ¢(- —x) =1
on suppy if x € R™ satisfies that |x — x,| < R. Hence, it follows that

RS PN Y Moo @ FIDA O sreqep,

i i

N I I BICYIOT:

L1+E(]R;})
DI (2 (R[] s

i
Multiplying the weight (£)® to both sides and taking the L'*2€-norm with respect to the &-variable, we have

HZ (-)ST[(fl-)X]’ SR_”/”EZ €Y Vo [ ()] (. | L1+E(m;t)||L1+ZE(R?)

i L1+2€ i

Therefore, recalling the property that the modulation space norm is independent of the choice of window
functions, we obtain ||(ﬁ-)X||M51+E_1+2€ ~ ”(fi)xnﬂyzr
Appendix B. Conditions for modulation spaces and Fourier Lebesgue spaces to be multiplication algebras

We first consider necessary and sufficient conditions for modulation spaces to be multiplication
algebras, that is, for the estimate

1" i gillygrersze 5 T fullygrensac - Ngilygsensae
to hold. They are given as folllows. l
Proposition B.1 [19]. Let 0 < € < 0,0 < € < o and s € R. Then, the modulation space Ms*'*(R") is a
multiplication algebra if and only if the condition s > % is satisfied.
Actually, this proposition is immediately obtained from [6, Theorem 1.5]. In fact, in [6], necessary and
sufficient conditions for the more general estimate

I Z fi- gi||MS1+e,1+e <S Z ||fi||M511+E,1+3e . ||gl.||Ms12+ze,1+4e
i

L
were established, so that Proposition B. 1 is given by setting € = 0 and s = 5; = 5,. (We remark that, although
only the case € > 0 is considered in Proposition B.1, the whole case € > 0 is treated in [6].) However, we give a
proof of Proposition B. 1 where the following two lemmas are essential:
Lemma B.1 ([6, Proposition 5.1]). Let 0 < € < o0 and s € R. Then, if the modulation space Me*'*%€ is a
multiplication algebra, we have £12€ x f112€ & plt2e
Lemma B.2 (see [19]). Let 0 < € < o0 and s € R. Then, if £17€ x £17€ & p1+€ holds, we have s > £

Proof. We assume towards a contradiction that s < % Since € > 0, we can take € > 0 such that 1 — 1/1 +
€ — & > 0. For this € > 0, we define the sequences

n 1
ey = {(k)(‘m)‘sa +e+log (k)T if k| < N,
' 0, otherwise
b _{1, if N < |k|] < 5N,
kN-710, otherwise
in k € Z™, where N > 0 is a sufficiently large integer and € > 0 is a suitable constant which depends only on
the dimension n.
We first estimate each sequence on £3*€. For the case € < oo, the spherical coordinate transform yields

that
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laenllice= > (k) ™(1+ € +log (k)16

|kI=N

< f|x|52N (x)™" <¥ + log (x))

By the change of variable t = 1 + log (1 + r), we have
J-1+log (1+2N)

—-1-¢g(1+€)

2N
dx < J. 1+t +log (1 + 1)) =50+ aqy
0

1+e€

llawnll iee = t71mErOgr 1
S

For the case € = o, we have ||ak‘,\,||€oo <1, since € > 0. On the other hand, we have ||bk,N||£1+e ~ NStn/1te
S S

holds for 0 < € < oo,
Next, we consider the convolution {a,yN * b"N}keZn' For 2N < |k| < 4N, we have

z apnbr_en = z AN = Z agn»

Lezn N<|k—2|<5N |#|<N
since (£ € Z":|£] < N}  {£ € Z%: N < |k — €| < 5N} and apy = 0 if |£] > N. Then by s < === we have

Z Ay nbx—en= Z <{’>(_&)_S(1 + € +log (f))(_ﬁ)“E

temn [e1=N
> (£)™(1 + € + log (f))(_ﬁ)_E
= J (x)™" <E +lo (x))(_ﬁ)_s dx
- |x|<N/2 € 8

N/2 1
~ f "1+ ) (1 +log (1 + r))(_m)_sdr
0

N/2 . (—L)—s
=z A+ +log(1+r))\ +e/ “dr
1
and hence by the same change of variable as above we have

1+log (1+N/2) ( L) (1 L)
Z apnbi-en = f t\V1red) T 2 (1 +log (1 + N/2)\Twe) ™8
Pern 1+log 2

This concludes that

||{a"N * b"N}keZ" 4§+62 ”{a""’ * b"N}kE{2N5|k|s4N}

€§+E

> NS*M/1%€(1 4 log (1 + N/2))(7me) ¢
Collecting the estimates above, we have by the assumption £17€ x f1+€ & plte

||{a"N * b"N}keZ"

p1te S ”ak,N”f}H ' ”bk,N”f}H

= NSH/I+E(1 4 log (1 + N/2)) (7Tl < 1. ustnive

1

& (1+log(1+ N/Z))(1_1+s)_€ <1

However, the last estimate fails when we choose a sufficiently large number N > 0, since (;) — &> 0. This

contradicts to the assumption £1%€ = £1¥€ & p1*€ Therefore, we obtain s > 1”—;
Proof of Proposition B.1. The "IF" part is given by Proposition 3.3, and the "ONLY IF" part is an immediate
conclusion of Lemmas B. 1 and B.2.

We also have a similar optimality for Fourier Lebesgue spaces:
Proposition B.2 [19]. Let 0 < e <o and s € R. Then, the Fourier Lebesgue space FLLT¢(R™) is a
multiplication algebra if and only if the condition s > % is satisfied.

For the proof of Proposition B.2, we use the following lemma instead of Lemma B.1:
Lemma B.3 ([6, Proposition 4.1]). Let 0 < € < o and s € R. Then, if the estimate

”Z GGrgd| D I Fillse I gillase
i L1te i

holds, we have £17€ x p1+€ & pl+e

Proof of Proposition B.2. The "IF" part is given by Proposition 3.4. The "ONLY IF" part is an immediate
conclusion of Lemmas B. 2 and B. 3 if we notice the equivalence
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1D, S gillrzee D Whillrusee - lgillyizee

i
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