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Abstract 
We follow the pioneers authors of [19] by showing a survey asan applicationon the nonlinear operation 𝑓𝑖 ↦

𝐹(𝑓𝑖)when maps the modulation space 𝑀𝑠
1+𝜖,1+2𝜖(ℝ𝑛)0 ≤ 𝜖 ≤ ∞) to itself again. It is true that 𝑀𝑠

1+𝜖,1+2𝜖(ℝ𝑛) 
is a multiplication algebra when 𝑠 > 2𝑛𝜖/1 + 2𝜖, hence it is true and valid for this space if 𝐹 is fully entire. We 

also claim that it is still true for non-analytic 𝐹 when 𝜖 ≥ 0. 

 

Keywords: Modulation spaces, Paradifferential operators 

 

Received 14 Jan., 2026; Revised 26 Jan., 2026; Accepted 29 Jan., 2026 © The author(s) 2026. 

Published with open access at www.questjournas.org 
 

I. Introduction 
We discuss nonlinear operations 𝑓𝑖 ↦ 𝐹(𝑓𝑖), that is, the composition of functions 𝐹 and 𝑓𝑖. Let 𝑋 be a 

function space. Then does the nonlinear operation map 𝑋 to the same space 𝑋 ? For the simplest case 𝐹(𝑧) =
𝑧2, that is, 𝐹(𝑓𝑖) = 𝑓𝑖

2, the answer is yes when 𝑋 is a multiplication algebra. From this observation, we 

immediately obtain the affirmative answer to this question for any entire functions 𝐹(𝑧) and multiplication 

algebras 𝑋. The typical examples of multiplication algebras are 𝐿1+𝜖-Sobolev spaces 𝐻𝑠
1+𝜖(ℝ𝑛)(0 < 𝜖 < ∞) 

with 𝑠 > 𝑛/1 + 𝜖 and Besov spaces 𝐵𝑠
1+𝜖,1+2𝜖(ℝ𝑛)(0 ≤ 𝜖 ≤ ∞) with 𝑠 > 𝑛/1 + 𝜖 (see Propositions the two 

follows). 

When 𝐹 fails to satisfy the analyticity [19], answering this question is not so straightforward. Then however 

have an affirmative answer by virtue of the theory of paradifferential operators introduced by [3] and developed 

by [9]. The main argument is to write the composition 𝐹(𝑓𝑖) in the form of a linear operation 

𝐹(𝑓𝑖) = 𝑀𝐹,𝑓𝑖
(𝑥, 𝐷)𝑓𝑖 

(assuming that 𝐹(0) = 0, 𝑓𝑖 ∈ 𝐻𝑠
1+𝜖(ℝ𝑛) is real-valued, and 𝑠 > 𝑛/1 + 𝜖 to be embedded in 𝐿∞(ℝ𝑛)), where 

𝑀𝐹,𝑓𝑖
(𝑥, 𝐷) is a pseudo-differential operator of the Hörmander class 𝑆1,1

0 . Since pseudo-differential operators of 

this class are 𝐻𝑠
1+𝜖-bounded for 𝑠 > 0, we get the following result (see [19]): 

Theorem A([9, Theorem 1]). Let 0 < 𝜖 < ∞ and 𝑠 > 𝑛/1 + 𝜖. Assume that 𝑓𝑖: ℝ
𝑛 → ℝ, 𝑓𝑖 ∈ 𝐻𝑠

1+𝜖(ℝ𝑛), 𝐹 ∈
𝐶∞(ℝ) and 𝐹(0) = 0. Then, we have 𝐹(𝑓𝑖) ∈ 𝐻𝑠

1+𝜖(ℝ𝑛). 
Remark 1.1 [19]. We can state Theorem A in an explicit form (see, e.g., Taylor [17, Section 3.1]): 

‖∑

𝑖

𝐹(𝑓𝑖)‖𝐻𝑠1+𝜖 ≤ 𝐶‖𝐹′‖𝐶[𝑠]+1(Ω)∑

𝑖

(1 + ‖𝑓𝑖‖𝐿∞
[𝑠]+1

)‖𝑓𝑖‖𝐻𝑠1+𝜖 

where Ω = {𝑡: |𝑡| ≤ 𝐶′‖𝑓𝑖‖𝐿∞}, and the constants 𝐶 and 𝐶′ are universal. 

By the same argument, we have a similar conclusion for Besov spaces (see [13]), and a result for 

complex-valued sequence of functions 𝑓𝑖: ℝ
𝑛 → ℂ can be also stated considering the nonlinear operation 𝑓𝑖 ↦

𝐹(Re𝑓𝑖 , Im𝑓𝑖) with two-variable functions 𝐹(𝑠, 𝑡), although here we only consider real-valued functions 

𝑓𝑖: ℝ
𝑛 → ℝ just for the sake of simplicity. 

We establish a similar result for modulation spaces 𝑀𝑠
1+𝜖,1+2𝜖(ℝ𝑛). Modulation spaces are relatively 

new function spaces introduced by [4] in 1980's to measure the decaying and regularity properties of a function 

or distribution in a way different from 𝐿1+𝜖-Sobolev spaces or Besov spaces. The main idea of modulation 

spaces is to consider the space variable and the variable of its Fourier transform simultaneously, while they are 

treated independently in 𝐿1+𝜖-Sobolev spaces and Besov spaces. Because of their nature, modulation spaces 

http://www.questjournals.org/
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have wide several significant properties. For example, the Schödinger propagator 𝑒𝑖𝑡|𝐷|
2
 and the wave 

propagator 𝑒𝑖𝑡|𝐷| map the modulation space 𝑀𝑠
1+𝜖,1+2𝜖

 to the same space ([1]), which means, we have no loss of 

regularity when we work on modulation spaces, while it is not true for 𝐿1+𝜖-Sobolev spaces 𝐻𝑠
1+𝜖 or Besov 

spaces 𝐵𝑠
1+𝜖,1+2𝜖

 (see [10]). When we try to utilize this advantage for nonlinear analysis, it is indispensable to 

ask whether the nonlinear operation also maps 𝑀𝑠
1+𝜖,1+2𝜖

 to itself. 

We know that modulation spaces 𝑀𝑠
1+𝜖,1+2𝜖(ℝ𝑛)(0 ≤ 𝜖 ≤ ∞) with 𝑠 >

2𝑛𝜖

1+2𝜖
 (with 𝑠 = 0 when 𝜖 = 0 ) 

are multiplication algebras, where ϵ = 0 (Proposition 3.3), hence nonlinear operation 𝑓𝑖 ↦ 𝐹(𝑓𝑖) maps these 

spaces to themselves when 𝐹(𝑧) is fully entire. Then it is natural to expect the same conclusion for non-analytic 

𝐹 as is the case for 𝐿1+𝜖-Sobolev spaces and Besov spaces. Unfortunately, it is not obvious because the 

argument of paradifferential operators does not work in this case because pseudodifferential operators of class 

𝑆1,𝛿
0  with 𝛿 > 0 have exotic mapping property and are not 𝑀𝑠

1+𝜖,1+2𝜖
-bounded (see [15]). Furthermore, if 𝐹(𝑧) is 

not necessarily analytic, a negative answer for 𝑀0
1+𝜖,1

 is known. In fact, [2] established that the nonlinear 

operation 𝑓𝑖 ↦ 𝐹(Re𝑓𝑖 , Im𝑓𝑖) is a mapping on 𝑀0
1,1(ℝ𝑛) if and only if 𝐹 is real analytic and 𝐹(0,0) = 0, and [8] 

generalized this result to the case 𝑀0
1+𝜖,1

 with 0 ≤ 𝜖 < ∞ although it is restricted to the case when 𝑛 = 1. On 

the other hand, it is still possible for general 𝑀𝑠
1+𝜖,1+2𝜖(ℝ𝑛) with 0 < 𝜖 ≤ ∞ and 𝑠 >

2𝑛𝜖

1+2𝜖
 when 𝐹 is not 

analytic. Our main result states that it is affirmative for (1 + 𝜖) in a range away from 𝜖 = 0(see [19]): 

Theorem 1.1 [19]. Let 0 ≤ 𝜖 < ∞, 0 ≤ 𝜖 < ∞ (or 𝜖 = ∞ ) and 𝑠 >
2𝑛𝜖

1+2𝜖
. Assume that 𝑓𝑖: ℝ

𝑛 → ℝ, 𝑓𝑖 ∈

𝑀𝑠
1+𝜖,1+2𝜖(ℝ𝑛), 𝐹 ∈ 𝐶∞(ℝ) and 𝐹(0) = 0. Then, we have 𝐹(𝑓𝑖) ∈ 𝑀𝑠

1+𝜖,1+2𝜖(ℝ𝑛). 

We remark that the condition 𝑠 >
2𝑛𝜖

1+2𝜖
 (with 𝑠 = 0 when 𝜖 = 0 ) is necessary for modulation spaces 

𝑀𝑠
1+𝜖,1+2𝜖(ℝ𝑛) to be multiplication algebras ([6]). See also Appendix B. We also remark that Theorem 1.1 is 

reduced to the following result due to the local equivalence between the modulation spaces 𝑀𝑠
1+𝜖,1+2𝜖

 and the 

Fourier Lebesgue spaces ℱ𝐿𝑠
1+𝜖 : 

Theorem 1.2 [19]. Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 >
2𝑛𝜖

1+2𝜖
. Assume that 𝑓𝑖: ℝ

𝑛 → ℝ, 𝑓𝑖 ∈ ℱ𝐿𝑠
1+𝜖(ℝ𝑛), 𝐹 ∈ 𝐶∞(ℝ) and 

𝐹(0) = 0. Then, we have 𝐹(𝑓𝑖) ∈ ℱ𝐿𝑠
1+𝜖(ℝ𝑛). 

Finally, see [12] which also discusses the non-analytic nonlinear operations, but on modulation spaces 

with quasi-analytic regularity. 

We introduce basic notations of function spaces and their properties which we used. We list examples 

of multiplication algebras as a starting point of our argument. We prove the theorem of nonlinear operation on 

Fourier Lebesgue spaces. We lift it to the case of modulation spaces by using the local equivalence between 

Fourier Lebesgue spaces and modulation spaces. This equivalence is a well-known fact but the proof is given in 

Appendix A for the sake of self-containedness. In Appendix B, necessity for Fourier Lebesgue spaces and 

modulation spaces to be multiplication algebras is considered (see [19]). 

 

II. Preliminaries 
2.1. Basic notations 

We denote by ℝ, ℤ and ℤ+the sets of reals, integers and non-negative integers, respectively. The 

notation 𝑎 ≲ 𝑏 means 𝑎 ≤ 𝐶𝑏 with a constant 𝐶 > 0 which may be different in each occasion, and 𝑎 ∼ 𝑏 means 

𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎. For 0 ≤ 𝜖 ≤ ∞,
1+𝜖

𝜖
 is the dual number of (1 + 𝜖). We write ⟨𝑥⟩ = (1 + |𝑥|2)1/2 for 𝑥 ∈ ℝ𝑛 

and [𝑠] = max{𝑛 ∈ ℤ: 𝑛 ≤ 𝑠} for 𝑠 ∈ ℝ. 

We denote the Schwartz space of rapidly decreasing smooth functions on ℝ𝑛 by 𝒮 = 𝒮(ℝ𝑛) and its 

dual, the space of tempered distributions, by 𝒮′ = 𝒮′(ℝ𝑛). The Fourier transform and the inverse Fourier 

transform of 𝑓𝑖 ∈ 𝒮(ℝ
𝑛) are given by 

ℱ𝑓𝑖(𝜉) = 𝑓𝑖(𝜉) = ∫  
ℝ𝑛
∑

𝑖

𝑒−𝑖𝜉⋅𝑥𝑓𝑖(𝑥)𝑑𝑥 and ℱ−1𝑓𝑖(𝑥) = 𝑓𝑖(𝑥) =
1

(2𝜋)𝑛
∫  
ℝ𝑛
∑

𝑖

𝑒𝑖𝑥⋅𝜉𝑓𝑖(𝜉)𝑑𝜉 

respectively. For 𝑚 ∈ 𝒮′(ℝ𝑛), the Fourier multiplier operator is given by 

𝑚(𝐷)𝑓𝑖 = ℱ−1[𝑚 ⋅ ℱ𝑓𝑖] = (ℱ
−1𝑚) ∗ 𝑓𝑖 

and for 𝑠 ∈ ℝ the Bessel potential by (𝐼 − Δ)𝑠/2𝑓𝑖 = ℱ−1[⟨⋅⟩𝑠 ⋅ ℱ𝑓𝑖] for 𝑓𝑖 ∈ 𝒮(ℝ
𝑛). 

We will use some function spaces. The space of smooth functions with compact support on ℝ𝑛 is 

denoted by 𝐶0
∞ = 𝐶0

∞(ℝ𝑛). The Lebesgue space 𝐿1+𝜖 = 𝐿1+𝜖(ℝ𝑛) is equipped with the norm 

‖𝑓𝑖‖𝐿1+𝜖 = (∫  
ℝ𝑛
 ∑

𝑖

|𝑓𝑖(𝑥)|
1+𝜖𝑑𝑥)

1/1+𝜖
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for 0 ≤ 𝜖 < ∞. If 𝜖 = ∞, ‖𝑓𝑖‖𝐿∞ = ess sup
𝑥∈ℝ𝑛

 |𝑓𝑖(𝑥)|. Moreover, we denote the 𝐿1+𝜖-Sobolev space 𝐻𝑠
1+𝜖 by 

𝐻𝑠
1+𝜖(ℝ𝑛) = {𝑓𝑖 ∈ 𝒮

′(ℝ𝑛): ‖𝑓𝑖‖𝐻𝑠1+𝜖 = ‖(𝐼 − Δ)
𝑠/2𝑓𝑖‖𝐿1+𝜖 < ∞} for 0 < 𝜖 < ∞ and 𝑠 ∈ ℝ, and the (weighted) 

Fourier Lebesgue space ℱ𝐿𝑠
1+𝜖 by ℱ𝐿𝑠

1+𝜖(ℝ𝑛) = {𝑓𝑖 ∈ 𝒮
′(ℝ𝑛): ‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 = ‖⟨⋅⟩𝑠𝑓𝑖‖𝐿1+𝜖 < ∞} for 0 ≤ 𝜖 ≤ ∞ 

and 𝑠 ∈ ℝ. We remark that 𝐻𝑠
2 = ℱ𝐿𝑠

2. Moreover, by the Hölder inequality, we have ℱ𝐿𝑠
1+𝜖(ℝ𝑛) ↪ 𝐻𝑠̃

2(ℝ𝑛) if 

0 < 𝜖 ≤ ∞ and 𝑛(
1

2
−

1

2+𝜖
) < 𝑠 − 𝑠̃. Note that the second condition is equivalent to 𝑠̃ < 𝑛/2 + (𝑠 −

2+𝜖

1+𝜖
). From 

this relation, we immediately see the following. 

Proposition 2.1 [19]. Let 0 < 𝜖 ≤ ∞, 𝑠 >
2+𝜖

1+𝜖
 and 𝑛/2 < 𝑠̃ < 𝑛/2 + (𝑠 −

2+𝜖

1+𝜖
). Then, we have 

ℱ𝐿𝑠
2+𝜖(ℝ𝑛) ↪ 𝐻𝑠̃

2(ℝ𝑛) ↪ 𝐿∞(ℝ𝑛) 
For 0 ≤ 𝜖 ≤ ∞ and 𝑠 ∈ ℝ, we denote by ℓ𝑠

1+𝜖 the set of all complex number sequences {𝑎𝑘}𝑘∈ℤ𝑛 such that 

‖{𝑎𝑘}𝑘∈ℤ𝑛‖ℓ𝑠1+𝜖 = (∑  

𝑘∈ℤ𝑛

  ⟨𝑘⟩𝑠(1+𝜖)|𝑎𝑘|
1+𝜖)

1/1+𝜖

< ∞ 

if 𝜖 < ∞, and ‖{𝑎𝑘}𝑘∈ℤ𝑛‖ℓ𝑠∞ = sup
𝑘∈ℤ𝑛

 ⟨𝑘⟩𝑠|𝑎𝑘| < ∞ if 𝜖 = ∞. For the sake of simplicity, we will write ‖𝑎𝑘‖ℓ𝑠1+𝜖 

instead of the more correct notation ‖{𝑎𝑘}𝑘∈ℤ𝑛‖ℓ𝑠1+𝜖. 

We end by mentioning a key fact on the boundedness of Fourier multiplier operators invented by [7, 

Theorem 9]. 

Proposition 2.2 [19]. Let 0 ≤ 𝜖 < ∞ and 𝑠 > 𝑛/2 + 𝜖. Then, if 
2(2+𝜖)

4+𝜖
≤ 1 + 𝜖 ≤

2(2+𝜖)

𝜖
 when 𝜖 ≠ 0 or 0 ≤ 𝜖 <

∞ when 𝜖 = 0, we have 

‖∑

𝑖

𝑚(𝐷)𝑓𝑖‖𝐿1+𝜖 ≲ ‖𝑚‖𝐻𝑠2+𝜖∑

𝑖

‖𝑓𝑖‖𝐿1+𝜖 

for all 𝑚 ∈ 𝐻𝑠
2+𝜖(ℝ𝑛) and all 𝑓𝑖 ∈ 𝐿

1+𝜖(ℝ𝑛). 
Remark 2.1 [19]. In Proposition 2.2, we excluded 𝜖 = ∞ for the case 𝜖 = 0. This comes from that 𝒮 is not 

dense in 𝐿∞. In this case, we regard 𝑚(𝐷)𝑓𝑖 as the convolution (ℱ−1𝑚) ∗ 𝑓𝑖. Then, this is well-defined since 

𝐻𝑠
2(ℝ𝑛) ↪ ℱ𝐿0

1 (ℝ𝑛) for 𝑠 > 𝑛/2, and thus Proposition 2.2 holds for 𝜖 = ∞ and 𝜖 = 0. In fact, if 𝑠 > 𝑛/2, 

‖∑

𝑖

𝑚(𝐷)𝑓𝑖‖𝐿∞ = ‖∑

𝑖

(ℱ−1𝑚) ∗ 𝑓𝑖‖

𝐿∞

≤ ‖ℱ−1𝑚‖𝐿1∑

𝑖

‖𝑓𝑖‖𝐿∞ ≲ ‖𝑚‖𝐻𝑠2∑

𝑖

‖𝑓𝑖‖𝐿∞ 

holds for all 𝑚 ∈ 𝐻𝑠
2(ℝ𝑛) and all 𝑓𝑖 ∈ 𝐿

∞(ℝ𝑛). 
2.2. Modulation spaces 

We give the definition of modulation spaces which were introduced by [4] (see also [5]). We fix a 

functions (called a window functions) 𝑔𝑖 ∈ 𝒮(ℝ
𝑛) ∖ {0} and denote the short-time Fourier transform of 𝑓𝑖 ∈

𝒮′(ℝ𝑛) with respect to 𝑔𝑖 by 

𝑉𝑔𝑖𝑓𝑖(𝑥, 𝜉) = ∫  
ℝ𝑛
∑

𝑖

𝑒−𝑖𝜉⋅𝑡𝑔𝑖(𝑡 − 𝑥)𝑓𝑖(𝑡)𝑑𝑡 

We will sometimes write 𝑉𝑔𝑖[𝑓𝑖] when the form of 𝑓𝑖 is complicated. For 0 ≤ 𝜖 ≤ ∞ and 𝑠 ∈ ℝ, the modulation 

space 𝑀𝑠
1+𝜖,1+2𝜖

 is defined by 

𝑀𝑠
1+𝜖,1+2𝜖(ℝ𝑛) = {𝑓𝑖 ∈ 𝒮

′(ℝ𝑛): ‖∑

𝑖

𝑓𝑖‖𝑀𝑠
1+𝜖,1+2𝜖 = ‖∑

𝑖

‖⟨𝜉⟩𝑠𝑉𝑔𝑖𝑓𝑖(𝑥, 𝜉)‖ 𝐿1+𝜖(ℝ𝑥
𝑛)‖

𝐿1+2𝜖(ℝ𝜉
𝑛)
< ∞} 

We note that the definition of modulation spaces is independent of the choice of window functions. 𝑀𝑠
1+𝜖,1+2𝜖

 

are Banach spaces and 𝒮 ⊂ 𝑀𝑠
1+𝜖,1+2𝜖 ⊂ 𝒮′. In particular, 𝒮 is dense 

in 𝑀𝑠
1+𝜖,1+2𝜖

 if 0 ≤ 𝜖 < ∞. For 0 ≤ 𝜖 < ∞, the dual space of 𝑀𝑠
1+𝜖,1+2𝜖

 can be seen as (𝑀𝑠
1+𝜖,1+2𝜖)

′
=

𝑀−𝑠

1+𝜖

𝜖
,
1+2𝜖

2𝜖 . Moreover, we have the following complex interpolation theorem. If 0 < 𝜃 < 1, 𝑠 = (1 − 𝜃)𝑠1 +

𝜃𝑠2, 1/1 + 𝜖 = (1 − 𝜃)/1 + 𝜖 + 𝜃/1 + 2𝜖 and 1/1 + 2𝜖 = (1 − 𝜃)/1 + 3𝜖 + 𝜃/1 + 4𝜖, we have 

(𝑀𝑠1
1+𝜖,1+3𝜖, 𝑀𝑠2

1+2𝜖,1+4𝜖)
𝜃
= 𝑀𝑠

1+𝜖,1+2𝜖
. As a further elementary property, we note the following embedding 

proved by [4, Proposition 6.5]. 

Proposition 2.3 [19]. Let 0 ≤ 𝜖, 1 + 2𝜖, 1 + 3𝜖, 1 + 4𝜖 ≤ ∞ and 𝑠1, 𝑠2 ∈ ℝ. Then, we have 𝑀𝑠1
1+𝜖,1+3𝜖 ↪

𝑀𝑠2
1+2𝜖,1+4𝜖

 for 1 + 𝜖 ≤ 1 + 2𝜖, 1 + 3𝜖 ≤ 1 + 4𝜖 and 𝑠1 ≥ 𝑠2. 

2.3. Besov spaces 

We here give the definition of Besov spaces (see also [18, Section 2.3]). Let 𝜑 ∈ 𝒮(ℝ𝑛) satisfy that 

𝜑 = 1 on {𝜉: |𝜉| ≤ 1/2} and supp𝜑 ⊂ {𝜉: |𝜉| ≤ 1}. We put 𝜓 = 𝜑(⋅/2) − 𝜑(⋅), and then see that supp𝜓 ⊂
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{𝜉: 1/2 ≤ |𝜉| ≤ 2}. Moreover, we set 𝜑𝑗 = 𝜑(⋅/2𝑗) and 𝜓𝑗 = 𝜓(⋅/2𝑗) for 𝑗 ∈ ℤ+, and denote the Fourier 

multiplier operators with respect to them by 

𝑆𝑗𝑓𝑖 = 𝜑𝑗(𝐷)𝑓𝑖 and Δ𝑗𝑓𝑖 = 𝜓𝑗(𝐷)𝑓𝑖 

We remark that 

𝜑 +∑  

∞

𝑗=0

𝜓𝑗 = 1  and 𝑆0𝑓𝑖 +∑  

∞

𝑗=0

∑

𝑖

Δ𝑗𝑓𝑖 = 𝑓𝑖 

and also that Δ𝑗𝑓𝑖 = 𝑆𝑗+1𝑓𝑖 − 𝑆𝑗𝑓𝑖. By using these notations, for 0 ≤ 𝜖 ≤ ∞ and 𝑠 ∈ ℝ, the Besov space 

𝐵𝑠
1+𝜖,1+2𝜖

 is defined by 

𝐵𝑠
1+𝜖,1+2𝜖(ℝ𝑛) = {𝑓𝑖 ∈ 𝒮

′(ℝ𝑛): ‖𝑓𝑖‖𝐵𝑠
1+𝜖,1+2𝜖 = ‖𝑆0𝑓𝑖‖𝐿1+𝜖 + (∑  

∞

𝑗=0

 ∑

𝑖

2𝑗𝑠(1+2𝜖)‖Δ𝑗𝑓𝑖‖𝐿1+𝜖
1+2𝜖

)

1/1+2𝜖

< ∞} 

Note that the norm of the Besov space is read with the usual modification for 𝜖 = ∞. Besov spaces also have 

basic properties like modulation spaces, namely, completeness, density, duality and interpolation. However, we 

omit mentioning the details and see [18, Section 2.3]. 

 

III. Multiplication algebras 

We collect some properties called multiplication algebras. A function space 𝑋 is said to be a 

multiplication algebra if for all 𝑓𝑖 , 𝑔𝑖 ∈ 𝑋 the product 𝑓𝑖 ⋅ 𝑔𝑖 exists and belongs to 𝑋, and if the inequality ‖𝑓𝑖 ⋅
𝑔𝑖‖𝑋 ≲ ‖𝑓𝑖‖𝑋 ⋅ ‖𝑔𝑖‖𝑋 holds for all 𝑓𝑖 , 𝑔𝑖 ∈ 𝑋. See [18, Section 2.8]. The following results on 𝐿1+𝜖-Sobolev and 

Besov spaces are well-known (see, e.g., [14, Chapter II, Theorem 2.1] and [18, Theorem 2.8.3]). 

Proposition 3.1 [19]. Let 0 < 𝜖 < ∞ and 𝑠 > 𝑛/1 + 𝜖. Then, we have 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖𝐻𝑠1+𝜖 ≲∑

𝑖

‖𝑓𝑖‖𝐻𝑠1+𝜖 ⋅ ‖𝑔𝑖‖𝐻𝑠1+𝜖 

for all 𝑓𝑖 , 𝑔𝑖 ∈ 𝐻𝑠
1+𝜖(ℝ𝑛). 

Proposition 3.2 [19]. Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 > 𝑛/1 + 𝜖. Then, we have 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖𝐵𝑠
1+𝜖,1+2𝜖 ≲∑

𝑖

‖𝑓𝑖‖𝐵𝑠
1+𝜖,1+2𝜖 ⋅ ‖𝑔𝑖‖𝐵𝑠

1+𝜖,1+2𝜖 

for all 𝑓𝑖 , 𝑔𝑖 ∈ 𝐵𝑠
1+𝜖,1+2𝜖(ℝ𝑛). 

Some of modulation spaces are also multiplication algebras (see, e.g., [4, Remark 6.4 and Proposition 

6.9] and [16, Proposition 3.2]). 

Proposition 3.3 [19]. Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 >
2𝑛𝜖

1+2𝜖
. Then, we have 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖𝑀𝑠
1+𝜖,1+2𝜖 ≲∑

𝑖

‖𝑓𝑖‖𝑀𝑠
1+𝜖,1+2𝜖 ⋅ ‖𝑔𝑖‖𝑀𝑠

1+𝜖,1+2𝜖 

for all 𝑓𝑖 , 𝑔𝑖 ∈ 𝑀𝑠
1+𝜖,1+2𝜖(ℝ𝑛), and 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖𝑀0
1+𝜖,1 ≲∑

𝑖

‖𝑓𝑖‖𝑀0
1+𝜖,1 ⋅ ‖𝑔𝑖‖𝑀0

1+𝜖,1  

for all 𝑓𝑖 , 𝑔𝑖 ∈ 𝑀0
1+𝜖,1(ℝ𝑛). 

Finally, we give the following counterpart for Fourier Lebesgue spaces. 

Proposition 3.4 (see [19]). Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 >
𝑛𝜖

1+𝜖
. Then, we have 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖ℱ𝐿𝑠1+𝜖 ≲∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 ⋅ ‖𝑔𝑖‖ℱ𝐿𝑠1+𝜖 

for all 𝑓𝑖 , 𝑔𝑖 ∈ ℱ𝐿𝑠
1+𝜖(ℝ𝑛), and 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖ℱ𝐿01 ≲∑

𝑖

‖𝑓𝑖‖ℱ𝐿01 ⋅ ‖𝑔𝑖‖ℱ𝐿01  

for all 𝑓𝑖 , 𝑔𝑖 ∈ ℱ𝐿0
1 (ℝ𝑛). 

Proof. From the inequality ⟨𝜉⟩𝑠 ≲ ⟨𝜉 − 𝜂⟩𝑠 + ⟨𝜂⟩𝑠 for any 𝜉, 𝜂 ∈ ℝ𝑛 and 𝑠 ≥ 0, we have 
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‖𝑓𝑖 ⋅ 𝑔𝑖‖ℱ𝐿𝑠1+𝜖∼ ‖⟨𝜉⟩
𝑠∫  

ℝ𝑛
∑

𝑖

 𝑓𝑖(𝜉 − 𝜂) ⋅ 𝑔̂i(𝜂)𝑑𝜂‖

𝐿1+𝜖(ℝ𝜉
𝑛)

≲∑

𝑖

‖∫  
ℝ𝑛
  ⟨𝜉 − 𝜂⟩𝑠|𝑓𝑖(𝜉 − 𝜂)| ⋅ |𝑔̂i(𝜂)|𝑑𝜂‖

𝐿1+𝜖(ℝ𝜉
𝑛)

+∑

𝑖

‖∫  
ℝ𝑛
  |𝑓𝑖(𝜉 − 𝜂)| ⋅ ⟨𝜂⟩

𝑠|𝑔̂i(𝜂)|𝑑𝜂‖
𝐿1+𝜖(ℝ𝜉

𝑛)

 

Then, we have by the Young and Hölder inequalities 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖ℱ𝐿𝑠1+𝜖≲∑

𝑖

‖⟨⋅⟩𝑠𝑓𝑖‖𝐿1+𝜖 ⋅ ‖𝑔̂𝑖‖𝐿1 +∑

𝑖

‖𝑓𝑖‖𝐿1 ⋅ ‖⟨⋅⟩
𝑠𝑔̂𝑖‖𝐿1+𝜖 ⋅

≤ ∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 ⋅ ‖⟨⋅⟩
−𝑠‖

𝐿
1+𝜖
𝜖
‖𝑔𝑖‖ℱ𝐿𝑠1+𝜖 +∑

𝑖

‖⟨⋅⟩−𝑠‖
𝐿
1+𝜖
𝜖
‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 ⋅ ‖𝑔𝑖‖ℱ𝐿𝑠1+𝜖 ,

 

which yields from the assumption 𝑠 >
𝑛𝜖

1+𝜖
 that ‖∑𝑖 𝑓𝑖 ⋅ 𝑔𝑖‖ℱ𝐿𝑠1+𝜖 ≲ ∑𝑖 ‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 ⋅ ‖𝑔𝑖‖ℱ𝐿𝑠1+𝜖. Here, we 

remark that, in the case 𝜖 = 0, ‖⟨⋅⟩−𝑠‖
𝐿
1+𝜖
𝜖

 is finite even if 𝑠 = 0, which gives the conclusion for 𝜖 = 0 and 𝑠 =

0. 

 

IV. Proof of Theorem 1.2 
We begin with an observation which will be used in the proof of Theorem 1.2. Put 

𝐺(𝑡) = 𝐹(𝑡) −∑  

𝑁

𝑘=1

 𝐹(𝑘)(0)
𝑡𝑘

𝑘!
(4.1) 

for any 𝑁 ∈ ℕ, where 𝐹 ∈ 𝐶∞(ℝ) and 𝐹(0) = 0. Then, we see that 𝐺(0) = 𝐺(1)(0) = ⋯ = 𝐺(𝑁)(0) = 0, and 

have 

𝐹(𝑓𝑖) = 𝐺(𝑓𝑖) +∑  

𝑁

𝑘=1

∑

𝑖

 𝐹(𝑘)(0)
𝑓𝑖
𝑘

𝑘!
(4.2) 

In order to obtain Theorem 1.2, we will prove that the right hand side of (4.2) belongs to ℱ𝐿𝑠
1+𝜖. However, it is 

trivial that the second term belongs to ℱ𝐿𝑠
1+𝜖, since ℱ𝐿𝑠

1+𝜖(ℝ𝑛) with 𝑠 >
𝑛𝜖

1+𝜖
 is a multiplication algebra (see 

Proposition 3.4). Hence, Theorem 1.2 is reduced to the following statement. 

Proposition 4.1 [19]. Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 >
𝑛(4+3𝜖)

1+3𝜖
. Assume that 𝑓𝑖: ℝ

𝑛 → ℝ, 𝑓𝑖 ∈ ℱ𝐿𝑠

4

3
+𝜖
(ℝ𝑛), 𝐺 ∈ 𝐶∞(ℝ) 

and 𝐺(0) = 𝐺(1)(0) = ⋯ = 𝐺([𝑠]+2)(0) = 0. Then, we have 𝐺(𝑓𝑖) ∈ ℱ𝐿𝑠

4

3
+𝜖
(ℝ𝑛). 

Before starting the proof of Proposition 4.1, we transform 𝐺(𝑓𝑖) to a more manageable alternative 

expression, which was provided by [9, Section 2]. We first remark that 𝑓𝑖 ∈ ℱ𝐿𝑠
2−𝜖(ℝ𝑛) ↪ 𝐻𝑠

2−𝜖

1−𝜖(ℝ𝑛) holds for 

𝜖 ≤ 0, and that 𝑓𝑖 ∈ ℱ𝐿𝑠
2+𝜖(ℝ𝑛) ↪ 𝐻𝑠̃

2(ℝ𝑛) for 𝜖 > 0 and 
𝑛

2
< 𝑠̃ <

𝑛

2
+ (

𝑠−𝑛

2+𝜖
) (see Proposition 2.1). They imply 

that 𝑓𝑖 belongs to 𝐵0
∞,1(ℝ𝑛), hence to 𝐿∞(ℝ𝑛), and so 𝑓𝑖 is a bounded uniformly continuous function. Then 𝑆𝑗𝑓𝑖 

converges uniformly to 𝑓𝑖 as 𝑗 → ∞, and 𝐺(𝑓𝑖) = 𝐺 (lim
𝑗→∞

 𝑆𝑗𝑓𝑖) = lim
𝑗→∞

 𝐺(𝑆𝑗𝑓𝑖). By the mean value theorem and 

the fact 𝑆𝑗+1𝑓𝑖 = 𝑆𝑗𝑓𝑖 + Δ𝑗𝑓𝑖, we have 

𝐺(𝑓𝑖)= 𝐺(𝑆0𝑓𝑖) +∑  

∞

𝑗=0

∑

𝑖

  [𝐺(𝑆𝑗+1𝑓𝑖) − 𝐺(𝑆𝑗𝑓𝑖)]

= 𝐺(𝑆0𝑓𝑖) +∑  

∞

𝑗=0

 ∫  
1

0

 ∑

𝑖

𝐺(1)(𝑆𝑗𝑓𝑖 + 𝑡Δ𝑗𝑓𝑖)𝑑𝑡 ⋅ Δ𝑗𝑓𝑖 = 𝐺(𝑆0𝑓𝑖) +∑  

∞

𝑗=0

∑

𝑖

 𝑚𝑗 ⋅ Δ𝑗𝑓𝑖,

 

where we set 

𝑚𝑗 = ∫  
1

0

 ∑

𝑖

𝐺(1)(𝑆𝑗𝑓𝑖 + 𝑡Δ𝑗𝑓𝑖)𝑑𝑡 (4.3) 

Moreover, we decompose 𝑚𝑗 into the low and high frequency parts. Recall from Section 2.3 that 𝜑(𝜉) +
∑  ∞
𝑚=0 𝜓(2

−𝑚𝜉) = 1 for any 𝜉 ∈ ℝ𝑛. Then, it follows that 

𝜑 (
𝜉

𝐶 ⋅ 2𝑗
) + ∑  

∞

𝑚=0

𝜓(
𝜉

𝐶 ⋅ 2𝑗+𝑚
) = 1 
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for any 𝜉 ∈ ℝ𝑛, where 𝐶 is a sufficiently large constant. Using this decomposition, we have 

𝑚𝑗 = 𝜑 (
𝐷

𝐶 ⋅ 2𝑗
)𝑚𝑗 + ∑  

∞

𝑚=0

𝜓(
𝐷

𝐶 ⋅ 2𝑗+𝑚
)𝑚𝑗 = 𝑞𝑗 + ∑  

∞

𝑚=0

𝑝𝑗,𝑚, 

where we set 

𝑞𝑗 = 𝜑 (
𝐷

𝐶 ⋅ 2𝑗
)𝑚𝑗 and 𝑝𝑗,𝑚 = 𝜓(

𝐷

𝐶 ⋅ 2𝑗+𝑚
)𝑚𝑗 (4.4) 

Therefore, 𝐺(𝑓𝑖) is expressed in the following form: 

𝐺(𝑓𝑖) = 𝐺(𝑆0𝑓𝑖) +∑  

∞

𝑗=0

 ∑

𝑖

𝑞𝑗 ⋅ Δ𝑗𝑓𝑖 +∑  

∞

𝑗=0

  ∑  

∞

𝑚=0

∑

𝑖

 𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖 (4.5) 

From now on, we give estimates for each term of the expression (4.5) without specifying constants explicitly. 

(We however remark that these implicit constants may depend on ‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖.)  

 We start by stating two lemmas. The first one is for 𝑞𝑗 in (4.4). 

Lemma 4.1 (see [19]). Let 0 < 𝜖 ≤ ∞, 𝑠 >
𝑛𝜖

1+𝜖
 and 𝑛/2 < 𝑠̃ < 𝑛/2 + (𝑠 −

𝑛𝜖

1+𝜖
). Suppose that 𝑓𝑖 ∈ ℱ𝐿𝑠

1+𝜖(ℝ𝑛) 

and all the assumptions of 𝐺 are the same as in Proposition 4.1. Then, we have 

‖𝑞𝑗‖
𝐻𝑠

1+𝜖
𝜖
≲ 1 if  0 < 𝜖 ≤ 1

‖𝑞𝑗‖𝐻𝑠̃
2 ≲ 1 if  0 < 𝜖 ≤ ∞

 

for any 𝑗 ∈ ℤ+. Here, the implicit constants are independent of 𝑗 ∈ ℤ+. 

Proof. We first consider the estimate with 0 < 𝜖 ≤ 1. Set (𝑓𝑖)𝑗,𝑡 = 𝑆𝑗𝑓𝑖 + 𝑡Δ𝑗𝑓𝑖 . Recalling the definition of 𝑚𝑗 

from (4.3), we have 

‖𝑞𝑗‖
𝐻𝑠

1+𝜖
𝜖
≲ ‖𝑚𝑗‖

𝐻𝑠

1+𝜖
𝜖
≤ ∫  

1

0

∑

𝑖

‖𝐺(1)((𝑓𝑖)𝑗,𝑡)‖
𝐻𝑠

1+𝜖
𝜖
𝑑𝑡 

Observe that 

‖(𝑓𝑖)𝑗,𝑡‖
𝐻𝑠

1+𝜖
𝜖
≲ (‖ℱ−1𝜑𝑗‖𝐿1 + 𝑡‖ℱ

−1𝜓𝑗‖𝐿1)∑

𝑖

‖𝑓𝑖‖
𝐻𝑠

1+𝜖
𝜖

≲ (‖ℱ−1𝜑‖𝐿1 + 𝑡‖ℱ
−1𝜓‖𝐿1)∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 ≲∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 ,
 

which means that (𝑓𝑖)𝑗,𝑡 ∈ 𝐻𝑠

1+𝜖

𝜖  for any 𝑗 ∈ ℤ+and any 𝑡 ∈ [0,1]. Then, using Theorem A and Remark 1.1 

together with the assumptions 𝐺 ∈ 𝐶∞(ℝ) and 𝐺(1)(0) = 0, we have 

‖∑

𝑖

𝐺(1)((𝑓𝑖)𝑗,𝑡)‖

𝐻𝑠

1+𝜖
𝜖

≲ ‖𝐺(2)‖
𝐶[𝑠]+1(Ω)

∑

𝑖

(1 + ‖(𝑓𝑖)𝑗,𝑡‖𝐿∞
[𝑠]+1

) ‖(𝑓𝑖)𝑗,𝑡‖
𝐻𝑠

1+𝜖
𝜖

≲ ‖𝐺‖𝐶[𝑠]+3(Ω)∑

𝑖

(1 + ‖𝑓𝑖‖𝐿∞
[𝑠]+1

)‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖

 

where Ω = {𝑡: |𝑡| ≲ ‖𝑓𝑖‖𝐿∞}. Note that the last quantity is finite since 𝑓𝑖 ∈ ℱ𝐿𝑠
1+𝜖(ℝ𝑛) ↪ 𝐿∞(ℝ𝑛) for 𝑠 >

𝑛𝜖

1+𝜖
 

and the smooth function 𝐺 ∈ 𝐶∞(ℝ) is measured by 𝐶[𝑠]+3 on the closed and bounded domain Ω. Therefore, we 

have ‖𝑞𝑗‖
𝐻𝑠

1+𝜖
𝜖
≲ 1 for 0 < 𝜖 ≤ 1. 

We next consider the estimate with 0 < 𝜖 ≤ ∞. This is, however, immediately given by the same 

argument as above. In fact, since we already know from Proposition 2.1 that 𝑓𝑖 ∈ ℱ𝐿𝑠
2+𝜖(ℝ𝑛) ↪ 𝐻𝑠̃

2(ℝ𝑛) ↪
𝐿∞(ℝ𝑛), we have by Theorem A and Remark 1.1 

‖∑

𝑖

𝐺(1)((𝑓𝑖)𝑗,𝑡)‖

𝐻𝑠̃
2

≲ ‖𝐺(2)‖
𝐶[𝑠̃]+1(Ω)

∑

𝑖

(1 + ‖(𝑓𝑖)𝑗,𝑡‖𝐿∞
[𝑠̃+1)

) ‖(𝑓𝑖)𝑗,𝑡‖𝐻𝑠̃
2

≲ ‖𝐺‖𝐶[𝑠̃]+3(Ω)∑

𝑖

(1 + ‖𝑓𝑖‖𝐿∞
[𝑠̃]+1

)‖𝑓𝑖‖𝐻𝑠̃
2

≲ ‖𝐺‖𝐶[𝑠̃]+3(Ω)∑

𝑖

(1 + ‖𝑓𝑖‖𝐿∞
[𝑠̃]+1

)‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖 .

 

Note that the last quantity is finite. Hence, we obtain ‖𝑞𝑗‖𝐻𝕊
2 ≲ 1 for 0 < 𝜖 ≤ ∞. 

The second one is concerned with 𝑝𝑗,𝑚 in (4.4). 
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Lemma 4.2 [19]. Let 0 < 𝜖 ≤ ∞, 𝑠 >
𝑛𝜖

1+𝜖
 and 𝑛/2 < 𝑠̃ < 𝑛/2 + (𝑠 −

𝑛𝜖

1+𝜖
). Suppose that 𝑓𝑖 ∈ ℱ𝐿𝑠

1+𝜖(ℝ𝑛) and 

all the assumptions of 𝐺 are the same as in Proposition 4.1. Then, we have 

‖𝑝𝑗,𝑚‖
𝐻𝑠

1+𝜖
𝜖
≲ 2−𝑚([𝑠]+1) if  0 < 𝜖 ≤ 1

‖𝑝𝑗,𝑚‖𝐻𝑠̃
2 ≲ 2−𝑚([𝑠]+1) if  0 < 𝜖 ≤ ∞

 

for any 𝑗, 𝑚 ∈ ℤ+. Here, the implicit constants are independent of 𝑗, 𝑚 ∈ ℤ+. 

To prove Lemma 4.2, we prepare the following: 

Lemma 4.3 (see [19]). Let 0 < 𝜖 ≤ ∞, 𝑠 >
𝑛𝜖

1+𝜖
 and 𝑛/2 < 𝑠̃ < 𝑛/2 + (𝑠 −

𝑛𝜖

1+𝜖
), and let 𝛼 ∈ ℤ+

𝑛  satisfy that 

|𝛼| = [𝑠] + 1. Suppose that 𝑓𝑖 ∈ ℱ𝐿𝑠
1+𝜖(ℝ𝑛) and all the assumptions of 𝐺 are the same as in Proposition 4.1. 

Then, we have 

‖𝜕𝛼𝑚𝑗‖
𝐻𝑠

1+𝜖
𝜖
≲ 2𝑗([𝑠]+1) if  0 < 𝜖 ≤ 1

‖𝜕𝛼𝑚𝑗‖𝐻𝑠2
≲ 2𝑗([𝑠]+1) if  0 < 𝜖 ≤ ∞

 

for any 𝑗 ∈ ℤ+. Here, the implicit constants are independent of 𝑗 ∈ ℤ+. 

Proof. We first consider the case 0 < 𝜖 ≤ 1. Set (𝑓𝑖)𝑗,𝑡 = 𝑆𝑗𝑓𝑖 + 𝑡Δ𝑗𝑓𝑖. Then we have by Proposition 3.1 

‖𝜕𝛼𝑚𝑗‖
𝐻𝑠

1+𝜖
𝜖
≤ ∫  

1

0

 ∑

𝑖

‖𝜕𝛼[𝐺(1)((𝑓𝑖)𝑗,𝑡)]‖
𝐻𝑠

1+𝜖
𝜖
𝑑𝑡

≲ ∑  

|𝛼|

𝜇=1

  ∑  

𝛼1+⋯+𝛼𝜇=𝛼

 ∫  
1

0

 ∑

𝑖

‖𝐺(𝜇+1)((𝑓𝑖)𝑗,𝑡)‖
𝐻𝑠

1+𝜖
𝜖
⋅ ‖𝜕𝛼1(𝑓𝑖)𝑗,𝑡‖

𝐻𝑠

1+𝜖
𝜖
⋯‖𝜕𝛼𝜇(𝑓𝑖)𝑗,𝑡‖

𝐻𝑠

1+𝜖
𝜖
𝑑𝑡

 

where |𝛼| = [𝑠] + 1. Observe that for 𝛽 ∈ ℤ+
𝑛  

‖∑

𝑖

𝜕𝛽(𝑓𝑖)𝑗,𝑡‖

𝐻𝑠

1+𝜖
𝜖

≲ (‖ℱ−1[𝜉𝛽 ⋅ 𝜑𝑗]‖𝐿1 + 𝑡‖ℱ
−1[𝜉𝛽 ⋅ 𝜓𝑗]‖𝐿1)∑

𝑖

‖𝑓𝑖‖
𝐻𝑠

1+𝜖
𝜖
≲ 2𝑗|𝛽|∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 

which also means that (𝑓𝑖)𝑗,𝑡 ∈ 𝐻𝑠

1+𝜖

𝜖  for any 𝑗 ∈ ℤ+and any 𝑡 ∈ [0,1]. Therefore, by using Theorem A and 

Remark 1.1 together with the assumptions 𝐺 ∈ 𝐶∞(ℝ) and 𝐺(2)(0) = ⋯ = 𝐺([𝑠]+2)(0) = 0, we have for 𝜇 =
1,⋯ , [𝑠] + 1 

‖∑

𝑖

𝐺(𝜇+1)((𝑓𝑖)𝑗,𝑡)‖

𝐻𝑠

1+𝜖
𝜖

≲ ‖𝐺(𝜇+2)‖
𝐶[𝑠]+1(Ω)

∑

𝑖

(1 + ‖(𝑓𝑖)𝑗,𝑡‖𝐿∞
[𝑠]+1

) ‖(𝑓𝑖)𝑗,𝑡‖
𝐻𝑠

1+𝜖
𝜖

≲ ‖𝐺‖𝐶𝜇+[𝑠]+3(Ω)∑

𝑖

(1 + ‖𝑓𝑖‖𝐿∞
[𝑠]+1

)‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖

 

where Ω = {𝑡: |𝑡| ≲ ‖𝑓𝑖‖𝐿∞}. Note that the last quantity makes sense surely since 𝑓𝑖 ∈ ℱ𝐿𝑠
1+𝜖(ℝ𝑛) ↪ 𝐿∞(ℝ𝑛) 

for 𝑠 >
𝑛𝜖

1+𝜖
 and 𝐺 ∈ 𝐶∞(ℝ) is considered on the closed and bounded domain Ω. Hence, we obtain 

‖𝜕𝛼𝑚𝑗‖
𝐻𝑠

1+𝜖
𝜖
≲ ∑  

[𝑠]+1

𝜇=1

∑  

𝛼1+⋯+𝛼𝜇=𝛼

∑

𝑖

(2𝑗|𝛼1|‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖)⋯ (2
𝑗|𝛼𝜇|‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖) ≲ 2𝑗([𝑠]+1) 

which completes the proof for 0 < 𝜖 ≤ 1. 

We next consider the case 0 < 𝜖 ≤ ∞. Repeating the same lines as above, since we already know from 

Proposition 2.1 that 𝑓𝑖 ∈ ℱ𝐿𝑠
2+𝜖(ℝ𝑛) ↪ 𝐻𝑠̃

2(ℝ𝑛) ↪ 𝐿∞(ℝ𝑛), we have for 𝛽 ∈ ℤ+
𝑛  

‖∑

𝑖

𝜕𝛽(𝑓𝑖)𝑗,𝑡‖

𝐻𝑠̃
2

≲ (‖ℱ−1[𝜉𝛽 ⋅ 𝜑𝑗]‖𝐿1 + 𝑡‖ℱ
−1[𝜉𝛽 ⋅ 𝜓𝑗]‖𝐿1)∑

𝑖

‖𝑓𝑖‖𝐻𝑠̃
2 ≲ 2𝑗|𝛽|∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖 

and by Theorem A and Remark 1.1 for 𝜇 = 1,⋯ , [𝑠] + 1 

‖∑

𝑖

𝐺(𝜇+1)((𝑓𝑖)𝑗,𝑡)‖

𝐻𝑠̃
2

≲ ‖𝐺(𝜇+2)‖
𝐶[𝑠̃]+1(Ω)

∑

𝑖

(1 + ‖(𝑓𝑖)𝑗,𝑡‖𝐿∞
[𝑠̃]+1

) ‖(𝑓𝑖)𝑗,𝑡‖𝐻𝑠̃
2

≲ ‖𝐺‖𝐶𝜇+[𝑠̃]+3(Ω)∑

𝑖

(1 + ‖𝑓𝑖‖𝐿∞
[𝑠̃]+1

)‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖 .

 

Hence, we obtain ‖𝜕𝛼𝑚𝑗‖𝐻𝑠̃
2 ≲ 2

𝑗([𝑠]+1) for 0 < 𝜖 ≤ ∞. 

Proof of Lemma 4.2. By the moment condition of 𝜓 and a Taylor expansion, we have 
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𝑝𝑗,𝑚(𝑥) =𝐶
𝑛 ⋅ 2(𝑗+𝑚)𝑛∫  

ℝ𝑛
  𝜓̌(𝐶 ⋅ 2𝑗+𝑚𝑦) ⋅ 𝑚𝑗(𝑥 − 𝑦)𝑑𝑦

=𝐶𝑛 ⋅ 2(𝑗+𝑚)𝑛∫  
ℝ𝑛
  𝜓̌(𝐶 ⋅ 2𝑗+𝑚𝑦) {𝑚𝑗(𝑥 − 𝑦) − ∑  

|𝛼|<𝑀

 
(−𝑦)𝛼

𝛼!
(𝜕𝛼𝑚𝑗)(𝑥)}𝑑𝑦

=𝐶𝑛 ⋅ 2(𝑗+𝑚)𝑛∫  
ℝ𝑛
  𝜓̌(𝐶 ⋅ 2𝑗+𝑚𝑦)

⋅ {𝑀 ∑  

|𝛼|=𝑀

 
(−𝑦)𝛼

𝛼!
∫  
1

0

  (1 − 𝑡)𝑀−1 ⋅ (𝜕𝛼𝑚𝑗)(𝑥 − 𝑡𝑦)𝑑𝑡}𝑑𝑦

 

where 𝑀 = [𝑠] + 1. Taking the (
1+𝜖

𝜖
)-norm of both sides, we have 

‖𝑝𝑗,𝑚‖
𝐻𝑠

1+𝜖
𝜖

 ≲ 2(𝑗+𝑚)𝑛∫  
ℝ𝑛
  |𝜓̌(𝐶 ⋅ 2𝑗+𝑚𝑦)| ⋅ |𝑦|[𝑠]+1 { ∑  

|𝛼|=[𝑠]+1

 ∫  
1

0

  ‖(𝜕𝛼𝑚𝑗)(𝑥 − 𝑡𝑦)‖
𝐻𝑠

1+𝜖
𝜖 (ℝ𝑥

𝑛)

𝑑𝑡}𝑑𝑦
 

∼ 2−(𝑗+𝑚)([𝑠]+1) (∫  
ℝ𝑛
  |𝜓̌(𝑦)| ⋅ |𝑦|[𝑠]+1𝑑𝑦) ∑  

|𝛼|=[𝑠]+1

  ‖𝜕𝛼𝑚𝑗‖
𝐻𝑠

1+𝜖
𝜖

∼ 2−(𝑗+𝑚)([𝑠]+1) ∑  

|𝛼|=[𝑠]+1

  ‖𝜕𝛼𝑚𝑗‖
𝐻𝑠

1+𝜖
𝜖

 

Since we have ‖𝜕𝛼𝑚𝑗‖
𝐻𝑠

1+𝜖
𝜖
≲ 2𝑗([𝑠]+1) for 0 < 𝜖 ≤ 1 by Lemma 4.3, we obtain ‖𝑝𝑗,𝑚‖

𝐻𝑠

1+𝜖
𝜖
≲ 2−𝑚([𝑠]+1). By 

the same manner as above, we also have ‖𝑝𝑗,𝑚‖𝐻𝑠̃
2 ≲ 2

−𝑚([𝑠]+1) for 0 < 𝜖 ≤ ∞. 

We prove Proposition 4.1. 

Proof of Proposition 4.1. We recall the alternative form of 𝐺(𝑓𝑖) given in (4.5), that is, 

𝐺(𝑓𝑖) = 𝐺(𝑆0𝑓𝑖) +∑  

∞

𝑗=0

∑

𝑖

𝑞𝑗 ⋅ Δ𝑗𝑓𝑖 +∑  

∞

𝑗=0

∑  

∞

𝑚=0

∑

𝑖

𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖 

and prove that the function 𝐺(𝑓𝑖) belongs to ℱ𝐿𝑠
1+𝜖, which will be archived by three steps. In the first and 

second steps, we consider the second and third summations, and then consider 𝐺(𝑆0𝑓𝑖) in the last step. 

Step 1: We first consider the case 𝜖 < ∞. Taking the ℱ𝐿𝑠
1+𝜖-norm of the second summation in (4.5), we have 

‖∑

𝑖

⟨⋅⟩𝑠∑ 

∞

𝑗=0

 ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖]‖

𝐿1+𝜖

= (∑  

∞

ℓ=0

 ∫  
Ωℓ

 ∑

𝑖

⟨𝜉⟩𝑠(1+𝜖) |∑  

∞

𝑗=0

 ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)|

1+𝜖

𝑑𝜉)

1/1+𝜖

(4.6) 

where Ωℓ = {𝜉: 2
ℓ < |𝜉| ≤ 2ℓ+1} if ℓ ≠ 0 and Ω0 = {𝜉: |𝜉| ≤ 2}. We remark that 

suppℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖] ⊂ {𝜉: |𝜉| ≤ 𝐶 ⋅ 2𝑗+1} 

since ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖] = [𝜑 (
⋅

𝐶⋅2𝑗
) 𝑚̂𝑗] ∗ [𝜓𝑗𝑓𝑖]. This means that on the domain Ωℓ, ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖] always vanishes 

unless 𝑗 ≥ ℓ − 𝑁(𝑗 ≥ 0 if ℓ = 0,⋯ ,𝑁), where 𝑁 is a constant which depends only on 𝐶 ≫ 1 (roughly, 2𝑁 ∼ 𝐶 

). Hence, the right hand side of (4.6) is equal to 

(∑  

∞

ℓ=0

 ∫  
Ωℓ

 ∑

𝑖

⟨𝜉⟩𝑠(1+𝜖) | ∑  

∞

𝑗=ℓ−𝑁

 ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)|

1+𝜖

𝑑𝜉)

1/1+𝜖

(4.7) 

where the inner summation should be read as ∑  ∞
𝑗=0  if ℓ = 0,⋯ ,𝑁. Then, using the Hölder inequality to the 

inner summation, we have 

(4.7) ≲

(

 ∑  

∞

ℓ=0

 ∫  
Ωℓ

 2ℓ𝑠(1+𝜖) ( ∑  

∞

𝑗=ℓ−𝑁

∑

𝑖

 2𝑗𝑠(1+𝜖)|ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)|
1+𝜖
) ⋅ ( ∑  

∞

𝑗=ℓ−𝑁

 2−𝑗𝑠
(
1+𝜖

𝜖
)
)

1

𝜖

𝑑𝜉

)

 

1/1+𝜖

≲ (∑  

∞

ℓ=0

 ∫  
Ωℓ

  ∑  

∞

𝑗=ℓ−𝑁

 ∑

𝑖

2𝑗𝑠(1+𝜖)|ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)|
1+𝜖
𝑑𝜉)

1/1+𝜖
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≲ (∑  

∞

𝑗=0

 2𝑗𝑠(1+𝜖)∫  
ℝ𝑛
∑

𝑖

  |ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)|
1+𝜖
𝑑𝜉)

1

1+𝜖

                                                                 (4.8) 

Here, in the last inequality, we used the fact that ℝ𝑛 = ⋃  ∞
ℓ=0 Ωℓ. Now, we observe that 

‖∑

𝑖

ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖]‖

𝐿1+𝜖

= ‖∑

𝑖

𝑞𝑗̃(𝐷)[𝜓𝑗 ⋅ 𝑓𝑖]‖

𝐿1+𝜖

 

where 𝑞𝑗̃(𝑥) = 𝑞𝑗(−𝑥). Then, we see that the last quantity of (4.8) is equal to 

(∑  

∞

𝑗=0

∑

𝑖

 2𝑗𝑠(1+𝜖)‖𝑞𝑗̃(𝐷)[𝜓𝑗 ⋅ 𝑓𝑖]‖𝐿1+𝜖
1+𝜖

)

1/1+𝜖

(4.9) 

Apply Proposition 2.2 with 𝜖 = 1 for 0 ≤ 𝜖 ≤
2

3
 and with 𝜖 = 0 for 0 < 𝜖 < ∞ to (4.9). Here, we note that the 

assumption 0 ≤ 𝜖 ≤
2

3
 is used to assure the conditions 

2(2+𝜖)

(4+𝜖)
≤

4

3
+ 𝜖 ≤

2(2+𝜖)

(𝜖)
 and 𝜖 ≥ 0 in Proposition 2.2. 

Then, we have 

(4.9) ≲

{
 
 
 

 
 
 

(∑  

∞

𝑗=0

 ∑

𝑖

2𝑗𝑠(4/3+𝜖)‖𝑞𝑗‖
𝐻𝑠

4+3𝜖
1+3𝜖

4/3+𝜖
‖𝜓𝑗 ⋅ 𝑓𝑖‖

𝐿
4
3+𝜖

4

3
+𝜖
)

3

4+3𝜖

 if  0 ≤ 𝜖 ≤ 2/3

(∑  

∞

𝑗=0

 ∑

𝑖

2𝑗𝑠(2+𝜖)‖𝑞𝑗‖𝐻𝑠̂
2

2+𝜖
‖𝜓𝑗 ⋅ 𝑓𝑖‖𝐿2+𝜖

2+𝜖
)

1/2+𝜖

 if  0 < 𝜖 < ∞

 

where 𝑠̃ is the number satisfying that 𝑛/2 < 𝑠̃ < 𝑛/2 + (𝑠 −
𝑛(1+𝜖)

2+𝜖
). Thus, we obtain from Lemma 4.1 

(4.9) ≲ (∑  

∞

𝑗=0

 ∑

𝑖

2𝑗𝑠(2+𝜖)‖𝜓𝑗 ⋅ 𝑓𝑖‖𝐿2+𝜖
2+𝜖

)

1/2+𝜖

 

Since it follows that ∑  ∞
𝑗=0 |𝜓𝑗|

2+𝜖
≲ 1 (if 𝜖 < ∞ ) and 2𝑗 ∼ ⟨𝜉⟩ on the support of 𝜓𝑗, we realize that 

(∑  

∞

𝑗=0

 ∑

𝑖

2𝑗𝑠(2+𝜖)‖𝜓𝑗 ⋅ 𝑓𝑖‖𝐿2+𝜖
2+𝜖

)

1/2+𝜖

∼ (∑  

∞

𝑗=0

 ∑

𝑖

‖𝜓𝑗 ⋅ ⟨𝜉⟩
𝑠𝑓𝑖‖𝐿2+𝜖

2+𝜖
)

1/2+𝜖

≲∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖 

for 0 ≤ 𝜖 < ∞, which gives the desired result for the case 0 ≤ 𝜖 < ∞. 

We next consider the case 𝜖 = ∞. However, this case is obtained similarly to the above. In fact, we 

have 

sup
𝜉∈ℝ𝑛

  |⟨𝜉⟩𝑠∑ 

∞

𝑗=0

∑

𝑖

 ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)| ≲ sup
ℓ∈ℤ+

 (sup
𝜉∈Ωℓ

 2ℓ𝑠 ∑  

∞

𝑗=ℓ−𝑁

∑

𝑖

  |ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)|) , (4.10) 

since each Ωℓ is disjoint. Recalling from Lemma 4.1 that ‖𝑞𝑗‖𝐻𝔰2
≲ 1 holds independently of 𝑗 ∈ ℤ+, we have 

by Remark 2.1 

∑

𝑖

|ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)| ≲∑

𝑖

‖𝑞𝑗‖𝐻
𝑠
𝑆
2‖𝜓𝑗⟨⋅⟩

−𝑠 ⋅ ⟨⋅⟩𝑠𝑓𝑖‖𝐿∞ ≲ 2−𝑗𝑠∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠∞ 

Hence, we obtain 

2ℓ𝑠 ∑  

∞

𝑗=ℓ−𝑁

∑

𝑖

|ℱ[𝑞𝑗 ⋅ Δ𝑗𝑓𝑖](𝜉)| ≲ 2ℓ𝑠 ∑  

∞

𝑗=ℓ−𝑁

∑

𝑖

2−𝑗𝑠‖𝑓𝑖‖ℱ𝐿𝑠∞ ≲∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠∞ 

for any ℓ ∈ ℤ+, where all the implicit constants above are independent of ℓ ∈ ℤ+. Substituting this estimate into 

(4.10), we have the desired result for the case 𝜖 = ∞. 

Combining all the calculations above, we obtain for 0 ≤ 𝜖 ≤ ∞ 

‖∑  

∞

𝑗=0

∑

𝑖

 𝑞𝑗 ⋅ Δ𝑗𝑓𝑖‖

ℱ𝐿𝑠
2+𝜖

< ∞ (4.11) 

Step 2: We first consider the case 𝜖 < ∞. As in Step 1, we take the ℱ𝐿𝑠
1+𝜖-norm of the third summation in (4.5). 

Then, using the dyadic decomposition, we have 
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‖⟨𝜉⟩𝑠∑ 

∞

𝑗=0

 ∑

𝑖

ℱ [∑  

∞

𝑚=0

 𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖]‖

𝐿1+𝜖

≲ ∑  

∞

𝑚=0

 (∑  

∞

ℓ=0

 ∫  
Ωℓ

 2ℓ𝑠(1+𝜖) |∑  

∞

𝑗=0

 ∑

𝑖

ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖](𝜉)|

1+𝜖

𝑑𝜉)

1/1+𝜖

, (4.12) 

where Ωℓ = {𝜉: 2
ℓ < |𝜉| ≤ 2ℓ+1} if ℓ ≠ 0 and Ω0 = {𝜉: |𝜉| ≤ 2}. Considering the support of ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖], 

since we have 

suppℱ𝑝𝑗,𝑚 ⊂ {𝜉: 𝐶 ⋅ 2𝑗+𝑚−1 ≤ |𝜉| ≤ 𝐶 ⋅ 2𝑗+𝑚+1} and 

suppℱ[Δ𝑗𝑓𝑖] ⊂ {𝜉: 2𝑗−1 ≤ |𝜉| ≤ 2𝑗+1}
 

we see that 

suppℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖] ⊂ {𝜉: 𝐶 ⋅ 2
𝑗+𝑚−2 ≤ |𝜉| ≤ 𝐶 ⋅ 2𝑗+𝑚+2} 

This implies that on the domain Ωℓ, the function ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖] always vanishes unless 𝑗, ℓ,𝑚 ∈ ℤ+satisfy that 

𝑗 + 𝑚 + 𝑁 − 2 ≤ ℓ ≤ 𝑗 + 𝑚 + 𝑁 + 1, where 𝑁 is the constant which depends only on 𝐶 ≫ 1. Put Λ =
{𝑗 ∈ ℤ+: ℓ − 𝑚 − 𝑁 − 1 ≤ 𝑗 ≤ ℓ − 𝑚 − 𝑁 + 2}, where this set is read as Λ = ∅ if ℓ − 𝑚 − 𝑁 + 2 < 0. Then, 

0 ≤ #Λ ≤ 4. Hence, the right hand side of (4.12) is equivalent to 

∑  

∞

𝑚=0

 (∑  

∞

ℓ=0

 ∫  
Ωℓ

 ∑  

𝑗∈Λ

 ∑

𝑖

2(𝑗+𝑚)𝑠(1+𝜖)|ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖](𝜉)|
1+𝜖
𝑑𝜉)

1/1+𝜖

(4.13) 

Then, we have by the Fubini-Tonelli theorem 

(4.13) ≤ ∑  

∞

𝑚=0

 2𝑚𝑠 (∫  
ℝ𝑛
 ∑  

∞

𝑗=0

 ∑

𝑖

2𝑗𝑠(1+𝜖)|ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖](𝜉)|
1+𝜖
𝑑𝜉)

1/1+𝜖

= ∑  

∞

𝑚=0

 2𝑚𝑠 (∑  

∞

𝑗=0

 2𝑗𝑠(1+𝜖)∑

𝑖

‖ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖]‖𝐿1+𝜖
1+𝜖

)

1/1+𝜖

(4.14)

 

Using the identity ‖ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖]‖𝐿1+𝜖 = ‖𝑝𝑗,𝑚̃(𝐷)[𝜓𝑗 ⋅ 𝑓𝑖]‖𝐿1+𝜖, where 𝑝𝑗,𝑚̃(𝑥) = 𝑝𝑗,𝑚(−𝑥), we see that the 

last quantity of (4.14) is equal to 

∑  

∞

𝑚=0

 2𝑚𝑠 (∑  

∞

𝑗=0

∑

𝑖

 2𝑗𝑠(1+𝜖)‖𝑝𝑗,𝑚̃(𝐷)[𝜓𝑗 ⋅ 𝑓𝑖]‖𝐿1+𝜖
1+𝜖

)

1/1+𝜖

(4.15) 

As in Step 1, we have 

(4.9) ≲

{
 
 
 

 
 
 
∑  

∞

𝑚=0

 2𝑚𝑠 (∑  

∞

𝑗=0

∑

𝑖

 2𝑗𝑠(
4

3
+𝜖)‖𝑝𝑗,𝑚‖

𝐻𝑠

4+3𝜖
1+3𝜖

4

3
+𝜖

‖𝜓𝑗 ⋅ 𝑓𝑖‖
𝐿
4
3+𝜖

4

3
+𝜖
)

1/2+𝜖

 if  0 ≤ 𝜖 ≤ 2/3

∑  

∞

𝑚=0

 2𝑚𝑠 (∑  

∞

𝑗=0

∑

𝑖

 2𝑗𝑠(2+𝜖)‖𝑝𝑗,𝑚‖𝐻𝑠̂
2

2+𝜖
‖𝜓𝑗 ⋅ 𝑓𝑖‖𝐿2+𝜖

2+𝜖
)

1/2+𝜖

 if  0 < 𝜖 < ∞

 

for 𝑛/2 < 𝑠̃ < 𝑛/2 + (𝑠 −
𝑛(1+𝜖)

2+𝜖
). Hence, recalling the properties that ∑  ∞

𝑗=0 |𝜓𝑗|
2+𝜖

≲ 1 (if 𝜖 < ∞) and 2𝑗 ∼

⟨𝜉⟩ on supp𝜓𝑗, we have by Lemma 4.2 

(4.15) ≲ ∑  

∞

𝑚=0

  2𝑚𝑠 ⋅ 2−𝑚([𝑠]+1)(∑  

∞

𝑗=0

∑

𝑖

 2𝑗𝑠(2+𝜖)‖𝜓𝑗 ⋅ 𝑓𝑖‖𝐿2+𝜖
2+𝜖

)

1/2+𝜖

≲∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖
 

for 0 ≤ 𝜖 < ∞, which gives the desired result for the case 0 ≤ 𝜖 < ∞. 

We next consider the case 𝜖 = ∞, which is obtained similarly to the above. In fact, we have 

sup
𝜉∈ℝ𝑛

  |⟨𝜉⟩𝑠∑ 

∞

𝑗=0

 ℱ [∑  

∞

𝑚=0

∑

𝑖

 𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖] (𝜉)| ≲ sup
ℓ∈ℤ+

 (sup
𝜉∈Ωℓ

  ∑  

∞

𝑚=0

 2ℓ𝑠∑ 

𝑗∈Λ

∑

𝑖

  |ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖](𝜉)|) 

(see above for the definition of the sets Ωℓ and Λ ). Recalling from Lemma 4.2 that ‖𝑝𝑗,𝑚‖𝐻𝑠2
≲ 2−𝑚([𝑠]+1) holds 

independently of 𝑗, 𝑚 ∈ ℤ+and following the same lines as in Step 1, we have 

|∑

𝑖

ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖](𝜉)| ≲ ‖𝑝𝑗,𝑚‖𝐻𝑠̃
2∑

𝑖

‖𝜓𝑗𝑓𝑖‖𝐿∞ ≲ 2
−𝑚([𝑠]+1) ⋅ 2−𝑗𝑠∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠∞ 

Hence, we obtain 
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∑  

∞

𝑚=0

2ℓ𝑠∑ 

𝑗∈Λ

∑

𝑖

|ℱ[𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖](𝜉)| ≲ ∑  

∞

𝑚=0

2−𝑚([𝑠]+1) ⋅ 2ℓ𝑠∑ 

𝑗∈Λ

∑

𝑖

2−𝑗𝑠‖𝑓𝑖‖ℱ𝐿𝑠∞ ∼∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠∞ 

for any ℓ ∈ ℤ+. This gives the desired result for the case 𝜖 = ∞. 

Combining all the calculations above, we obtain for 0 ≤ 𝜖 ≤ ∞ 

‖∑  

∞

𝑗=0

  ∑  

∞

𝑚=0

∑

𝑖

 𝑝𝑗,𝑚 ⋅ Δ𝑗𝑓𝑖‖

ℱ𝐿𝑠

4
3+𝜖

< ∞ (4.16) 

Step 3: Lastly, we prove that 𝐺(𝑆0𝑓𝑖) ∈ ℱ𝐿𝑠

4

3
+𝜖

. Observe that 

𝐺(𝑆0𝑓𝑖) = ∫  
1

0

∑

𝑖

𝐺(1)(𝑡 ⋅ 𝑆0𝑓𝑖)𝑑𝑡 ⋅ 𝑆0𝑓𝑖 =∑

𝑖

𝑚𝑓𝑖
⋅ 𝑆0𝑓𝑖 

where 𝑚𝑓𝑖
= ∫  

1

0
∑𝑖 𝐺(1)(𝑡 ⋅ 𝑆0𝑓𝑖)𝑑𝑡. Then, since ℱ𝐿𝑟

4

3
+𝜖
↪ ℱ𝐿𝑠

4

3
+𝜖

 for 𝑟 ≥ 𝑠 and ⟨𝜉⟩𝑟 ≲ 1 + |𝜉1|
𝑟⋯+ |𝜉𝑛|

𝑟 

for 𝑟 ≥ 0, we have by Proposition 2.2 for 0 ≤ 𝜖 ≤ 2/3 

‖∑

𝑖

⟨𝜉⟩𝑠ℱ[𝐺(𝑆0𝑓𝑖)]‖

𝐿
4
3+𝜖

≲∑

𝑖

‖ℱ[𝑚𝑓𝑖
⋅ 𝑆0𝑓𝑖]‖

𝐿
4
3+𝜖

+∑

𝑖

∑ 

𝑛

ℓ=1

 ‖ℱ[𝜕ℓ
[𝑠]+1

(𝑚𝑓𝑖
⋅ 𝑆0𝑓𝑖)]‖

𝐿
4
3+𝜖

≲∑

𝑖

‖𝑚𝑓𝑖̃
(𝐷)[𝜑 ⋅ 𝑓𝑖]‖

𝐿
4
3+𝜖

+∑  

𝑛

ℓ=1

  ∑  

[𝑠]+1

𝜇=0

 ∑

𝑖

‖𝜕ℓ
𝜇
𝑚𝑓𝑖

̃ (𝐷)[𝜉ℓ
[𝑠]+1−𝜇

𝜑 ⋅ 𝑓𝑖]‖
𝐿
4
3+𝜖

 

≲∑

𝑖

‖𝑚𝑓𝑖
‖
𝐻𝑠

4+3𝜖
1+3𝜖

‖𝜑 ⋅ 𝑓𝑖‖
𝐿
4
3+𝜖

+∑  

𝑛

ℓ=1

  ∑  

[𝑠]+1

𝜇=0

 ∑

𝑖

‖𝜕ℓ
𝜇
𝑚𝑓𝑖

‖
𝐻𝑠

4+3𝜖
1+3𝜖

‖𝜉ℓ
[𝑠]+1−𝜇

𝜑 ⋅ 𝑓𝑖‖
𝐿
4
3+𝜖

≲∑

𝑖

‖𝑓𝑖‖
ℱ𝐿𝑠

4
3+𝜖

∑ 

𝑛

ℓ=1

  ∑  

[𝑠]+1

𝜇=0

  ‖𝜕ℓ
𝜇
𝑚𝑓𝑖

‖
𝐻𝑠

4+3𝜖
1+3𝜖

 

and have for 0 < 𝜖 ≤ ∞ 

‖∑

𝑖

⟨𝜉⟩𝑠ℱ[𝐺(𝑆0𝑓𝑖)]‖

𝐿
4
3+𝜖

≲∑

𝑖

‖𝑓𝑖‖
ℱ𝐿𝑠

4
3+𝜖

∑ 

𝑛

ℓ=1

∑  

[𝑠]+1

𝜇=0

‖𝜕ℓ
𝜇
𝑚𝑓𝑖

‖
𝐻𝑠
2 , 

where we used the notation ℎ̃(𝜉) = ℎ(−𝜉). Moreover, as in the proof of Lemma 4.3, Theorem A yields that for 

𝜇 = 0,1,⋯ , [𝑠] + 1 

‖∑

𝑖

𝜕ℓ
𝜇
𝑚𝑓𝑖

‖

𝐻𝑠

1+𝜖
𝜖

≲∑  

𝜇

𝜈=0

 ∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖
𝜈 < ∞  if  0 < 𝜖 ≤ 1

‖∑

𝑖

𝜕ℓ
𝜇
𝑚𝑓𝑖

‖

𝐻𝑠
2

≲∑  

𝜇

𝜈=0

 ∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖
𝜈 < ∞  if  0 < 𝜖 ≤ ∞

 

since the assumption 𝑓𝑖 ∈ ℱ𝐿𝑠
2+𝜖 with 𝑠 >

𝑛𝜖

2+𝜖
 gives that for 𝛽 ∈ ℤ+

𝑛 , ‖∑𝑖 𝜕𝛽(𝑆0𝑓𝑖)‖
𝐻𝑠

2+𝜖
𝜖
≲ ∑𝑖 ‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖 if 

0 < 𝜖 ≤ 1, and ‖∑𝑖 𝜕𝛽(𝑆0𝑓𝑖)‖𝐻𝑠2
≲ ∑𝑖 ‖𝑓𝑖‖ℱ𝐿𝑠2+𝜖 if 0 < 𝜖 ≤ ∞. Hence, we obtain ‖𝐺(𝑆0𝑓𝑖)‖ℱ𝐿𝑠2+𝜖 < ∞. 

By Steps 1-3, we conclude that 𝐺(𝑓𝑖) ∈ ℱ𝐿𝑠
2+𝜖 if 𝑓𝑖 ∈ ℱ𝐿𝑠

2+𝜖. 

Now, we give the proof of Theorem 1.2. 

Proof of Theorem 1.2. As is stated at the beginning, 𝐹(𝑓𝑖) with 𝐹 ∈ 𝐶∞(ℝ) and 𝐹(0) = 0 is given by 

𝐹(𝑓𝑖) = 𝐺(𝑓𝑖) +∑  

𝑁

𝑘=1

∑

𝑖

𝐹(𝑘)(0)
𝑓𝑖
𝑘

𝑘!
 

for any 𝑁 ≥ 0, where 𝐺 ∈ 𝐶∞(ℝ) and 𝐺(0) = 𝐺(1)(0) = ⋯ = 𝐺(𝑁)(0) = 0. Choosing 𝑁 = [𝑠] + 2, we obtain 

from Proposition 4.1 that 𝐺(𝑓𝑖) ∈ ℱ𝐿𝑠

4

3
+𝜖

 if 𝑓𝑖 ∈ ℱ𝐿𝑠

4

3
+𝜖

. The second one is shown by Proposition 3.4. In fact, 

since 𝐹 ∈ 𝐶∞(ℝ), we have |𝐹(𝑘)(0)| ≲ 1, so that it follows that 

‖∑  

𝑁

𝑘=1

∑

𝑖

 𝐹(𝑘)(0)
𝑓𝑖
𝑘

𝑘!
‖

ℱ𝐿𝑠

4
3+𝜖

≲∑  

𝑁

𝑘=1

∑

𝑖

‖𝑓𝑖‖
ℱ𝐿𝑠

4
3+𝜖

𝑘 < ∞ 

if 𝑓𝑖 ∈ ℱ𝐿𝑠

4

3
+𝜖

. Hence, we obtain that 𝐹(𝑓𝑖) ∈ ℱ𝐿𝑠

4

3
+𝜖

 if 𝑓𝑖 ∈ ℱ𝐿𝑠

4

3
+𝜖

. 
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V. Proof of Theorem 1.1 
As in Section 4, 𝐹(𝑓𝑖) is expressed in the following form: 

𝐹(𝑓𝑖) = 𝐺(𝑓𝑖) +∑  

𝑁

𝑘=1

∑

𝑖

 𝐹(𝑘)(0)
𝑓𝑖
𝑘

𝑘!
, (5.1) 

for any 𝑁 ∈ ℕ, where 𝐺(0) = 𝐺(1)(0) = ⋯ = 𝐺(𝑁)(0) = 0. Applying a Taylor expansion to 𝐺, we have 

𝐺(𝑓𝑖) = 𝑓𝑖
𝑁 ⋅ 𝐻(𝑓𝑖),  where 𝐻(𝑓𝑖) =

1

(𝑁 − 1)!
∫  
1

0

 ∑

𝑖

(1 − 𝜃)𝑁−1𝐺(𝑁)(𝜃𝑓𝑖)𝑑𝜃 (5.2) 

Note that 𝐻 ∈ 𝐶∞(ℝ) and 𝐻(0) = 0. Hence, we mainly prove that 𝐺(𝑓𝑖) in (5.2) belongs to 𝑀𝑠

1+𝜖,
4

3
+𝜖

 if 𝑓𝑖 ∈

𝑀𝑠

1+𝜖,
4

3
+𝜖

. In order to prove this, we prepare the following lemma: 

Lemma 5.1 (see [19]). Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 >
4+3𝜖

1+3𝜖
, and let 𝑁 be an arbitrary natural number. Suppose that 𝐺 is 

the function in (5.2), 𝑓𝑖 ∈ 𝑀𝑠

1+𝜖,
4

3
+𝜖

 and real-valued functions 𝜙, 𝜙̃ ∈ 𝐶0
∞(ℝ𝑛) satisfy that 𝜙̃ ≡ 1 on supp𝜙. 

Then, we have 

‖∑

𝑖

⟨𝜉⟩𝑠𝑉𝜙[𝐺(𝑓𝑖)](𝑥, 𝜉)‖

𝐿
4
3+𝜖(ℝ𝜉

𝑛)

≲∑

𝑖

‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉)‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)

𝑁
 

for any 𝑥 ∈ ℝ𝑛. Here, the implicit constant is independent of 𝑥 ∈ ℝ𝑛. 

Proof. We first observe from (5.2) and the assumption 𝜙̃(⋅ −𝑥) ≡ 1 on supp𝜙(⋅ −𝑥) that 

𝑉𝜙[𝐺(𝑓𝑖)](𝑥, 𝜉)= ∫  
ℝ𝑛
∑

𝑖

  𝑒−𝑖𝜉⋅𝑡𝜙(𝑡 − 𝑥) ⋅ 𝐺(𝜙̃(𝑡 − 𝑥)𝑓𝑖(𝑡))𝑑𝑡

= ∫  
ℝ𝑛
∑

𝑖

  𝑒−𝑖𝜉⋅𝑡𝜙(𝑡 − 𝑥) ⋅ (𝜙̃(𝑡 − 𝑥)𝑓𝑖(𝑡))
𝑁 ⋅ 𝐻(𝜙̃(𝑡 − 𝑥)𝑓𝑖(𝑡))𝑑𝑡

= ℱ∑

𝑖

[𝜙(⋅ −𝑥) ⋅ (𝜙̃(⋅ −𝑥)𝑓𝑖)
𝑁 ⋅ 𝐻(𝜙̃(⋅ −𝑥)𝑓𝑖)](𝜉)

 

Multiplying the weight ⟨𝜉⟩𝑠 to both sides and taking the 𝐿
4

3
+𝜖

-norm with respect to the 𝜉-variable, we have by 

Proposition 3.4 

‖∑

𝑖

⟨𝜉⟩𝑠𝑉𝜙[𝐺(𝑓𝑖)](𝑥, 𝜉)‖

𝐿
4
3+𝜖(ℝ𝜉

𝑛)

 

=∑

𝑖

‖⟨𝜉⟩𝑠ℱ[𝜙(⋅ −𝑥) ⋅ (𝜙̃(⋅ −𝑥)𝑓𝑖)
𝑁 ⋅ 𝐻(𝜙̃(⋅ −𝑥)𝑓𝑖)](𝜉)‖

𝐿
4
3+𝜖(ℝ𝜉

𝑛)

≲∑

𝑖

‖𝜙(⋅ −𝑥)‖
ℱ𝐿𝑠

4
3+𝜖

⋅ ‖𝜙̃(⋅ −𝑥)𝑓𝑖‖
ℱ𝐿𝑠

4
3+𝜖

𝑁 ⋅ ‖𝐻(𝜙̃(⋅ −𝑥)𝑓𝑖)‖
ℱ𝐿𝑠

4
3+𝜖

⋅
 

It obviously follows that ‖𝜙(⋅ −𝑥)‖
ℱ𝐿𝑠

4
3+𝜖

∼ 1 and ‖𝜙̃(⋅ −𝑥)𝑓𝑖‖
ℱ𝐿𝑠

4
3+𝜖

= ‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉)‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)
. We only 

consider ‖𝐻(𝜙̃(⋅ −𝑥)𝑓𝑖)‖
ℱ𝐿𝑠

4
3+𝜖

 to obtain the conclusion. By Lemma A. 1 and Proposition 3.3, we have 

‖∑

𝑖

𝜙̃(⋅ −𝑥)𝑓𝑖‖
ℱ𝐿𝑠

4
3+𝜖

∼ ‖∑

𝑖

𝜙̃(⋅ −𝑥)𝑓𝑖‖
𝑀𝑠
1+𝜖,

4
3+𝜖

≲∑

𝑖

‖𝜙̃‖
𝑀𝑠
1+𝜖,

4
3+𝜖

⋅ ‖𝑓𝑖‖
𝑀𝑠
1+𝜖,

4
3+𝜖

< ∞ 

where the implicit constants are both independent of 𝑥 ∈ ℝ𝑛. Then, recalling that 𝐻 ∈ 𝐶∞(ℝ) and 𝐻(0) = 0, 

we have sup
𝑥∈ℝ𝑛

 ‖𝐻(𝜙̃(⋅ −𝑥)𝑓𝑖)‖
ℱ𝐿𝑠

4
3+𝜖

< ∞ by Theorem 1.2 if 0 ≤ 𝜖 ≤ ∞. 

Hence, we obtain 

‖∑

𝑖

⟨𝜉⟩𝑠𝑉𝜙[𝐺(𝑓𝑖)](𝑥, 𝜉)‖

𝐿
4
3+𝜖(ℝ𝜉

𝑛)

≲ ‖∑

𝑖

⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉)‖

𝐿
4
3+𝜖(ℝ𝜉

𝑛)

𝑁

 

Here, recalling all the proofs in Section 4, we see that ‖𝐻(𝜙̃(⋅ −𝑥)𝑓𝑖)‖
ℱ𝐿𝑠

4
3
+𝜖

 can be estimated by a polynomial 

of ‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉)‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)
. This implies that the explicit order of the power in the right hand side can be 

actually taken larger than 𝑁. However, the explicit expression is not important, since it is sufficient to 

understand that the order can be chosen arbitrarily large as we want. Hence, we here omitted the details. 

Now, we are in a position to prove Theorem 1.1. 



A survey on the Nonlinear operations on a class of modulation spaces 

DOI: 10.35629/0743-12017994                             www.questjournals.org                                                91 | Page 

Proof of Theorem 1.1. We recall the expressions (5.1) and have by Proposition 3.3 

‖∑

𝑖

𝐹(𝑓𝑖)‖
𝑀𝑠
1+𝜖,

4
3+𝜖

≲ ‖𝐺(𝑓𝑖)‖
𝑀𝑠
1+𝜖,

4
3+𝜖

+∑  

𝑁

𝑘=1

 ∑

𝑖

‖𝑓𝑖‖
𝑀𝑠
1+𝜖,

4
3+𝜖

𝑘 (5.3) 

Here, we choose 𝑁 ∈ ℕ such that 𝑁 ≥ [max(
3(1+𝜖)

4+3𝜖
,
4+3𝜖

3(1+𝜖)
)] + 1, and it should be remarked that we exclude the 

cases 𝜖 = ∞ and 𝜖 < ∞, or 𝜖 < ∞ and 𝜖 = ∞ in Theorem 1.1, since such 𝑁 cannot be taken in those cases. 

We first consider ‖𝐺(𝑓𝑖)‖
𝑀𝑠
1+𝜖,

4
3+𝜖

 for the case 1 + 𝜖 ≤
4

3
+ 𝜖. Let real-valued functions 𝜙, 𝜙̃ ∈ 𝐶0

∞(ℝ𝑛) 

satisfy that 𝜙̃ ≡ 1 on supp𝜙. Then, we have by the Minkowski inequality for integrals and Lemma 5.1 

‖∑

𝑖

𝐺(𝑓𝑖)‖
𝑀𝑠
1+𝜖,

4
3+𝜖
≲∑

𝑖

‖‖⟨𝜉⟩𝑠𝑉𝜙[𝐺(𝑓𝑖)](𝑥, 𝜉)‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)
‖

𝐿1+𝜖(ℝ𝑥
𝑛)

≲∑

𝑖

‖‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉)‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)

𝑁
‖

𝐿1+𝜖(ℝ𝑥
𝑛)

=∑

𝑖

‖‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉) ‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)
‖

𝐿

𝑁4
3+𝜖(ℝ𝑥

𝑛)

𝑁  

Since 𝑁4

3
+2𝜖

>
4

3
+ 𝜖 ≥ 1 + 𝜖, we have by Proposition 2.3 

‖∑

𝑖

𝐺(𝑓𝑖)‖
𝑀𝑠
1+𝜖,

4
3+𝜖
≲∑

𝑖

‖‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉)‖
𝐿

𝑁4
3+2𝜖(ℝ𝑥

𝑛)
‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)

𝑁

≲∑

𝑖

‖‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉)‖𝐿1+𝜖(ℝ𝑥𝑛)
‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)

𝑁

∼∑

𝑖

‖𝑓𝑖‖
𝑀𝑠
1+𝜖,

4
3+𝜖

𝑁

 

We next assume that 
4

3
+ 𝜖 <

4

3
+ 2𝜖 < ∞. As above, Proposition 2.3 and Lemma 5.1 yield that 

‖∑

𝑖

𝐺(𝑓𝑖)‖
𝑀𝑠

4
3+2𝜖,

4
3+𝜖

≲∑

𝑖

‖𝐺(𝑓𝑖)‖
𝑀𝑠

4
3+𝜖,

4
3+𝜖

≲∑

𝑖

‖‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉)‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)
‖

𝐿

𝑁4
3+𝜖(ℝ𝑥

𝑛)

𝑁

 

Since 𝑁4

3
+𝜖
>

4

3
+ 2𝜖 >

4

3
+ 𝜖, we use Proposition 2.3 again and obtain 

‖∑

𝑖

𝐺(𝑓𝑖)‖
𝑀𝑠

4
3+2𝜖,

4
3+𝜖

≲∑

𝑖

‖‖⟨𝜉⟩𝑠𝑉𝜙̃𝑓𝑖(𝑥, 𝜉) ‖
𝐿
4
3+𝜖(ℝ𝑥

𝑛)
‖
𝐿
4
3+𝜖(ℝ𝜉

𝑛)

𝑁

∼∑

𝑖

‖𝑓𝑖‖
𝑀𝑠

4
3+2𝜖,

4
3+𝜖

𝑁  

Therefore, for 0 ≤ 𝜖 < ∞ (or 𝜖 = ∞ ), we have ‖𝐺(𝑓𝑖)‖
𝑀𝑠
1+𝜖,

4
3+𝜖

≲ ‖𝑓𝑖‖
𝑀𝑠
1+𝜖,

4
3+𝜖

𝑁 . 

Collecting all the estimates above, we obtain ‖𝐹(𝑓𝑖)‖
𝑀𝑠
1+𝜖,

4
3+𝜖

< ∞. This is the desired conclusion. 

Appendix A. Local equivalence between modulation and Fourier Lebesgue spaces 

We state that modulation spaces are locally equivalent to Fourier Lebesgue spaces. The corresponding 

result for 𝑠 = 0 was already proved by [11, Lemma 1], and the weighted case is obtained by following the same 

argument. However, we give a proof. 

Lemma A.1 (see [19]). Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 ∈ ℝ. Suppose that 𝜒 ∈ 𝒮(ℝ𝑛) ∖ {0} satisfies that supp𝜒 ⊂
{𝑥: |𝑥 − 𝑥0| ≤ 𝑅}. Then, we have ‖𝜒 ⋅ 𝑓𝑖‖𝑀𝑠

1+𝜖,1+2𝜖 ∼ ‖𝜒 ⋅ 𝑓𝑖‖ℱ𝐿𝑠1+2𝜖. Here, the implicit constant is independent 

of 𝑥0 ∈ ℝ
𝑛, but depends on 𝑅 > 0. 

Proof. Put (𝑓𝑖)𝜒 = 𝜒 ⋅ 𝑓𝑖. We first prove the ≲ part. Choose 𝜙 ∈ 𝒮(ℝ𝑛) ∖ {0} satisfying that supp𝜙 ⊂ {𝑥: |𝑥| ≤

𝑅}. Then, we see that 𝑉𝜙[(𝑓𝑖)𝜒](𝑥, 𝜉) always vanishes unless 𝑥 ∈ ℝ𝑛 satisfies that |𝑥 − 𝑥0| ≤ 2𝑅. Using the 

identity |𝑉𝜙[(𝑓𝑖)𝜒](𝑥, 𝜉)| = |𝜙̂̂(𝐷 − 𝜉)(𝑓𝑖)𝜒(𝑥)|, we have by the Hölder and Hausdorff-Young inequalities 

‖∑

𝑖

𝑉𝜙[(𝑓𝑖)𝜒](𝑥, 𝜉)‖

𝐿1+2𝜖(ℝ𝑥
𝑛)

= ‖∑

𝑖

𝜒𝐵2𝑅(𝑥0)(𝑥) ⋅ 𝑉𝜙[(𝑓𝑖)𝜒](𝑥, 𝜉)‖

𝐿1+2𝜖(ℝ𝑥
𝑛)

≲ 𝑅𝑛/1+𝜖∑

𝑖

‖𝜙̂(𝐷 − 𝜉)(𝑓𝑖)𝜒(⋅)‖
𝐿∞
≲ 𝑅𝑛/1+𝜖∑

𝑖

‖𝜙̂(𝑡 − 𝜉) ⋅ ℱ[(𝑓𝑖)𝜒](𝑡)‖𝐿1(ℝ𝑡𝑛)

 

Multiplying the weight ⟨𝜉⟩𝑠 to both sides, using the inequality ⟨𝜉⟩𝑠 ≲ ⟨𝑡⟩𝑠⟨𝑡 − 𝜉⟩|𝑠| and taking the 𝐿1+2𝜖-norm 

with respect to the 𝜉-variable, we have by the Young inequality 
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‖‖∑

𝑖

⟨𝜉⟩𝑠𝑉𝜙[(𝑓𝑖)𝜒](𝑥, 𝜉)‖

𝐿1+𝜖(ℝ𝑥
𝑛)

‖

𝐿1+2𝜖(ℝ𝜉
𝑛)

≲ 𝑅𝑛/1+𝜖∑

𝑖

‖‖⟨𝑡 − 𝜉⟩|𝑠|𝜙̂(𝑡 − 𝜉) ⋅ ⟨𝑡⟩𝑠ℱ[(𝑓𝑖)𝜒](𝑡)‖ 𝐿1(ℝ𝑡
𝑛)‖

𝐿1+2𝜖(ℝ𝜉
𝑛)

= 𝑅𝑛/1+𝜖∑

𝑖

‖(⟨⋅⟩|𝑠||𝜙̂|) ∗ (⟨⋅⟩𝑠|ℱ[(𝑓𝑖)𝜒]|)‖𝐿1+2𝜖

≲ 𝑅𝑛/1+𝜖∑

𝑖

‖⟨⋅⟩𝑠ℱ[(𝑓𝑖)𝜒]‖𝐿1+2𝜖

 

We next prove the ≳ part. Choose 𝜙 ∈ 𝒮(ℝ𝑛) satisfying that supp𝜙 ≡ 1 on {𝑥: |𝑥| ≤ 2𝑅}. Then, 𝜙(⋅ −𝑥) ≡ 1 

on supp𝜒 if 𝑥 ∈ ℝ𝑛 satisfies that |𝑥 − 𝑥0| ≤ 𝑅. Hence, it follows that 

𝑅𝑛/1+𝜖∑

𝑖

|ℱ[(𝑓𝑖)𝜒](𝜉)|∼∑

𝑖

‖𝜒𝐵𝑅(𝑥0)(𝑥) ⋅ ℱ[(𝑓𝑖)𝜒](𝜉)‖𝐿1+𝜖(ℝ𝑥𝑛)

= ‖𝜒𝐵𝑅(𝑥0)(𝑥) ⋅ ∫  
ℝ𝑛
∑

𝑖

  𝑒−𝑖𝜉⋅𝑡𝜙(𝑡 − 𝑥) ⋅ 𝜒(𝑡)𝑓𝑖(𝑡)𝑑𝑡‖

𝐿1+𝜖(ℝ𝑥
𝑛)

≤∑

𝑖

‖𝑉𝜙[(𝑓𝑖)𝜒](𝑥, 𝜉)‖𝐿1+𝜖(ℝ𝑥𝑛)

 

Multiplying the weight ⟨𝜉⟩𝑠 to both sides and taking the 𝐿1+2𝜖-norm with respect to the 𝜉-variable, we have 

‖∑

𝑖

⟨⋅⟩𝑠ℱ[(𝑓𝑖)𝜒]‖

𝐿1+2𝜖

≲ 𝑅−𝑛/1+𝜖∑

𝑖

‖‖⟨𝜉⟩𝑠𝑉𝜙[(𝑓𝑖)𝜒](𝑥, 𝜉)‖ 𝐿1+𝜖(ℝ𝑥
𝑛)‖

𝐿1+2𝜖(ℝ𝜉
𝑛)

 

Therefore, recalling the property that the modulation space norm is independent of the choice of window 

functions, we obtain ‖(𝑓𝑖)𝜒‖𝑀𝑠
1+𝜖,1+2𝜖 ∼ ‖(𝑓𝑖)𝜒‖ℱ𝐿𝑠1+2𝜖

. 

Appendix B. Conditions for modulation spaces and Fourier Lebesgue spaces to be multiplication algebras 

We first consider necessary and sufficient conditions for modulation spaces to be multiplication 

algebras, that is, for the estimate 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖𝑀𝑠
1+𝜖,1+2𝜖 ≲∑

𝑖

‖𝑓𝑖‖𝑀𝑠
1+𝜖,1+2𝜖 ⋅ ‖𝑔𝑖‖𝑀𝑠

1+𝜖,1+2𝜖 

to hold. They are given as follows. 

Proposition B.1 [19]. Let 0 ≤ 𝜖 ≤ ∞, 0 < 𝜖 ≤ ∞ and 𝑠 ∈ ℝ. Then, the modulation space 𝑀𝑠
1+𝜖,1+𝜖(ℝ𝑛) is a 

multiplication algebra if and only if the condition 𝑠 >
𝑛𝜖

1+𝜖
 is satisfied. 

Actually, this proposition is immediately obtained from [6, Theorem 1.5]. In fact, in [6], necessary and 

sufficient conditions for the more general estimate 

‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖𝑀𝑠
1+𝜖,1+𝜖 ≲∑

𝑖

‖𝑓𝑖‖𝑀𝑠1
1+𝜖,1+3𝜖 ⋅ ‖𝑔𝑖‖𝑀𝑠2

1+2𝜖,1+4𝜖 

were established, so that Proposition B. 1 is given by setting 𝜖 = 0 and 𝑠 = 𝑠1 = 𝑠2. (We remark that, although 

only the case 𝜖 > 0 is considered in Proposition B.1, the whole case 𝜖 ≥ 0 is treated in [6].) However, we give a 

proof of Proposition B. 1 where the following two lemmas are essential: 

Lemma B.1 ([6, Proposition 5.1]). Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 ∈ ℝ. Then, if the modulation space 𝑀𝑠
1+𝜖,1+2𝜖

 is a 

multiplication algebra, we have ℓ𝑠
1+2𝜖 ∗ ℓ𝑠

1+2𝜖 ↪ ℓ𝑠
1+2𝜖. 

Lemma B.2 (see [19]). Let 0 < 𝜖 ≤ ∞ and 𝑠 ∈ ℝ. Then, if ℓ𝑠
1+𝜖 ∗ ℓ𝑠

1+𝜖 ↪ ℓ𝑠
1+𝜖 holds, we have 𝑠 >

𝑛𝜖

1+𝜖
. 

Proof. We assume towards a contradiction that 𝑠 ≤
𝑛(1+𝜖)

1+𝜖
. Since 𝜖 > 0, we can take 𝜀 > 0 such that 1 − 1/1 +

𝜖 − 𝜀 > 0. For this 𝜀 > 0, we define the sequences 

𝑎𝑘,𝑁 = {⟨𝑘⟩
(−

𝑛

1+𝜖
)−𝑠(1 + 𝜖 + log ⟨𝑘⟩)

(−
1

1+𝜖
)−𝜀 ,  if |𝑘| ≤ 𝑁,

0,  otherwise 

𝑏𝑘,𝑁 = {
1,  if 𝑁 ≤ |𝑘| ≤ 5𝑁,
0,  otherwise 

 

in 𝑘 ∈ ℤ𝑛, where 𝑁 > 0 is a sufficiently large integer and 𝜖 > 0 is a suitable constant which depends only on 

the dimension 𝑛. 

We first estimate each sequence on ℓ𝑠
1+𝜖. For the case 𝜖 < ∞, the spherical coordinate transform yields 

that 
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‖𝑎𝑘,𝑁‖ℓ𝑠1+𝜖
1+𝜖

= ∑  

|𝑘|≤𝑁

  ⟨𝑘⟩−𝑛(1 + 𝜖 + log ⟨𝑘⟩)−1−𝜀(1+𝜖)

≲ ∫  
|𝑥|≤2𝑁

  ⟨𝑥⟩−𝑛 (
1 + 𝜖

𝜖
+ log ⟨𝑥⟩)

−1−𝜀(1+𝜖)

𝑑𝑥 ≲ ∫  
2𝑁

0

  (1 + 𝑟)−1(1 + log (1 + 𝑟))−1−𝜀(1+𝜖)𝑑𝑟

 

By the change of variable 𝑡 = 1 + log (1 + 𝑟), we have 

‖𝑎𝑘,𝑁‖ℓ𝑠1+𝜖
1+𝜖

≲ ∫  
1+log (1+2𝑁)

1

𝑡−1−𝜀(1+𝜖)𝑑𝑡 ≲ 1 

For the case 𝜖 = ∞, we have ‖𝑎𝑘,𝑁‖ℓ𝑠∞
≤ 1, since 𝜀 > 0. On the other hand, we have ‖𝑏𝑘,𝑁‖ℓ𝑠1+𝜖

∼ 𝑁𝑠+𝑛/1+𝜖 

holds for 0 < 𝜖 ≤ ∞. 

Next, we consider the convolution {𝑎⋅,𝑁 ∗ 𝑏⋅,𝑁}𝑘∈ℤ𝑛. For 2𝑁 ≤ |𝑘| ≤ 4𝑁, we have 

∑  

ℓ∈ℤ𝑛

𝑎ℓ,𝑁𝑏𝑘−ℓ,𝑁 = ∑  

𝑁≤|𝑘−ℓ|≤5𝑁

𝑎ℓ,𝑁 = ∑  

|ℓ|≤𝑁

𝑎ℓ,𝑁 , 

since {ℓ ∈ ℤ𝑛: |ℓ| ≤ 𝑁} ⊂ {ℓ ∈ ℤ𝑛: 𝑁 ≤ |𝑘 − ℓ| ≤ 5𝑁} and 𝑎ℓ,𝑁 = 0 if |ℓ| > 𝑁. Then by 𝑠 ≤
𝑛𝜖

1+𝜖
 we have 

∑  

ℓ∈ℤ𝑛

 𝑎ℓ,𝑁𝑏𝑘−ℓ,𝑁= ∑  

|ℓ|≤𝑁

  ⟨ℓ⟩
(−

𝑛

1+𝜖
)−𝑠(1 + 𝜖 + log ⟨ℓ⟩)

(−
1

1+𝜖
)−𝜀

≥ ∑  

|ℓ|≤𝑁

  ⟨ℓ⟩−𝑛(1 + 𝜖 + log ⟨ℓ⟩)
(−

1

1+𝜖
)−𝜀

≳ ∫  
|𝑥|≤𝑁/2

  ⟨𝑥⟩−𝑛 (
1 + 𝜖

𝜖
+ log ⟨𝑥⟩)

(−
1

1+𝜖
)−𝜀

𝑑𝑥

∼ ∫  
𝑁/2

0

  𝑟𝑛−1(1 + 𝑟)−𝑛(1 + log (1 + 𝑟))
(−

1

1+𝜖
)−𝜀𝑑𝑟

≳ ∫  
𝑁/2

1

  (1 + 𝑟)−1(1 + log (1 + 𝑟))
(−

1

1+𝜖
)−𝜀𝑑𝑟

 

and hence by the same change of variable as above we have 

∑  

ℓ∈ℤ𝑛

𝑎ℓ,𝑁𝑏𝑘−ℓ,𝑁 ≳ ∫  
1+log (1+𝑁/2)

1+log 2

𝑡
(−

1

1+𝜖
)−𝜀 ≳ (1 + log (1 + 𝑁/2))

(1−
1

1+𝜖
)−𝜀

 

This concludes that 

‖{𝑎⋅,𝑁 ∗ 𝑏⋅,𝑁}𝑘∈ℤ𝑛‖ℓ𝑠1+𝜖
≥ ‖{𝑎⋅,𝑁 ∗ 𝑏⋅,𝑁}𝑘∈{2𝑁≤|𝑘|≤4𝑁}‖ℓ𝑠1+𝜖

≳ 𝑁𝑠+𝑛/1+𝜖(1 + log (1 + 𝑁/2))
(1−

1

1+𝜖
)−𝜀

 

Collecting the estimates above, we have by the assumption ℓ𝑠
1+𝜖 ∗ ℓ𝑠

1+𝜖 ↪ ℓ𝑠
1+𝜖 

‖{𝑎⋅,𝑁 ∗ 𝑏⋅,𝑁}𝑘∈ℤ𝑛‖ℓ𝑠1+𝜖
≲ ‖𝑎𝑘,𝑁‖ℓ𝑠1+𝜖

⋅ ‖𝑏𝑘,𝑁‖ℓ𝑠1+𝜖

 ⟹ 𝑁𝑠+𝑛/1+𝜖(1 + log (1 + 𝑁/2))
(1−

1

1+𝜖
)−𝜀 ≲ 1 ⋅ 𝑁𝑠+𝑛/1+𝜖

 ⟺ (1 + log (1 + 𝑁/2))
(1−

1

1+𝜖
)−𝜀 ≲ 1

 

However, the last estimate fails when we choose a sufficiently large number 𝑁 > 0, since (
𝜖

𝜖−1
) − 𝜀 > 0. This 

contradicts to the assumption ℓ𝑠
1+𝜖 ∗ ℓ𝑠

1+𝜖 ↪ ℓ𝑠
1+𝜖. Therefore, we obtain 𝑠 >

𝑛𝜖

1+𝜖
. 

Proof of Proposition B.1. The "IF" part is given by Proposition 3.3, and the "ONLY IF" part is an immediate 

conclusion of Lemmas B. 1 and B.2. 

We also have a similar optimality for Fourier Lebesgue spaces: 

Proposition B.2 [19]. Let 0 < 𝜖 ≤ ∞ and 𝑠 ∈ ℝ. Then, the Fourier Lebesgue space ℱ𝐿𝑠
1+𝜖(ℝ𝑛) is a 

multiplication algebra if and only if the condition 𝑠 >
𝑛𝜖

1+𝜖
 is satisfied. 

For the proof of Proposition B.2, we use the following lemma instead of Lemma B.1: 

Lemma B.3 ([6, Proposition 4.1]). Let 0 ≤ 𝜖 ≤ ∞ and 𝑠 ∈ ℝ. Then, if the estimate 

‖∑

𝑖

⟨⋅⟩𝑠(𝑓𝑖 ∗ 𝑔𝑖)‖

𝐿1+𝜖

≲∑

𝑖

‖⟨⋅⟩𝑠𝑓𝑖‖𝐿1+𝜖 ⋅ ‖⟨⋅⟩
𝑠𝑔𝑖‖𝐿1+𝜖 

holds, we have ℓ𝑠
1+𝜖 ∗ ℓ𝑠

1+𝜖 ↪ ℓ𝑠
1+𝜖. 

Proof of Proposition B.2. The "IF" part is given by Proposition 3.4. The "ONLY IF" part is an immediate 

conclusion of Lemmas B. 2 and B. 3 if we notice the equivalence 
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‖∑

𝑖

𝑓𝑖 ⋅ 𝑔𝑖‖ℱ𝐿𝑠1+𝜖 ≲∑

𝑖

‖𝑓𝑖‖ℱ𝐿𝑠1+𝜖 ⋅ ‖𝑔𝑖‖ℱ𝐿𝑠1+𝜖 

⟺ ‖∑

𝑖

⟨⋅⟩𝑠(𝑓𝑖 ∗ 𝑔̂i)‖

𝐿1+𝜖

≲∑

𝑖

‖⟨⋅⟩𝑠𝑓𝑖‖𝐿1+𝜖 ⋅
‖⟨⋅⟩𝑠𝑔̂𝑖‖𝐿1+𝜖 . 
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