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Abstract 
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I. INTRODUCTION 

For𝐺 denote the free group on 𝜖 ≥ 0 generators {𝑎1
𝑠 , … , 𝑎2+𝜖

𝑠 }. For 𝑔𝑠 ∈ 𝐺, let |𝑔𝑠| denote its word 

length, i.e., |𝑔𝑠| = inf {𝑛 ≥ 0: 𝑔𝑠 = 𝑔1
s ⋯ 𝑔𝑛

𝑠 , 𝑔𝑖
s ∈ {(𝑎𝑠)1

±1, … , (𝑎𝑠)2+𝜖
±1 }}, and let [𝑔𝑠] denote the image of 𝑔𝑠 

under the abelianization map [⋅]: 𝐺 → 𝐺/[𝐺, 𝐺] ≅ ℤ2+𝜖. Let 𝒲𝑠(𝑛) = {𝑔𝑠 ∈ 𝐺: |𝑔𝑠| = 𝑛} and observe that 

#𝒲𝑠(𝑛) = 2(2 + 𝜖)(2(2 + 𝜖) − 1)𝑛−1. We shall be interested in the distribution of the elements of 𝒲𝑠(𝑛) in 

ℤ2+𝜖by the mapping [·], as 𝑛 → ∞. In particular, defining 𝒲𝑠(𝑛, 𝛼𝑠) = {𝑔𝑠 ∈ 𝒲𝑠(𝑛): [𝑔𝑠] = 𝛼𝑠}, we wish to 

examine the dependence of #𝒲𝑠(𝑛, 𝛼𝑠) on 𝛼𝑠 as well as on 𝑛. 

We intend to regard #𝒲𝑠(𝑛, 𝛼𝑠)/#𝒲𝑠(𝑛) as a probability distribution on ℤ2+𝜖 and to ask about its limiting 

behaviour as 𝑛 → ∞. Rivin has shown that a central limit theorem is satisfied, i.e., for 𝐴𝑠 ⊂ ℝ2+𝜖, 

lim
𝑛→∞

 
1

#𝒲𝑠(𝑛)
#{𝑔𝑠 ∈ 𝒲𝑠(𝑛): [𝑔𝑠]/√𝑛 ∈ 𝐴𝑠} =

1

(2𝜋)2+𝜖/2𝜎2+𝜖
∫  

𝐴𝑠

𝑒−∥𝑥∥2/2𝜎2
𝑑𝑥, 

where ∥⋅∥ denotes the Euclidean norm and where 

𝜎2 =
1

√3 + 2ϵ
[1 + (

2 + 𝜖 + √3 + 2𝜖

2 + 𝜖 − √3 + 2𝜖
)

1

2

]                                    (0.1) 

[18]. (In fact, this result is similar in spirit to earlier results for subshifts of finite type, hyperbolic 

diffeomorphisms, and interval maps [1], [4], [5], [10], [12], [17], [19], [20], [23]. ) 

Here, we shall establish a more precise local limit theorem. First we note a combinatorial restriction. We shall 

say that 𝛼𝑠 = (𝛼1
𝑠, … , 𝛼2+𝜖

𝑠 ) is even if 𝛼1
s + ⋯ + 𝛼2+𝜖

𝑠  is even, and odd otherwise. It is clear that if [𝑔𝑠] = 𝛼𝑠 

then 𝛼𝑠 has the same parity as |𝑔𝑠|. Thus, in particular, either #𝒲𝑠(𝑛, 𝛼𝑠) or #𝒲𝑠(𝑛 + 1, 𝛼𝑠) is equal to zero 

and we are led to consider the behaviour of the sum 

#𝒲𝑠(𝑛, 𝛼𝑠)

#𝒲𝑠(𝑛)
+

#𝒲𝑠(𝑛 + 1, 𝛼𝑠)

#𝒲𝑠(𝑛 + 1)
. 

Theorem 1 [24]. Let 𝐺 be the free group on 𝜖 ≥ 0 generators. Then we have that 

http://www.questjournals.org/
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lim
𝑛→∞

 ∑

𝑠

|𝜎2+𝜖𝑛2+𝜖/2 (
#𝒲𝑠(𝑛, 𝛼𝑠)

#𝒲𝑠(𝑛)
+

#𝒲𝑠(𝑛 + 1, 𝛼𝑠)

#𝒲𝑠(𝑛 + 1)
) −

2

(2𝜋)2+𝜖/2
𝑒−∥𝛼𝑠∥2/2𝜎2𝑛| = 0, 

uniformly in 𝛼𝑠 ∈ ℤ2+𝜖. 

In the case where 𝛼𝑠 = 0, the asymptotic behaviour of #𝒲𝑠(𝑛, 𝛼𝑠), as 𝑛 → ∞, has been studied as a means of 

analysing the relative growth series 𝜉𝑠(𝑧) defined by 

𝜉𝑠(𝑧) = ∑  

∞

𝑛=0

#𝒲𝑠(𝑛, 0)𝑧𝑛 . 

Estimates on the growth of #𝒲𝑠(𝑛, 0) allow one to deduce that 𝜉𝑠(𝑧) cannot be the series of a rational function 

[8], [16], [22]. More generally, Theorem 1 implies the following result for fixed values of 𝛼𝑠. 

Corollary 1.1 [24]. 

For fixed 𝛼𝑠 ∈ ℤ2+𝜖, 

#𝒲𝑠(2𝑛 + 𝛿𝛼𝑠 , 𝛼𝑠) ∼
2

(2𝜋)
2+𝜖

2 𝜎2+𝜖

#𝒲𝑠(2𝑛 + 𝛿𝛼𝑠)

𝑛
2+𝜖

2

, as 𝑛 → ∞, 

where 𝛿𝛼𝑠 = 0 if 𝛼𝑠 is even and 𝛿𝛼𝑠 = 1 if 𝛼𝑠 is odd. 

Remark [24]. For given functions 𝐴𝑠 and 𝐵𝑠, we shall write 𝐴𝑠(𝑛) ∼ 𝐵𝑠(𝑛), as 𝑛 → ∞, if lim𝑛→∞  𝐴𝑠(𝑛)/
𝐵𝑠(𝑛) = 1, and 𝐴𝑠(𝑛) = 𝑂(𝐵𝑠(𝑛)) if |𝐴𝑠(𝑛)| ≤ (1 + 𝜖)𝐵𝑠(𝑛), for some constant 𝜖 ≥ 0. 

We see from Corollary 1.1 that the asymptotic behaviour of #𝒲𝑠(𝑛, 𝛼𝑠) is independent of 𝛼𝑠. However, 

Theorem 1 enables us to make comparisons as 𝛼𝑠 varies. 

Corollary 1.2 [24]. Suppose that 𝛼𝑠, 𝛽 ∈ ℤ2+𝜖 have the same parity. If ∥ 𝛼𝑠 ∥<∥ 𝛽 ∥ then we have that 

#𝒲𝑠(𝑛, 𝛼𝑠) > #𝒲𝑠(𝑛, 𝛽) for all sufficiently large 𝑛 with the same parity as 𝛼𝑠 and 𝛽. 

We say that a word 𝑔1
s ⋯ 𝑔𝑛

𝑠  in the generators {𝑎1
𝑠 , … , 𝑎2+𝜖

𝑠 } is reduced if 𝑔𝑖+1
s ≠ 𝑔𝑖

−s, 𝑖 = 1, … , 𝑛 − 1. It is clear 

that there is a one-to-one correspondence between reduced words of length 𝑛 and elements of 𝒲𝑠(𝑛) (and we 

abuse notation by letting 𝑔𝑠 denote both a word and the corresponding group element). We say that a reduced 

word 𝑔1
s ⋯ 𝑔𝑛

𝑠  is cyclically reduced if we also have that 𝑔𝑛
s ≠ 𝑔1

−s. Let 𝒞(𝑛) denote the set of cyclically reduced 

words of length 𝑛 and let 𝒞(𝑛, 𝛼𝑠) = {𝑔𝑠 ∈ 𝒞(𝑛): [𝑔𝑠] = 𝛼𝑠}. The above theorem still holds if we replace 

#𝒲𝑠(𝑛) and #𝒲𝑠(𝑛, 𝛼𝑠) by #𝒞(𝑛) and #𝒞(𝑛, 𝛼𝑠), respectively. (Notice that the map [⋅]: 𝒞(𝑛) → ℤ2+𝜖 is well-

defined.) 

We start by some preliminary material concerning subshifts of finite type and thermodynamic 

formalism. We introduce a family of twisted matrices used in subsequent calculations and analyse their spectra. 

We prove a local limit theorem associated to periodic points in a subshift of finite type using arguments adapted 

from [19] (see also [1]). We see that this corresponds directly to the local limit theorem for 𝒞(𝑛) and we give 

the amendments necessary to obtain Theorem 1. We sketch how our results may be extended to the fundamental 

groups of compact oriented surfaces of genus 𝑔𝑠 ≥ 2. 

II. PRELIMINARIES 

For𝐴𝑠 be a 𝑙 × 𝑙 matrix with entries zero and one and define the associated shift space 𝑋𝐴𝑠
 by 

𝑋𝐴𝑠
= {𝑥 ∈ {0,1, … , 𝑙 − 1}ℤ+

: 𝐴𝑠(𝑥𝑛 , 𝑥𝑛+1) = 1∀𝑛 ∈ ℤ+}. 

The subshift of finite type 𝜎: 𝑋𝐴𝑠
→ 𝑋𝐴𝑠

 is defined by (𝜎𝑥)𝑛 = 𝑥𝑛+1. 

We shall always assume that 𝐴𝑠 is aperiodic, i.e., that there exists 𝑁 > 0 such that 𝐴𝑠
𝑁 has all its entries positive. 

This is equivalent to the map 𝜎: 𝑋𝐴𝑠
→ 𝑋𝐴𝑠

 being topologically mixing. Then, by the Perron-Frobenius Theorem, 
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𝐴𝑠 will have a simple positive eigenvalue 𝜆 > 1 which is strictly maximal in modulus and the topological 

entropy ℎ of 𝜎 is equal to log 𝜆. 

Let ℳ denote the set of 𝜎-invariant probability measures on 𝑋𝐴𝑠
. For 𝑚 ∈ ℳ, we will write ℎ(𝑚) for its 

measure theoretic entropy and we have that ℎ(𝑚) ≤ ℎ. There is a unique measure 𝜇 ∈ ℳ, called the measure of 

maximal entropy, for which ℎ(𝜇) = ℎ. Given a continuous function 𝜑𝑠: 𝑋𝐴𝑠
→ ℝ, we define the pressure 𝑃(𝜑𝑠) 

by 𝑃(𝜑𝑠) = sup𝑚∈ℳ  {ℎ(𝑚) + ∫ 𝜑𝑠𝑑𝑚}. If 𝜑𝑠 is Hölder continuous then there is a unique measure 𝜇𝜑𝑠
∈ ℳ for 

which the supremum is attained and we call 𝜇𝜑𝑠
 the equilibrium state of 𝜑𝑠. Clearly, 𝜇0 = 𝜇. 

Set Fix𝑛 = {𝑥 ∈ 𝑋𝐴𝑠
: 𝜎𝑛𝑥 = 𝑥}. It is well-known and easy to prove that #Fix 𝑠𝑛 = trace 𝐴s

𝑛 ∼ (𝜆)𝑛, as 𝑛 → ∞. 

We shall be interested in the asymptotics of certain subsets ofFix𝑛. 

Fix a function 𝑓𝑠: 𝑋𝐴𝑠
→ ℤ2+𝜖, such that 𝑓𝑠(𝑥) depends on only finitely many co-ordinates of 𝑥. Without loss of 

generality, we may suppose that 𝑓𝑠(𝑥) depends on only the first two co-ordinates, i.e., that 𝑓𝑠(𝑥) = 𝑓𝑠(𝑥0, 𝑥1). 

Write 𝑓s
𝑛(𝑥) = 𝑓𝑠(𝑥) + 𝑓𝑠(𝜎𝑥) + ⋯ + 𝑓𝑠(𝜎𝑛−1𝑥). For 𝛼𝑠 ∈ ℤ2+𝜖, consider the subset {𝑥 ∈ Fix𝑛: 𝑓s

𝑛(𝑥) = 𝛼𝑠} 

of Fix𝑛; we shall be interested in the asymptotics of the cardinality of this set as 𝑛 and 𝛼𝑠 vary. 

In order to make progress, we need to assume that 𝑓𝑠 satisfies the following two natural conditions. 

(A1) The set ⋃𝑛=1
∞  {𝑓s

𝑛(𝑥): 𝑥 ∈ Fix𝑛} generates ℤ2+𝜖 (i.e. it is not contained in a proper subgroup of ℤ2+𝜖). 

(A2) ∫ 𝑓𝑠𝑑𝑚 = 0, where 𝑚 is some fully supported 𝜎-invariant measure. 

If condition (A2) holds then it was shown in [15] that we may choose 𝑚 to be equal to 𝜇⟨𝜉𝑠,𝑓𝑠⟩, for some (unique) 

𝜉𝑠 ∈ ℝ2+𝜖. Furthermore, in this case we have 

0 < ℎ∗: = ℎ(𝜇⟨𝜉𝑠,𝑓𝑠⟩) = 𝑃(⟨𝜉𝑠, 𝑓𝑠⟩) = sup {ℎ(𝑚): ∫ ∑

𝑠

𝑓𝑠𝑑𝑚 = 0, 𝑚 ∈ ℳ}. 

A subgroup of ℤ2+𝜖, familiar from the coding theory of subshifts of finite type, will play an important rôle in 

our subsequent analysis. We define 

Δ𝑓𝑠
= ⋃  

∞

𝑛=1

{𝑓s
𝑛(𝑥) − 𝑓s

𝑛(𝑦): 𝑥, 𝑦 ∈ Fix𝑛}. 

Choose 𝑥 ∈ Fix𝑛 and 𝑦 ∈ Fix𝑛+1 (for some fixed𝑛) and set 𝑐𝑓𝑠
= 𝑓s

𝑛+1(𝑥) − 𝑓s
𝑛(𝑦). Then the coset Δ𝑓𝑠

+ 𝑐𝑓𝑠
 is 

well-defined and ℤ2+𝜖/Δ𝑓𝑠
 is the cyclic group generated by Δ𝑓𝑠

+ 𝑐𝑓𝑠
[14]. Conditions (A1) and (A2) ensure that 

ℤ2+𝜖/Δ𝑓𝑠
 is finite and we write 𝑑 = |ℤ2+𝜖/Δ𝑓𝑠

|[13]. 

Remark [24]. At first sight, it is not clear that Δ𝑓𝑠
 is a group or, more precisely, that it is closed under addition: 

we shall give a proof of this fact. It is convenient to consider the directed graph with vertices {0,1, … , 𝑙 − 1} and 

an edge joining 𝑖 to 𝑗 if and only if 𝐴𝑠(𝑖, 𝑗) = 1. Then elements of Fix𝑛 correspond to cycles in the graph and 

𝑓s
𝑛(𝑥) to the sum of 𝑓𝑠 around the edges. For a cycle 𝛾, we shall denote this sum by 𝑓𝑠(𝛾) and the length of 𝛾 by 

𝑙(𝛾). Since 𝐴𝑠 is aperiodic there exists 𝑁 ≥ 1 such that, for each pair of vertices (𝑖, 𝑗), we can choose a path 

𝛿(𝑖, 𝑗) of length 𝑁 joining 𝑖 to 𝑗. Now choose a vertex 𝑖0 and, for every cycle 𝛾, a vertex 𝑖𝛾 ∈ 𝛾. For each cycle 

𝛾 form a new cycle 𝛾‾ passing through 𝑖0 by 𝛾‾ = 𝛿(𝑖0, 𝑖𝛾)𝛾𝛿(𝑖𝛾 , 𝑖0). Let 𝑓𝑠(𝛾) − 𝑓𝑠(𝛾′) and 𝑓𝑠(𝜂) − 𝑓𝑠(𝜂′) be 

two arbitrary elements of Δ𝑓𝑠
, where 𝛾, 𝛾′, 𝜂, 𝜂′ are cycles with 𝑙(𝛾) = 𝑙(𝛾′) and 𝑙(𝜂) = 𝑙(𝜂′). Then 𝛾𝜂̅̅ ̅ and 𝛾‾ ′𝜂‾′ 

are cycles, 𝑙(𝛾𝜂̅̅ ̅) = 𝑙(𝛾‾ ′𝜂‾′) and 

(𝑓𝑠(𝛾) − 𝑓𝑠(𝛾′)) + (𝑓𝑠(𝜂) − 𝑓𝑠(𝜂′)) = 𝑓𝑠(𝛾‾𝜂‾) − 𝑓𝑠(𝛾‾ ′𝜂‾′). 

This shows that Δ𝑓𝑠
 is closed under addition. 

We show (and in closely related situations) a variety of central limit theorems have been established. In 

particular, in [4], a central limit theorem over periodic points is obtained and the rate of convergence 
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isestimated. However [24], we concentrate on local limit theorems; more precisely we seek to obtain estimates 

on 

∑  

𝑑

𝑗=0

𝑒(ℎ−ℎ∗)𝑛𝑛2+𝜖/2

#Fix𝑛+𝑗

#{𝑥 ∈ Fix𝑛+𝑗: 𝑓s
𝑛+𝑗

(𝑥) = 𝛼𝑠}, 

as 𝑛 → ∞, which are uniform in 𝛼𝑠 ∈ ℤ2+𝜖. (The summation is required since {𝑥 ∈ Fix 𝑛+𝑗: 𝑓s
𝑛+𝑗

(𝑥) = 𝛼𝑠} ≠

∅ for a unique 𝑗 ∈ {0,1, … , 𝑑 − 1}, depending on the coset of 𝛼𝑠 in ℤ2+𝜖/Δ𝑓𝑠
.) This kind of problem has been 

addressed in [11] (following an idea of Sinai) and [19] (see also [1]) but the conditions imposed there are too 

stringent for our purposes. 

III. TWISTED MATRICES 

In order to analyse the behaviour of #{𝑥 ∈ Fix𝑛: 𝑓s
𝑛(𝑥) = 𝛼𝑠}, we shall introduce a family of twisted 𝑙 × 𝑙 

matrices (𝐴𝑠)𝑡, indexed by 𝑡 ∈ ℝ2+𝜖/2𝜋ℤ2+𝜖. Define (𝐴𝑠)𝑡 by 

(𝐴𝑠)𝑡(𝑖, 𝑗) = 𝐴𝑠(𝑖, 𝑗)𝑒𝑖⟨𝑡,𝑓𝑠(𝑖,𝑗)⟩+⟨𝜉𝑠,𝑓𝑠⟩, 

where the Right Hand Side is understood to be zero when 𝐴𝑠(𝑖, 𝑗) = 0. In particular, (𝐴𝑠)0 is an aperiodic 

positive matrix. An easy calculation shows that 

trace (𝐴𝑠)𝑡
𝑛 = ∑  

𝑥∈Fix𝑛

∑

𝑠

𝑒𝑖⟨𝑡,𝑓s
𝑛(𝑥)⟩+⟨𝜉𝑠,𝑓s

𝑛(𝑥)⟩. 

In order to estimate this quantity, we need to analyse the eigenvalues of (𝐴𝑠)𝑡 . 

The matrix (𝐴𝑠)𝑡 will have 𝑙 eigenvalues which we denote by 𝜆1
s (𝑡), … , 𝜆̃𝑙 (𝑡) with |𝜆̃1

s (𝑡)| ≥ |𝜆̃2 (𝑡)| ≥ ⋯ ≥

|𝜆̃𝑙 (𝑡)|. The classical Perron-Frobenius Theorem ensures that 𝜆𝜉𝑠
= 𝜆̃1

s (0) is simple and positive and that the 

remaining eigenvalues of (𝐴𝑠)0 are strictly smaller in modulus than 𝜆𝜉𝑠
. Furthermore, 𝑃(⟨𝜉𝑠, 𝑓𝑠⟩) = log 𝜆𝜉𝑠

 and 

𝜆𝜉𝑠
< 𝜆 unless 𝜉𝑠 = 0. In subsequent calculations it will prove more convenient to work with the quantities 

𝜆𝑗 (𝑡) = 𝜆̃𝑗 (𝑡)/𝜆𝜉𝑠
, 𝑗 = 2, … , 𝑙. We will need to understand when |𝜆1

s (𝑡)| is maximised. 

Proposition 1 (see [24]). 

(i) We have that |𝜆1
s (𝑡)| ≤ 1 for all 𝑡 ∈ ℝ2+𝜖/2𝜋ℤ2+𝜖. Furthermore, if |𝜆1

s (𝑡)| = 1 then 𝜆̃1
s (𝑡) is simple and 

|𝜆𝑗 (𝑡)| < 1, 𝑗 = 2, … , 𝑙. 

(ii) We have the two identities 

{𝑒2𝜋𝑖⟨𝑡,⋅): |𝜆1
s (𝑡)| = 1} = Δ𝑓𝑠

⊥ ,

{𝜆1
s (𝑡): 𝑒2𝜋𝑖⟨𝑡,⋅⟩ ∈ Δ𝑓𝑠

⊥ } = {𝑒2𝜋𝑖𝑟/𝑑: 𝑟 = 0,1, … , 𝑑 − 1}.
 

Proof. Part (i) is part of Wielandt's Theorem [6, p. 57]. Part (ii) is proved in [15]. 

We shall write 𝑡(𝑟) for the unique value of 𝑡 satisfying 𝜆1
𝑠 (𝑡(𝑟)) = 𝑒2𝜋𝑖𝑟/𝑑. For (small) 𝛿 > 0, we define a 

neighbourhood of 𝑡(0) = 0 ∈ ℝ2+𝜖/2𝜋ℤ2+𝜖 by 𝑈0(𝛿) = {𝑡: ∥ 𝑡 ∥≤ 𝛿} and let 𝑈𝑟(𝛿) = 𝑈0(𝛿) + 𝑡(𝑟) for 𝑟 =
1,2, … , 𝑑 − 1. A simple calculation shows that, for 𝑡 ∈ 𝑈𝑟(𝛿), 

𝜆1
s (𝑡) = 𝑒

2𝜋𝑖𝑟

𝑑 𝜆1
𝑠(𝑡 − 𝑡(𝑟))(2.1) 

([15]). In particular, for 𝑟 = 1,2, … , 𝑑 − 1 and 𝑛 ≥ 1, 
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∑  

𝑑−1

𝑗=0

𝜆1
𝑠 (𝑡(𝑟))

𝑛+𝑗
= 0.                                                 (2.2) 

If 𝑤𝑡  is the right eigenvector for (𝐴𝑠)𝑡 corresponding to the eigenvalue 𝜆̃1
s (𝑡) then, for 𝑡 ∈ 𝑈𝑟(𝛿), we also have 

𝑤𝑡 = 𝑤𝑡−𝑡(𝑟). Since 𝜆̃1
𝑠(𝑡(𝑟)) is an isolated simple eigenvalue of (𝐴𝑠)𝑡(𝑟), eigenvalue perturbation theory ensures 

that 𝜆1
s (𝑡) and 𝑤𝑡  depend analytically on 𝑡 in 𝑈𝑟(𝛿)[9]. 

In view of the above discussion, we have the following estimates on 𝜆𝑗 (𝑡). For all sufficiently small 𝛿 > 0 

there exists 0 < 𝜃 < 1 such that 

(i) |𝜆𝑗 (𝑡)| ≤ 𝜃 for all 𝑡 ∈ ⋃𝑟=0
𝑑−1  𝑈𝑟(𝛿), 𝑗 = 2, … , 𝑙; 

(ii) |𝜆𝑗 (𝑡)| ≤ 𝜃 for all 𝑡 ∉ ⋃𝑟=0
𝑑−1  𝑈𝑟(𝛿), 𝑗 = 2, … , 𝑙. 

The following result is standard (cf. [15] for example). 

Lemma 1 [24]. Assume that 𝑓𝑠 satisfies (A1) and (A2). Then the gradient ∇𝜆1
s (0) = 0 and the Hessian matrix 

∇2𝜆1
s (0) is real and strictly negative definite. 

From now on, we shall write 𝒟𝜉𝑠
= −∇2𝜆1

s (0), so that 𝒟𝜉𝑠
 is strictly positive definite. In particular, det 𝒟𝜉𝑠

> 0 

and we define 𝜎𝜉𝑠
> 0 by 𝜎𝜉𝑠

2(2+𝜖)
= det 𝒟𝜉𝑠

. The following result on the limiting behaviour of 𝜆1
s (𝑡) appears in 

several places, e.g. [4], [19]. 

Proposition 2(see [24]). There exists 𝛿 > 0 such that, for 𝑡 ∈ 𝑈0(𝛿𝜎𝜉𝑠√𝑛), 

lim
𝑛→∞

 𝜆1
s (

𝑡

𝜎𝜉𝑠√𝑛
)

𝑛

= 𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/2𝜎𝜉𝑠
2

. 

Furthermore, 

|∑

𝑠

𝜆1
s (

𝑡

𝜎𝜉𝑠√𝑛
)

𝑛

− 𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/2𝜎𝜉𝑠
2

| ≤ 2 ∑

𝑠

𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/4𝜎𝜉𝑠
2

. 

Proof. Recall that ∇𝜆1
s (0) = 0. Since, in a neighbourhood of 0, 𝜆1

s (𝑡) depends analytically on 𝑡, we may apply 

Taylor's Theorem to write 

𝜆1
s (

𝑡

𝜎𝜉𝑠√𝑛
) = 1 −

⟨𝑡, 𝒟𝜉𝑠
𝑡⟩

2𝜎𝜉𝑠

2 𝑛
+ 𝑂(∥ 𝑡 ∥3/𝑛3/2). 

The first part of the result now follows from the standard formula lim𝑛→∞  (1 − 𝑥/𝑛)𝑛 = 𝑒−𝑥.  

For the second part, notice that, provided 𝛿 is sufficiently small, for ∥ 𝑢 ∥≤ 𝛿 we have 

⟨𝑢, 𝒟𝜉𝑠
𝑢⟩

2
+ 𝑂(∥ 𝑢 ∥3) ≥

⟨𝑢, 𝒟𝜉𝑠
𝑢⟩

4
. 

Applying the triangle inequality and the inequality (1 − 𝑥/𝑛)𝑛 < 𝑒−𝑥, we have 

|∑

𝑠

𝜆1
s (

𝑡

𝜎𝜉𝑠√𝑛
)

𝑛

− ∑

𝑠

𝑒
−⟨𝑡,𝒟𝜉𝑠𝑡⟩/2𝜎𝜉𝑠

2

| ≤ ∑

𝑠

𝑒
−⟨𝑡,𝒟𝜉𝑠𝑡⟩/4𝜎𝜉𝑠

2

+ ∑

𝑠

𝑒
−⟨𝑡,𝒟𝜉𝑠𝑡⟩/2𝜎𝜉𝑠

2

≤ 2 ∑

𝑠

𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/4𝜎𝜉𝑠
2

.
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IV. A LOCAL LIMIT THEOREM FOR SUBSHIFTS 

We shall obtain a local limit theorem for the function 𝑓𝑠: 𝑋𝐴𝑠
→ ℤ2+𝜖 with respect to the periodic points of 

𝜎: 𝑋𝐴𝑠
→ 𝑋𝐴𝑠

. We shall examine the quantity 

𝒮(𝑛, 𝛼𝑠) = ∑  

𝑑−1

𝑗=0

∑

𝑠

𝑒−⟨𝜉𝑠,𝛼𝑠⟩𝜎𝜉𝑠

2+𝜖𝑛2+𝜖/2(𝜆/𝜆𝜉𝑠
)

𝑛+𝑗

#Fix𝑛+𝑗

#{𝑥 ∈ Fix𝑛+𝑗: 𝑓s
𝑛+𝑗

(𝑥) = 𝛼𝑠}. 

For 𝑎𝑠 > 0, write 𝐼(𝑎𝑠) = [−𝑎𝑠, 𝑎𝑠]2+𝜖. Using the orthogonality relationship 

1

(2𝜋)2+𝜖
∫  

𝐼(𝜋)

∑

𝑠

𝑒−𝑖⟨𝑡,𝛼𝑠⟩𝑒𝑖⟨𝑡,𝑦⟩𝑑𝑡 = {
1 if 𝑦 = 𝛼𝑠

0 otherwise 
, 

we have that 

𝒮(𝑛, 𝛼𝑠) =
1

(2𝜋)2+𝜖
∑  

𝑑−1

𝑗=0

∑

𝑠

𝜎𝜉𝑠

2+𝜖𝑛
2+𝜖

2 (
𝜆

𝜆𝜉𝑠

)

𝑛+𝑗

#Fix𝑛+𝑗

∫  
𝐼(𝜋)

𝑒−𝑖⟨𝑡,𝛼𝑠⟩ ∑  

𝑥∈Fix𝑛+𝑗

𝑒
𝑖⟨𝑡,𝑓𝑠

𝑛+𝑗
(𝑥)⟩

𝑑𝑡. 

Making the substitution 𝑡 ↦ 𝑡/𝜎𝜉𝑠√𝑛, we obtain 

𝒮(𝑛, 𝛼𝑠) =
1

(2𝜋)2+𝜖
∑  

𝑑−1

𝑗=0

∫  
𝐼(𝜋𝜎𝜉𝑠√𝑛)

∑

𝑠

𝑒−𝑖⟨𝑡,𝛼𝑠⟩/𝜎𝜉𝑠√𝑛
(𝜆/𝜆𝜉𝑠

)
𝑛+𝑗

#Fix𝑛+𝑗

∑  

𝑥∈Fix𝑛+𝑗

𝑒
𝑖⟨𝑡,𝑓s

𝑛+𝑗
(𝑥)⟩/𝜎𝜉𝑠√𝑛

𝑑𝑡. 

We prove the following theorem. 

Theorem 2(see [24]). Suppose that 𝑓𝑠: 𝑋𝐴𝑠
→ ℤ2+𝜖 satisfies conditions (A1) and (A2). Then 

lim
𝑛→∞

 ∑

𝑠

|∑  

𝑑−1

𝑗=0

 
𝜎𝜉𝑠

2+𝜖𝑛2+𝜖/2(𝜆/𝜆𝜉𝑠
)

𝑛+𝑗

#Fix𝑛+𝑗

#{𝑥 ∈ Fix𝑛+𝑗: 𝑓s
𝑛+𝑗

(𝑥) = 𝛼𝑠} −
𝑑𝑒⟨𝜉𝑠,𝛼𝑠⟩

(2𝜋)2+𝜖/2
𝑒

−⟨𝛼𝑠,𝒟𝜉𝑠
−1𝛼𝑠⟩/2𝑛

| = 0, 

uniformly in 𝛼𝑠 ∈ ℤ2+𝜖. 

Proof. Using the identity (valid for any positive definite Hermitian matrix 𝒟𝜉𝑠
 ), 

𝑒
−⟨𝛼𝑠,𝒟𝜉𝑠

−1𝛼𝑠⟩/2𝑛
=

1

(2𝜋)2+𝜖/2
∫  

ℝ2+𝜖
∑

𝑠

𝑒−𝑖⟨𝑡,𝛼𝑠⟩/𝜎𝜉𝑠√𝑛𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/2𝜎𝜉𝑠
2

𝑑𝑡, 

we have established the bound 

(2𝜋)2+𝜖 |∑  

𝑑−1

𝑗=0

 ∑

𝑠

𝑒−⟨𝜉𝑠,𝛼𝑠⟩𝜎𝜉𝑠

2+𝜖𝑛2+𝜖/2𝛾𝑛+𝑗

#Fix𝑛+𝑗

#{𝑥 ∈ Fix𝑛+𝑗: 𝑓s
𝑛+𝑗

(𝑥) = 𝛼𝑠} −
𝑑𝑒

−⟨𝛼𝑠,𝒟𝜉𝑠
−1𝛼𝑠⟩/2𝑛

(2𝜋)2+𝜖/2
| ≤ 



On Local Limit Theorems for Free Groups 

DOI: 10.35629/0743-12020113                             www.questjournals.org                                                7 | Page 

∑

𝑠

|∫  
𝑈0(𝛿𝜎𝜉𝑠√𝑛)

 𝑒−𝑖⟨𝑡,𝛼𝑠⟩/𝜎𝜉𝑠√𝑛 {∑  

𝑑−1

𝑗=0

 
𝛾𝑛+𝑗

#Fix𝑛+𝑗

∑  

𝑥∈Fix𝑛+𝑗

 𝑒
𝑖⟨𝑡,𝑓s

𝑛+𝑗
(𝑥)⟩/𝜎𝜉𝑠√𝑛

− 𝑑𝑒
−⟨𝑡,𝒟𝜉𝑠𝑡⟩/2𝜎𝜉𝑠

2

} 𝑑𝑡|

+ ∑

𝑠

|∫  
𝐼(𝜋𝜎𝜉𝑠√𝑛)∖𝑈0(𝛿𝜎𝜉𝑠√𝑛)

  𝑒−𝑖⟨𝑡,𝛼𝑠⟩/𝜎𝜉𝑠√𝑛 ∑  

𝑑−1

𝑗=0

 
𝛾𝑛+𝑗

#Fix𝑛+𝑗

∑  

𝑥∈Fix𝑛+𝑗

 𝑒
𝑖⟨𝑡,𝑓s

𝑛+𝑗
(𝑥)⟩/𝜎𝜉𝑠√𝑛

|

+ ∑

𝑠

|∫  
ℝ2+𝜖∖𝑈0(𝛿𝜎𝜉𝑠√𝑛)

 𝑑𝑒−𝑖⟨𝑡,𝛼𝑠⟩/𝜎𝜉𝑠√𝑛𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/2𝜎𝜉𝑠
2

𝑑𝑡|

= (𝐴𝑠)1(𝑛, 𝛼𝑠) + (𝐴𝑠)2(𝑛, 𝛼𝑠) + (𝐴𝑠)3(𝑛, 𝛼𝑠),

 

where 𝛾 = 𝜆/𝜆𝜉𝑠
. An easy calculation shows that lim𝑛→∞  sup𝛼𝑠∈ℤ2+𝜖  (𝐴𝑠)3(𝑛, 𝛼𝑠) = 0, so it remains to consider 

(𝐴𝑠)1 and (𝐴𝑠)2. 

For 𝑡 ∈ 𝑈0(𝛿𝜎𝜉𝑠√𝑛), we have that 

∑  

𝑑−1

𝑗=0

𝛾𝑛+𝑗

#Fix𝑛+𝑗

∑  

𝑥∈Fix𝑛+𝑗

∑

𝑠

𝑒
𝑖⟨𝑡,𝑓s

𝑛+𝑗
(𝑥)⟩/𝜎𝜉𝑠√𝑛

= ∑

𝑠

𝜆1
𝑠 (

𝑡

𝜎𝜉𝑠√𝑛

)

𝑛

∑  

𝑑−1

𝑗=0

𝜆1
𝑠 (

𝑡

𝜎𝜉𝑠√𝑛
)

𝑗

+ 𝑂(𝜃𝑛). 

and that 

|∑  

𝑑−1

𝑗=0

∑

𝑠

 𝜆1
𝑠 (

𝑡

𝜎𝜉𝑠√𝑛
)

𝑗

− 𝑑| ≤ (1 + 𝜖)𝛿2, 

for some constant 𝜖 ≥ 0. By Proposition 2 , we know that 𝜆1
𝑠 (𝑡/𝜎𝜉𝑠√𝑛)

𝑛
 converges uniformly to 𝑒

−⟨𝑡,𝒟𝜉𝑠
𝑡⟩/2𝜎𝜉𝑠

2

, 

as 𝑛 → ∞. Furthermore, we have the estimates 

|∑

𝑠

𝑑𝜆1
𝑠 (

𝑡

𝜎𝜉𝑠√𝑛
)

𝑛

− ∑

𝑠

𝑑𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/2𝜎𝜉𝑠
2

| ≤ ∑

𝑠

2𝑑𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/4𝜎𝜉𝑠
2

 

and 

∣ ∑

𝑠

𝜆1
𝑠 (

𝑡

𝜎𝜉𝑠√𝑛
)

𝑛

{∑  

𝑑−1

𝑗=0

 𝜆1
𝑠 (

𝑡

𝜎𝜉𝑠√𝑛
)

𝑗

− 𝑑} ≤ (1 + 𝜖) ∑

𝑠

𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/4𝜎𝜉𝑠
2 𝛿2

. 

Thus, by the Dominated Convergence Theorem, we obtain 

lim sup
𝑛→∞

  sup
𝛼𝑠∈ℤ2+𝜖

 ∑

𝑠

(𝐴𝑠)1(𝑛, 𝛼𝑠) ≤ (1 + 𝜖) {∫  
ℝ2+𝜖

∑

𝑠

  𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/4𝜎𝜉𝑠
2

𝑑𝑡} 𝛿2. 

Finally, we consider (𝐴𝑠)2. If 𝑡 ∉ ⋃𝑟=1
𝑑−1  𝑈𝑟(𝛿𝜎𝜉𝑠√𝑛), then 

∑  

𝑑−1

𝑗=0

𝛾𝑛+𝑗

#Fix𝑛+𝑗

∑  

𝑥∈Fix𝑛+𝑗

∑

𝑠

𝑒
𝑖⟨𝑡,𝑓s

𝑛+𝑗
(𝑥)⟩/𝜎𝜉𝑠√𝑛

= 𝑂(𝜃𝑛). 

On the other hand, if 𝑡 ∈ ⋃𝑟=1
𝑑−1  𝑈𝑟(𝛿𝜎𝜉𝑠√𝑛), then 
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|∑  

𝑑−1

𝑗=0

 
𝛾𝑛+𝑗

#Fix𝑛+𝑗

∑  

𝑥∈Fix𝑛+𝑗

∑

𝑠

 𝑒
𝑖⟨𝑡,𝑓s

𝑛+𝑗
(𝑥)⟩/𝜎𝜉𝑠√𝑛

| 

= |∑  

𝑑−1

𝑗=0

∑

𝑠

  𝑒2𝜋𝑖𝑟(𝑛+𝑗)/𝑑𝜆1
𝑠 (

𝑡

𝜎𝜉𝑠√𝑛
− 𝑡(𝑟))

𝑛+𝑗

| + 𝑂(𝜃𝑛)

≤ (
1 + 𝜖

𝜖
) ∑

𝑠

𝑒
−⟨𝑡′,𝒟𝜉𝑠

𝑡′⟩/4𝜎2

𝛿2 + 𝑂(𝜃𝑛),

 

for some constant 𝜖 > −1 and where 𝑡′ = 𝑡 − 𝜎𝜉𝑠√𝑛𝑡(𝑟), the last estimate following from (2.2), the analyticity 

of 𝜆1
𝑠  and the vanishing of its first derivatives. This gives us 

lim sup
𝑛→∞

  sup
𝛼𝑠∈ℤ2+𝜖

∑

𝑠

  (𝐴𝑠)2(𝑛, 𝛼𝑠) ≤ (
1 + 𝜖

𝜖
) {∫  

ℝ2+𝜖
∑

𝑠

 𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/4𝜎𝜉𝑠
2

𝑑𝑡} 𝛿2. 

Combining the above estimates we have 

lim sup
𝑛→∞

  sup
𝛼𝑠∈ℤ2+𝜖

 ∑

𝑠

∣ ∑  

𝑑−1

𝑗=0

 
𝑒−⟨𝜉𝑠,𝛼𝑠⟩𝜎𝜉𝑠

2+𝜖𝑛2+
𝜖

2𝛾𝑛+𝑗

#Fix𝑛+𝑗

#{𝑥 ∈ Fix𝑛+𝑗: 𝑓s
𝑛+𝑗(𝑥) = 𝛼𝑠} −

𝑑𝑒−
⟨𝛼𝑠,𝒟𝜉𝑠

−1𝛼𝑠⟩

2𝑛

(2𝜋)2+
𝜖

2

|

≤
(𝜖2 + 2ϵ + 1)

ϵ(2𝜋)2+𝜖
{∫  

ℝ2+𝜖
∑

𝑠

 𝑒
−⟨𝑡,𝒟𝜉𝑠

𝑡⟩/4𝜎𝜉𝑠
2

𝑑𝑡} 𝛿2.

 

Since this holds for all sufficiently small 𝛿 > 0, the proof of the theorem is complete. 

We state the special case where 𝜉𝑠 = 0 as a corollary. Here we write 𝒟0 = 𝒟 and 𝜎0 = 𝜎. 

Corollary 2.1 [24]. Suppose that 𝑓𝑠: 𝑋𝐴𝑠
→ ℤ2+𝜖 satisfies condition (A1) and ∫ 𝑓𝑠𝑑𝜇 = 0, where 𝜇 is the 

measure of maximal entropy. Then 

lim
𝑛→∞

  |∑  

𝑑−1

𝑗=0

 
𝜎2+𝜖𝑛2+𝜖/2

#Fix𝑛+𝑗

#{𝑥 ∈ Fix𝑛+𝑗: 𝑓s
𝑛+𝑗

(𝑥) = 𝛼𝑠} −
𝑑

(2𝜋)2+𝜖/2
𝑒−⟨𝛼𝑠,𝒟−1𝛼𝑠⟩/2𝑛| = 0, 

uniformly in 𝛼𝑠 ∈ ℤ2+𝜖 

Remark [24]. In particular, we have recovered the main result of [15], namely that #{𝑥 ∈ Fix𝑑𝑛: 𝑓s
𝑑𝑛(𝑥) = 0} ∼

(1 + 𝜖)(𝜆)𝜉𝑠

𝑑𝑛/𝑛2+𝜖/2, as 𝑛 → ∞, for some constant 𝜖 ≥ 0. However, the above method does not allow us to 

estimate the error term in this approximation. (The 𝑂(𝑛−1/2) error estimate claimed there is erroneous and 

needs to be corrected to 𝑂(𝑛−1/2+𝜖). Conjecturally, the optimal error estimate is 𝑂(𝑛−1).) 

V. FREE GROUPS 

We shall deduce Theorem 1 from Theorem 2 and give an explicit expression for the matrix 𝒟. Let 𝐺 be the free 

group on 𝜖 ≥ 0 generators. Define a (2(2 + 𝜖) + 1) × (2(2 + 𝜖) + 1) matrix 𝐴𝑠, indexed by {∗ ,1,2, … ,2(2 +
𝜖)}, by 𝐴𝑠(∗,∗) = 0, 𝐴𝑠(∗, 𝑗) = 1 for all 𝑗 = 1,2, … ,2(2 + 𝜖), 𝐴𝑠(𝑖,∗) = 0 for all 𝑖 = 1,2, … ,2(2 + 𝜖), and, for 

𝑖, 𝑗 = 1,2, … ,2(2 + 𝜖), 

𝐴𝑠(𝑖, 𝑗) = {
1 if 𝑗 ≠ 𝑖 + 2 + 𝜖(mod2(2 + 𝜖))
0 if 𝑗 = 𝑖 + 2 + 𝜖(mod2(2 + 𝜖))

. 
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Then the maximal eigenvalue 𝜆 of 𝐴𝑠 is equal to 2(2 + 𝜖) − 1. Let 𝐵𝑠 denote the 2(2 + 𝜖) × 2(2 + 𝜖) 

submatrix of 𝐴𝑠 indexed by {1,2, … ,2(2 + 𝜖)}; it is easy to check that 𝐵𝑠 is aperiodic and that ⋃𝑛≥1  Fix𝑛 ⊂ 𝑋𝐵𝑠
. 

If we index the generators of 𝐺 by {𝑎1
𝑠 , … , 𝑎2+𝜖

𝑠 , 𝑎3+𝜖
s = 𝑎1

−s, … , 𝑎2(2+𝜖)
s = 𝑎2+𝜖

−s }, then it is clear that there is a 

natural bijection between cyclically reduced words of length 𝑛 in 𝐺 and elements of Fix𝑛, and between reduced 

words of length 𝑛 and all sequences of the form (𝑥0, 𝑥1, … , 𝑥𝑛) with 𝑥0 =∗ and 𝐴𝑠(𝑥𝑚 , 𝑥𝑚+1) = 1, 𝑚 =
1, … , 𝑛 − 1. In particular,#𝒲𝑠(𝑛) = ⟨𝑢, 𝐴𝑠

𝑛𝑣⟩, where 𝑢 = (1,0, … ,0) (with the 0 occurring in the ∗ position) and 

𝑣 = (1,1, … ,1), and that #𝒞(𝑛) = trace 𝐴𝑠
𝑛. 

If we define a function 𝑓𝑠: 𝑋𝐴𝑠
→ ℤ2+𝜖 by 𝑓𝑠(𝑖, 𝑗) = [𝑎𝑗

𝑠] then it is easy to see that the element of ℤ2+𝜖 

corresponding to the cyclically reduced word associated to 𝑥 ∈ Fix𝑛 is 𝑓s
𝑛(𝑥). In particular, #𝒞(𝑛, 𝛼𝑠) =

#{𝑥 ∈ Fix𝑛: 𝑓s
𝑛(𝑥) = 𝛼𝑠} and 

⋃  

𝑛≥1

{𝑓s
𝑛(𝑥): 𝑥 ∈ Fix𝑛} = ⋃  

𝑛≥1

{[𝑔𝑠]: 𝑔𝑠 ∈ 𝒞(𝑛)} = ℤ2+𝜖 . 

This last identity implies that the restriction 𝑓𝑠: 𝑋𝐵𝑠
→ ℤ2+𝜖 satisfies condition (A1). 

If 𝜇 denotes the measure of maximal entropy on 𝑋𝐵𝑠
 then it is well-known that the periodic points of 𝜎: 𝑋𝐵𝑠

→

𝑋𝐵𝑠
 are equidistributed with respect to 𝜇. More precisely, we have the identity 

∫ ∑

𝑠

𝑓𝑠𝑑𝜇 = lim
𝑛→∞

 
1

#Fix𝑛

∑  

𝑥∈Fix𝑛

∑

𝑠

𝑓s
𝑛(𝑥)

𝑛
. 

The symmetry [𝑔−s] = −[𝑔𝑠] then shows that we have ∫ 𝑓𝑠𝑑𝜇 = 0. A simple calculation shows that Δ𝑓𝑠
 is the 

subgroup of ℤ2+𝜖 consisting of all even elements, so that 𝑑 = |ℤ2+𝜖/Δ𝑓𝑠
| = 2. 

The following result now follows immediately from Corollary 2.1. A simple symmetry argument shows that the 

covariance matrix 𝒟 is diagonal, 𝒟 = diag (𝜎2, … , 𝜎2), say, and the explicit formula for 𝜎2 given by (0.1) is 

due to [18]. 

Proposition 3 [24]. 

lim
𝑛→∞

  sup
𝛼𝑠∈ℤ2+𝜖

 ∑

𝑠

|𝜎2+𝜖𝑛2+𝜖/2 (
#𝒞(𝑛, 𝛼𝑠)

#𝒞(𝑛)
+

#𝒞(𝑛 + 1, 𝛼𝑠)

#𝒞(𝑛 + 1)
) −

2

(2𝜋)2+𝜖/2
𝑒−∥𝛼𝑠∥2/2𝜎2𝑛| = 0. 

Proof of Theorem 1. We shall now discuss the modifications necessary to prove the result for 𝒲𝑠(𝑛). For 𝑡 ∈
ℝ2+𝜖/2𝜋ℤ2+𝜖, we introduce matrices (𝐴𝑠)𝑡 , (𝐵𝑠)𝑡 defined by (𝐴𝑠)𝑡(𝑖, 𝑗) = 𝐴𝑠(𝑖, 𝑗)𝑒𝑖⟨𝑡,𝑓𝑠(𝑖,𝑗)⟩ and (𝐵𝑠)𝑡(𝑖, 𝑗) =
𝐵𝑠(𝑖, 𝑗)𝑒𝑖⟨𝑡,𝑓𝑠(𝑖,𝑗)⟩. A simple calculation shows that (𝐴𝑠)𝑡 has the same non-zero spectrum as (𝐵𝑠)𝑡. Since 𝐵𝑠 is 

aperiodic and 𝑓𝑠: 𝑋𝐵𝑠
→ ℤ2+𝜖 satisfies (A1) and (A2), the maximal eigenvalue 𝜆̃1

s (𝑡) continues to enjoy the 

properties described in Section 2. 

We note that #𝒲𝑠(𝑛) = 2(2 + 𝜖)(𝜆)𝑛−1 and that 

#𝒲𝑠(𝑛, 𝛼𝑠) = ∑  

𝑔𝑠∈𝒲𝑠(𝑛)

∑

𝑠

 
1

(2𝜋)2+𝜖
∫  

𝐼(𝜋)

  𝑒−𝑖⟨𝑡,𝛼𝑠⟩𝑒𝑖⟨𝑡,[𝑔𝑠]⟩𝑑𝑡 = ∑  

2(2+𝜖)

𝑗=1

 
1

(2𝜋)2+𝜖
∫  

𝐼(𝜋)

 ∑

𝑠

𝑣𝑒−𝑖⟨𝑡,𝛼𝑠⟩(𝐴𝑠)𝑡
𝑛(∗, 𝑗)𝑑𝑡

=
1

(2𝜋)2+𝜖
∫  

𝐼(𝜋)

 ∑

𝑠

𝑒−𝑖⟨𝑡,𝛼𝑠⟩⟨𝑢, (𝐴𝑠)𝑡
𝑛𝑣⟩𝑑𝑡.

 

For 𝑡 ∈ 𝑈𝑟(𝛿), we have 

⟨𝑢, (𝐴𝑠)𝑡
𝑛𝑣⟩ = (−1)𝑟𝜆̃1

𝑠(𝑡 − 𝑡(𝑟))
𝑛

⟨𝑢, 𝑤𝑡−𝑡(𝑟)⟩ + 𝑂((𝜃𝜆)𝑛), 
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where 𝑤𝑡  is the eigenprojection of 𝑣 for (𝐴𝑠)𝑡 associated to the eigenvalue 𝜆̃1
s (𝑡). It is easy to see that 𝑤0 =

(2(2 + 𝜖)/(2(2 + 𝜖) − 1),1, … ,1). 

Applying the analysis of the preceding section to 

𝜎2+𝜖𝑛2+𝜖/2 (
#𝒲𝑠(𝑛, 𝛼𝑠)

#𝒲𝑠(𝑛)
+

#𝒲𝑠(𝑛 + 1, 𝛼𝑠)

#𝒲𝑠(𝑛 + 1)
), 

we obtain 

(2𝜋)2+𝜖 |𝜎2+𝜖𝑛2+𝜖/2 ∑

𝑠

(
#𝒲𝑠(𝑛, 𝛼𝑠)

#𝒲𝑠(𝑛)
+

#𝒲𝑠(𝑛 + 1, 𝛼𝑠)

#𝒲𝑠(𝑛 + 1)
) −

2𝑒−∥𝛼𝑠∥2/2𝜎2𝑛

(2𝜋)2+𝜖/2
|

≤ ∑

𝑠

|∫  
𝑈0(𝛿𝜎√𝑛)

  𝑒−𝑖⟨𝑡,𝛼𝑠⟩/𝜎√𝑛 {
⟨𝑢, (𝐴𝑠)𝑡/𝜎√𝑛

𝑛 𝑣⟩

#𝒲𝑠(𝑛)
+

⟨𝑢, (𝐴𝑠)𝑡/𝜎√𝑛
𝑛+1 𝑣⟩

#𝒲𝑠(𝑛 + 1)
− 2𝑒−∥𝑡∥2/2} 𝑑𝑡|

+ ∑

𝑠

|∫  
𝐼(𝜋𝜎√𝑛)∖𝑈0(𝛿𝜎√𝑛)

 𝑒−𝑖⟨𝑡,𝛼𝑠⟩/𝜎√𝑛 {
⟨𝑢, (𝐴𝑠)

𝑡/𝜎√𝑛
𝑛𝑣⟩

#𝒲𝑠(𝑛)
+

⟨𝑢, (𝐴𝑠)𝑡/𝜎√𝑛
𝑛+1 𝑣⟩

#𝒲𝑠(𝑛 + 1)
} 𝑑𝑡|

+ ∑

𝑠

|∫  
2𝑒−𝑖⟨𝑡,𝛼𝑠⟩/𝜎√𝑛𝑒−∥𝑡∥2/2𝑑𝑡∣

ℝ2+𝜖∖𝑈0(𝛿𝜎√𝑛)

 | .

 

Now, for 𝑡 ∈ 𝑈0(𝛿𝜎√𝑛), 

∑

𝑠

1

#𝒲𝑠(𝑛)
∑  

𝑔𝑠∈𝒲𝑠(𝑛)

 𝑒𝑖⟨𝑡,[𝑔𝑠]⟩/𝜎√𝑛 + ∑

𝑠

1

#𝒲𝑠(𝑛 + 1)
∑  

𝑔𝑠∈𝒲𝑠(𝑛+1)

  𝑒𝑖⟨𝑡,[𝑔𝑠]⟩/𝜎√𝑛

= ∑

𝑠

𝜆1
𝑠 (

𝑡

𝜎√𝑛
)

𝑛

(1 + 𝜆1
𝑠 (

𝑡

𝜎√𝑛
)) ⟨𝑢, 𝑤𝑡/𝜎√𝑛⟩ + 𝑂(𝜃𝑛)

 

and for 𝑡 ∈ 𝑈1(𝛿𝜎√𝑛), 

∑

𝑠

1

#𝒲𝑠(𝑛)
∑  

𝑔𝑠∈𝒲𝑠(𝑛)

 𝑒𝑖⟨𝑡,[𝑔𝑠]⟩/𝜎√𝑛 + ∑

𝑠

1

#𝒲𝑠(𝑛 + 1)
∑  

𝑔𝑠∈𝒲𝑠(𝑛+1)

  𝑒𝑖⟨𝑡,[𝑔𝑠]⟩/𝜎√𝑛

= ∑

𝑠

(−1)𝑛𝜆1
𝑠 (

𝑡

𝜎√𝑛
− 𝑡(1))

𝑛

(1 + 𝜆1
𝑠 (

𝑡

𝜎√𝑛
− 𝑡(1))) ⟨𝑢, 𝑤𝑡/𝜎√𝑛⟩ + 𝑂(𝜃𝑛)

 

Thus we may repeat the arguments in the proof of Theorem 2 to obtain the estimate 

lim sup
𝑛→∞

  sup
𝛼𝑠∈ℤ2+𝜖

∑

𝑠

  |𝜎2+𝜖𝑛2+𝜖/2 (
#𝒲𝑠(𝑛, 𝛼𝑠)

#𝒲𝑠(𝑛)
+

#𝒲𝑠(𝑛 + 1, 𝛼𝑠)

#𝒲𝑠(𝑛 + 1)
) −

2𝑒−∥𝛼𝑠∥2/2𝜎2𝑛

(2𝜋)2+𝜖/2
|

≤ (1 + 𝜖) {∫  
ℝ2+𝜖

 𝑒−⟨𝑡,𝒟𝑡⟩/4𝜎2
𝑑𝑡} 𝛿,

 

for some constant 𝜖 ≥ 0. (The only additional feature being that ⟨𝑢, 𝑤𝑡⟩ = ⟨𝑢, 𝑤0⟩ + 𝑂(∥ 𝑡 ∥).) Since this holds 

for all sufficiently small 𝛿 > 0, Theorem 1 is proved. 

VI. STRONGLY MARKOV GROUPS 

We shall sketch the generalizations necessary to extend our results to certain groups 𝐺 satisfying the 

following strong Markov property: for any finite symmetricgenerating set 𝑆, there exists 
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(i) a finite directed graph consisting of vertices 𝑉 and edges 𝐸 ⊂ 𝑉 × 𝑉; 

(ii) a distinguished vertex ∗∈ 𝑉, with no edges terminating at ∗; 

(iii) a labeling map 𝜌: 𝐸 → 𝑆; 

such that 

(a) there is a bijection between finite paths in the graph starting at ∗ and passing through the consecutive edges 

𝑒1, … , 𝑒𝑛, say and elements 𝑔𝑠 ∈ 𝐺 given by the correspondence 𝑔𝑠 = 𝜌(𝑒1) ⋯ 𝜌(𝑒𝑛) (where the empty path 

corresponds to the identity element); 

(b) the word length |𝑔𝑠| is equal to the path length 𝑛. 

In particular, this condition is satisfied by all (Gromov) hyperbolic groups [3], [7]. 

Write |𝑉| = 𝑙 + 1. Let 𝐴𝑠 denote the incidence matrix of the graph (𝑉, 𝐸), i.e., 𝐴𝑠 is a (𝑙 + 1) × (𝑙 + 1) matrix, 

indexed by 𝑉, with entries 𝐴𝑠(𝑖, 𝑗) = 1 if (𝑖, 𝑗) ∈ 𝐸 and 0 otherwise. Let 𝐵𝑠 denote the 𝑙 × 𝑙 submatrix of 𝐴𝑠 

obtained by deleting the row and column corresponding to ∗. We shall assume that 𝐵𝑠 is aperiodic with maximal 

eigenvalue 𝜆 > 1.. 

The abelianization of 𝐺 takes the form 𝐺/[𝐺, 𝐺] ≅ ℤ1+𝜖 ⊕ torsion. We suppose that 𝜖 ≥ 0 and write [.] : 𝐺 →
ℤ1+𝜖 for the natural homomorphism. As in the case of free groups, we define a function 𝑓𝑠: 𝑋𝐴𝑠

→ ℤ1+𝜖 by 

𝑓𝑠(𝑥) = [𝜌(𝑥0, 𝑥1)]. A new feature here is that it is not clear that the group Γ𝑓𝑠
 generated by {𝑓s

𝑛(𝑥): 𝑥 ∈ Fix𝑛} is 

not necessarily equal to ℤ1+𝜖. However, we still have that Γ𝑓𝑠
/Δ𝑓𝑠

 is a finite cyclic group and it was shown in 

[22] that ℤ1+𝜖/Γ𝑓𝑠
 is finite; we set 𝑑0 = |Γ𝑓𝑠

/Δ𝑓𝑠
| and 𝑑1 = |ℤ1+𝜖/Γ𝑓𝑠

|. 

As before, for 𝑡 ∈ ℝ2𝔤𝑠
/2𝜋ℤ2𝔤𝑠

, define matrices (𝐴𝑠)𝑡 , (𝐵𝑠)𝑡 by (𝐴𝑠)𝑡(𝑖, 𝑗) = 𝐴𝑠(𝑖, 𝑗)𝑒𝑖⟨𝑡,𝑓𝑠(𝑖,𝑗)⟩ and (𝐵𝑠)𝑡(𝑖, 𝑗) =
𝐵𝑠(𝑖, 𝑗)𝑒𝑖⟨𝑡,𝑓𝑠(𝑖,𝑗)⟩, and note that again (𝐴𝑠)𝑡 has the same non-zero spectrum as (𝐵𝑠)𝑡. There are 𝑑 = 𝑑0𝑑1 

values, 𝑡(0) = 0, … , 𝑡(𝑑−1), of 𝑡 for which (𝐴𝑠)𝑡 has an eigenvalue of maximum modulus 𝜆̃1
𝑠(𝑡(𝑟)) with 

|𝜆̃1
𝑠(𝑡(𝑟))| = 𝜆. Furthermore, 𝜆̃1

𝑠(𝑡(𝑟)) = 𝑒2𝜋𝑖𝑟/𝑑0𝜆. (Note that each 𝑒2𝜋𝑖𝑟/𝑑0𝜆 occurs for 𝑑1 values of 𝑡.) 

One can show that 𝑓𝑠: 𝑋𝐵𝑠
→ ℤ1+𝜖 satisfies that ∫ 𝑓𝑠𝑑𝜇 = 0, where 𝜇 is the measure of maximal entropy on 𝑋𝐵𝑠

 

or, equivalently, that (𝐴𝑠)𝑡 and (𝐵𝑠)𝑡 have spectral radius 𝜆 [22]. 

From the definition it is easy to see that we have the identities 

#𝒲𝑠(𝑛) = ∑  

𝑗∈𝑉

∑

𝑠

𝐴s
𝑛(∗, 𝑗) = ∑

𝑠

⟨𝑢, 𝐴𝑠
𝑛𝑣⟩ 

and 

#𝒲𝑠(𝑛, 𝛼𝑠) =
1

(2𝜋)1+𝜖
∫  

𝐼(𝜋)

∑

𝑠

𝑒−𝑖⟨𝑡,𝛼𝑠⟩⟨𝑢, (𝐴𝑠)𝑡
𝑛𝑣⟩𝑑𝑡, 

where 𝑢 = (1,0, … ,0) (with the 1 occurring in the ∗ position) and 𝑣 = (1,1, … ,1). Furthermore, for 𝑡 ∈
𝑈𝑟(𝛿), 𝑟 = 0,1, … , 𝑑 − 1, we still have 

⟨𝑢, (𝐴𝑠)𝑡
𝑛𝑣⟩ = 𝑒2𝜋𝑖𝑛𝑟/𝑑0𝜆̃1

𝑠(𝑡 − 𝑡(𝑟))
𝑛

⟨𝑢, 𝑤𝑡⟩ + 𝑂((𝜃𝜆)𝑛), 

where 𝑤𝑡  is the eigenprojection of 𝑣 for (𝐴𝑠)𝑡 associated to the eigenvalue 𝜆̃1
s (𝑡) and 0 < 𝜃 < 1. Mimicing the 

proof of Theorem 1, we obtain the following result, where, as in Corollary2.1,𝒟 = −∇2𝜆1
s (0). (It is worthwhile 

noting that it is possible to have 𝒲𝑠(𝑛 + 𝑗, 𝛼𝑠) ≠ ∅ for several values of 𝑗 ∈ {0,1, … , 𝑑0 − 1}.) 
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Theorem 3 [24]. Let 𝐺 be a strongly Markov group such that 𝐺/[𝐺, 𝐺] ≅ ℤ1+𝜖 ⊕ torsion with 𝜖 ≥ 0. Let 𝑆 be 

finite symmetric generating set and suppose that the associated matrix 𝐵𝑠 defined above is aperiodic. Then there 

exists a symmetric positive definite real matrix 𝒟 such that 

lim
𝑛→∞

 ∑

𝑠

|𝜎1+𝜖𝑛1+𝜖/2 ∑  

𝑑0

𝑗=0

 
#𝒲𝑠(𝑛 + 𝑗, 𝛼𝑠)

#𝒲𝑠(𝑛 + 𝑗)
−

𝑑0

(2𝜋)1+𝜖/2⟨𝑢, 𝑤0⟩
∑  

𝑑1−1

𝑟=0

  ⟨𝑢, 𝑤𝑡(𝑑0𝑟)⟩𝑒−⟨𝛼𝑠,𝒟−1𝛼𝑠⟩/2𝑛| = 0, 

uniformly in 𝛼𝑠 ∈ ℤ1+𝜖. 

Remark [24]. A similar analysis can be made in the case where 𝐵𝑠 is irreducible, i.e., when, for each pair (𝑖, 𝑗), 

there exists 𝑛(𝑖, 𝑗) > 0 such that 𝐵s
𝑛(𝑖,𝑗)

(𝑖, 𝑗) > 0. In this case, the maximum modulus eigenvalues of 𝐵𝑠 are the 

𝑞-th roots of the maximum modulus eigenvalues of a certain aperiodic matrix, where 𝑞 = hcf {𝑛(𝑖, 𝑖): 𝑖 ∈ 𝑉 ∖ {∗
}} is called the period of 𝐵𝑠. 

We obtain the following more complicated formulae along the subsequence 𝑛𝑞, 𝑛 ≥ 1. 

If 𝑑0 does not divide 𝑞 then 

lim
𝑛→∞

 ∑

𝑠

|𝜎1+𝜖(𝑛𝑞)1+𝜖/2 ∑  

𝑑0

𝑗=0

 
#𝒲𝑠(𝑛𝑞 + 𝑗𝑞, 𝛼𝑠)

#𝒲𝑠(𝑛𝑞 + 𝑗𝑞)
−

𝑑0 ∑  
𝑞−1
𝑚=0  ∑  

𝑑1−1
𝑟=0   ⟨𝑢, 𝑤

𝑡(𝑑0𝑟)
(𝑚)

⟩

(2𝜋)1+𝜖/2 ∑  
𝑞−1
𝑚=0   ⟨𝑢, 𝑤0

(𝑚)
⟩

𝑒−⟨𝛼𝑠,𝒟−1𝛼𝑠⟩/2𝑛𝑞| = 0, 

uniformly in 𝛼𝑠 ∈ ℤ1+𝜖. 

If 𝑑0 divides 𝑞 then 

lim
𝑛→∞

∑

𝑠

  |𝜎1+𝜖(𝑛𝑞)1+𝜖/2 ∑  

𝑑0

𝑗=0

 
#𝒲𝑠(𝑛𝑞 + 𝑗𝑞, 𝛼𝑠)

#𝒲𝑠(𝑛𝑞 + 𝑗𝑞)
−

𝑑0 ∑  
𝑞−1
𝑚=0  ∑  𝑑−1

𝑟=0   ⟨𝑢, 𝑤
𝑡(𝑟))

(𝑚)
⟩

(2𝜋)1+𝜖/2 ∑  
𝑞−1
𝑚=0   ⟨𝑢, 𝑤0

(𝑚)
⟩

𝑒−⟨𝛼𝑠,𝒟−1𝛼𝑠⟩/2𝑛𝑞| = 0, 

uniformly in 𝛼𝑠 ∈ ℤ1+𝜖. 

(Here, the terms 𝑤
𝑡(𝑟))

(𝑚)
 are certain eigenvectors, associated to eigenvalues 𝑒2𝜋𝑖𝑚/𝑞𝜆̃1

𝑠(𝑡(𝑟)), 𝑚 = 0, … , 𝑞 − 1, of 

𝐵𝑠.) 

A particular group presentation satisfying our hypotheses is the fundamental group 𝐺 of a compact orientable 

surface of genus 𝔤𝑠 ≥ 2 given the standard one-relator presentation 

𝐺 = ⟨𝑎1
𝑠, … , 𝑎𝔤𝑠

𝑠 , 𝑏1
𝑠, … , 𝑏𝔤𝑠

s : ∏  

𝔤𝑠

𝑖=1

 𝑎𝑖
𝑠𝑏𝑖

𝑠𝑎𝑖
−s𝑏𝑖

−s = 1⟩.                     (5.1) 

(Note that 𝐺/[𝐺, 𝐺] ≅ ℤ2𝔤𝑠
.) This is an example of a hyperbolic group and thus is strongly Markov; however, in 

this case the result follows from earlier explicit constructions due to [2] and [21]. In particular, 𝐵𝑠 is aperiodic. 

A nice feature of this construction is that closed loops in the directed graph (𝑉, 𝐸) correspond precisely to 

conjugacy classes in 𝐺, from which one can deduce that Γ𝑓𝑠
= ℤ2𝔤𝑠

. One can also see that Δ𝑓𝑠
 is the set ofeven 

elements of ℤ2𝔤𝑠
, so that 𝑑 = 2. The following result now follows immediately from Theorem 3. 

Theorem 4 [24]. Let 𝐺 be the fundamental group of a compact surface of genus 𝔤𝑠 ≥ 2 equipped with the 

presentation (5.1). Then there exists a symmetric positive definite real matrix 𝒟 such that 

lim
𝑛→∞

 ∑

𝑠

|𝜎1+𝜖𝑛𝔤𝑠
(

#𝒲𝑠(𝑛, 𝛼𝑠)

#𝒲𝑠(𝑛)
+

#𝒲𝑠(𝑛 + 1, 𝛼𝑠)

#𝒲𝑠(𝑛 + 1)
) −

2

(2𝜋)𝔤𝑠 𝑒−⟨𝛼𝑠,𝒟−1𝛼𝑠⟩/2𝑛| = 0, 
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uniformly in 𝛼𝑠 ∈ ℤ2𝔤𝑠
. 
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