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Abstract

Richard Sharp [24] obtain a local limit theorem for elements of a free group Gunder the abelianization map |-
1: G = G/[G,G].It obtained by an analysis involving subshifts

of finite type, where he obtain a result of independent interest. The case of fundamental groups of compact
surfaces of genus g° = 2 is also discussed. As an application we raised the elements of G.

Keywords: Twisted matrices, Local limit theorem, Free Group, Markov Groups.

Received 23 Jan., 2026, Revised 04 Feb., 2026, Accepted 06 Feb., 2026 © The author(s) 2026.
Published with open access at www.questjournas.org

I INTRODUCTION

ForG denote the free group on € = 0 generators {aj, ...,a3,.}. For g° € G, let |g®| denote its word
+1

length, i.e., |g°| = inf{n >0:g°=g7-95.95 € {(as)fl, ...,(a5)2+6}}, and let [g®] denote the image of g°
under the abelianization map []:G - G/[G, G] = Z**€. Let W,(n) = {g°® € G:|g®| = n} and observe that
#W,(n) = 2(2 + €)(2(2 + €) — 1) L. We shall be interested in the distribution of the elements of W, (n) in
Z**€by the mapping [-], as n - oo. In particular, defining W;(n, a®) = {g° € W,(n):[g°] = a}, we wish to
examine the dependence of #W;(n, a®) on a® as well as on n.

We intend to regard #W,(n, a®)/#W,(n) as a probability distribution on Z**¢ and to ask about its limiting
behaviour as n — oo. Rivin has shown that a central limit theorem is satisfied, i.e., for A, € R2*€,

lim #{g° € Wi(n):[g°]/Vn € A} =

1 1 f o-IxI?/202 g
n-o #W;(n) s ’

(27-[)2+e/20-2+e A

where |||l denotes the Euclidean norm and where

1
2

(0.1)

, 1 1+<2+E+\/3+2€>
V3 + 2e 2+€e—+V3+ 2

[18]. (In fact, this result is similar in spirit to earlier results for subshifts of finite type, hyperbolic
diffeomorphisms, and interval maps [1], [4], [5],[10],[12],[17], [19], [20], [23].)

Here, we shall establish a more precise local limit theorem. First we note a combinatorial restriction. We shall
say that a® = (af, ..., a5,.) is even if @i + -+ + a3, is even, and odd otherwise. It is clear that if [g°] = a®
then a® has the same parity as |g°|. Thus, in particular, either #W;(n, a®) or #W,(n + 1, ¢®) is equal to zero
and we are led to consider the behaviour of the sum

#HWi(n,a®) #W,(n+1,a%)
#W,(n) #W,(n+1) °

Theorem 1 [24]. Let G be the free group on € = 0 generators. Then we have that
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. —NaSn2 2
lim leI?/20%n| — o
n—-oo

S

#W,(n,a®) #W;(n+ 1,0(5)) 2
H#W;(n) #W,(n+1) (2m)2+e/2

02+<—:n2+e/2 <

uniformly in a’ € Z2*€.

In the case where a® = 0, the asymptotic behaviour of #W;(n, a®), as n — oo, has been studied as a means of
analysing the relative growth series &;(z) defined by

£ = ) #W,(n,0)2"
n=0
Estimates on the growth of #W;(n, 0) allow one to deduce that {;(z) cannot be the series of a rational function
[8],[16],[22]. More generally, Theorem 1 implies the following result for fixed values of a®.
Corollary 1.1 [24].
For fixed a° € Z?™*¢,

2 HW,(2n + 8,5)
2+€

#W;(2n + 845, %) ~ 2+€
(2m) 2z g?*€ nz

,asn — oo,

where §,s = 0 if @® is even and §,s = 1 if ¢® is odd.

Remark [24]. For given functions Ay and B;, we shall write Ag(n) ~ By(n), as n — oo, if lim,_,As(n)/
Bs(n) = 1, and A;(n) = 0(Bs;(n)) if |As(n)| < (1 + €)B;(n), for some constant € > 0.

We see from Corollary 1.1 that the asymptotic behaviour of #W;(n, a®) is independent of a®. However,
Theorem 1 enables us to make comparisons as a® varies.

Corollary 1.2 [24]. Suppose that a®,f € Z?*¢ have the same parity. If || @ <[l B || then we have that
#W,(n, a®) > #W;(n, B) for all sufficiently large n with the same parity as a® and S.

We say that a word g7 -+ g; in the generators {af, ..., a3, .} is reduced if g}, # g;°, i =1, ..,n— 1. It is clear
that there is a one-to-one correspondence between reduced words of length n and elements of W, (n) (and we
abuse notation by letting g° denote both a word and the corresponding group element). We say that a reduced
word g7 -+ g5 is cyclically reduced if we also have that g;, # g;°. Let C(n) denote the set of cyclically reduced
words of length n and let C(n,a®) = {g° € C(n):[g°] = a°}. The above theorem still holds if we replace
#W,(n) and #W;,(n, a®) by #C(n) and #C(n, a®), respectively. (Notice that the map [-]: C(n) - Z2*€ is well-
defined.)

We start by some preliminary material concerning subshifts of finite type and thermodynamic
formalism. We introduce a family of twisted matrices used in subsequent calculations and analyse their spectra.
We prove a local limit theorem associated to periodic points in a subshift of finite type using arguments adapted
from [19] (see also [1]). We see that this corresponds directly to the local limit theorem for C(n) and we give
the amendments necessary to obtain Theorem 1. We sketch how our results may be extended to the fundamental
groups of compact oriented surfaces of genus g° > 2.

IL. PRELIMINARIES

ForAg be a | X | matrix with entries zero and one and define the associated shift space X, by

Xp, = {x €{0,1, .., 1 = 137" Ay, Xyy) = 1VN € T},
The subshift of finite type 0: X, — X, is defined by (6x), = Xp41-

We shall always assume that A, is aperiodic, i.e., that there exists N > 0 such that AY has all its entries positive.
This is equivalent to the map 0: X, — X, being topologically mixing. Then, by the Perron-Frobenius Theorem,
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A, will have a simple positive eigenvalue A > 1 which is strictly maximal in modulus and the topological
entropy h of o is equal to log A.

Let M denote the set of o-invariant probability measures on X,_. For m € M, we will write h(m) for its
measure theoretic entropy and we have that h(m) < h. There is a unique measure 4 € M, called the measure of
maximal entropy, for which h(u) = h. Given a continuous function ¢,: X, - R, we define the pressure P(¢;)
by P(¢s) = SUPmenr {h(m) +f <psdm}. If ¢, is Holder continuous then there is a unique measure p, € M for
which the supremum is attained and we call p,,_ the equilibrium state of ¢g. Clearly, o = p.

Set Fix,, = {x € Xyi0"x = x}. It is well-known and easy to prove that #Fix s, = trace Ay ~ (A)™, as n — oo.
We shall be interested in the asymptotics of certain subsets ofFix,,.

Fix a function f: X, - Z?*¢, such that f;(x) depends on only finitely many co-ordinates of x. Without loss of

generality, we may suppose that f;(x) depends on only the first two co-ordinates, i.e., that f;(x) = f;(xg, ;).
Write f*(x) = fi(x) + fy(0x) + - + f;(6™ 1x). For a’ € Z**¢, consider the subset {x € Fix,: fi*(x) = a’}
of Fix,; we shall be interested in the asymptotics of the cardinality of this set as n and a® vary.

In order to make progress, we need to assume that f; satisfies the following two natural conditions.
(A1) The set UX_, {f:*(x): x € Fix, } generates Z2*€ (i.e. it is not contained in a proper subgroup of Z2*€).

(A2) [ fidm =0, where m is some fully supported o-invariant measure.
If condition (A2) holds then it was shown in [15] that we may choose m to be equal to ys_ ry, for some (unique)
&, € R2*€, Furthermore, in this case we have

0<h*:= h(:“(és.fs)) = P((&, f5)) = sup {h(m):j Z fidm = 0,m € M.

A subgroup of Z2*¢, familiar from the coding theory of subshifts of finite type, will play an important role in
our subsequent analysis. We define

Ay = U {f1(x) — [ (¥): x, ¥ € Fix,}.

Choose x € Fix,, and y € Fix,,; (for some fixedn) and set c;, = f241(x) — f(y). Then the coset Ap + ¢y is
well-defined and Z2+€ /Ay, is the cyclic group generated by Af, + cf,[14]. Conditions (A1) and (A2) ensure that
Z2*€ /Ay, is finite and we write d = |Z2*€ /A [[13].

Remark [24]. At first sight, it is not clear that Az, is a group or, more precisely, that it is closed under addition:
we shall give a proof of this fact. It is convenient to consider the directed graph with vertices {0,1, ...,/ — 1} and
an edge joining i to j if and only if A¢(i,j) = 1. Then elements of Fix, correspond to cycles in the graph and
1 (x) to the sum of f; around the edges. For a cycle y, we shall denote this sum by f;(y) and the length of y by
I(y). Since Ay is aperiodic there exists N = 1 such that, for each pair of vertices (i,j), we can choose a path
6(i,)) of length N joining i to j. Now choose a vertex i, and, for every cycle y, a vertex i,, € y. For each cycle
y form a new cycle y passing through i, by 7 = 6(i0, i},)yé(iy, io). Let f;(y) — f;(¥") and f;(n) — f;(n") be
two arbitrary elements of Ax, where y,y’,m, 1" are cycles with [(y) = I(y") and [(n) = l(n"). Then y7 and y'7’
are cycles, l(yn) = l(y'7") and

(L0 = £G0) + (m - (")) = L.Gm = fG'T).
This shows that Afs is closed under addition.

We show (and in closely related situations) a variety of central limit theorems have been established. In
particular, in [4], a central limit theorem over periodic points is obtained and the rate of convergence
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isestimated. However [24], we concentrate on local limit theorems; more precisely we seek to obtain estimates
on

d e(h—h*)nn2+e/2 o
————#{x € Fix,, : £/ (x) = a},
Z #FixXpy { nejifs () J

j=0

as n — oo, which are uniform in @® € Z**€. (The summation is required since {x € Fix fS"” x) = as} *
@ for a unique j € {0,1,...,d — 1}, depending on the coset of @ in Z**€/A .) This kind of problem has been
addressed in [11] (following an idea of Sinai) and [19] (see also [1]) but the conditions imposed there are too
stringent for our purposes.

III. TWISTED MATRICES

In order to analyse the behaviour of #{x € Fix,: f{*(x) = @}, we shall introduce a family of twisted [ X [
matrices (4y),, indexed by t € R?*€ /21 Z?*¢. Define (4,), by

(A9 (i, )) = Ag(i, j)eXbsEH+Esfs)

where the Right Hand Side is understood to be zero when A (i,j) = 0. In particular, (4s), is an aperiodic
positive matrix. An easy calculation shows that

trace (A" = z z A HE T ).

x€Fix, s
In order to estimate this quantity, we need to analyse the eigenvalues of (4;);.

The matrix (4,), will have [ eigenvalues which we denote by A5(t), ..., 4, (t) with |/T§(t)| > |A~2 (t)l =2
|/Tl (t)|. The classical Perron-Frobenius Theorem ensures that A; = Z5(0) is simple and positive and that the
remaining eigenvalues of (A), are strictly smaller in modulus than 4, . Furthermore, P({, f5)) = log 4, and
Ag, < 2 unless &g = 0. In subsequent calculations it will prove more convenient to work with the quantities
A @) =4 (©)/ 2, = 2,...,1. We will need to understand when |23 (t)| is maximised.

Proposition 1 (see [24]).

(i) We have that |25(t)| < 1 for all t € R?*€/2rZ**€. Furthermore, if |25(¢)| = 1 then A3(t) is simple and
I @ <1j=2..L

(i1)) We have the two identities

{2 R O] = 1} = 47,
B @):e?™t) e pr) ={e?/%r =0,1,..,d — 1}.

Proof. Part (i) is part of Wielandt's Theorem [6, p. 57]. Part (ii) is proved in [15].
We shall write t™ for the unique value of t satisfying A5 (t(r)) = e2m™7/4_ For (small) § > 0, we define a

neighbourhood of t@ = 0 € R?*€/2nZ?*¢ by Uy(5) = {t: I t 1< 8} and let U, (8) = Uy(8) +t™ for r =
1,2,...,d — 1. A simple calculation shows that, for t € U,.(6),

2mir
B@) =ea x(t—tD)(2.1)

([15]). In particular, forr = 1,2,...,d —landn > 1,
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a-1

Z (™)™ =o. (2.2)

j=0

If w, is the right eigenvector for (4;), corresponding to the eigenvalue A5 (t) then, for t € U,.(8), we also have
Wy = Wi_¢(ry. Since A{(t(r)) is an isolated simple eigenvalue of (4;),, eigenvalue perturbation theory ensures
that A3 (t) and w; depend analytically on t in U,.(8)[9].

In view of the above discussion, we have the following estimates on A; (). For all sufficiently small § > 0
there exists 0 < 8 < 1 such that

() | (®)] < 6 forallt € USZ5U(8),) = 2, .., 1;
(i) |/1j (t)| <@ forallt ¢ UZEU,(8),j =2,..,L
The following result is standard (cf. [15] for example).

Lemma 1 [24]. Assume that f; satisfies (A1) and (A2). Then the gradient VA3 (0) = 0 and the Hessian matrix
V225(0) is real and strictly negative definite.

From now on, we shall write Dy = —V225(0), so that Dg, is strictly positive definite. In particular, det Dg. > 0

2(2+€)

and we define og, > 0 by 0. = det Dg_. The following result on the limiting behaviour of A1 (t) appears in

several places, e.g. [4], [19]

Proposition 2(see [24]). There exists § > 0 such that, for t € U, (6 a;sx/ﬁ),

)n _ e—(t,Dgst>/2tf§25.

t
lim A3
now <0§s\/5

Furthermore,

t n
z /ﬁ( ) 3 <tD§S /262, <zz ~(eDg ¢ /405
5 og\n

Proof. Recall that VA5 (0) = 0. Since, in a neighbourhood of 0, A3 (t) depends analytically on t, we may apply
Taylor's Theorem to write

/ﬁ( t ):1—( , De, )+0(|It|| 3/n32),

ogVn 20¢n
The first part of the result now follows from the standard formula lim,,_,,, (1 — x/n)" = e™*.

For the second part, notice that, provided § is sufficiently small, for || u [|< § we have

(u' Dfsu') <u' Dfsu).

0 H>
S+ (AR E= 2

-X

Applying the triangle inequality and the inequality (1 — x/n)" <e

‘ t \" —<tD t>/202 —<tD t>/4o§2 —<tD t>/20’2
Z Ai( ) _Z e \"¢s és SZ e "8 S+Z e s és
S O_fs\/ﬁ S s

<2 Z thS /4-05

, we have
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IV. A LOCAL LIMIT THEOREM FOR SUBSHIFTS
We shall obtain a local limit theorem for the function f: X, — Z**¢ with respect to the periodic points of
0: X, = X4 . We shall examine the quantity

n+j

e~ (& 5)0.2+e 2+€/2( /1 .
S(na’®) = Z Z (4/4;,) #{x € Fixpy,: ;"7 (x) = a*}.

#Fix, 4

For a’ > 0, write I(a®) = [—a®, aS]**€. Using the orthogonality relationship

1 e lify =af

L e~ Uta) g UtY) It = Y .

2m)ze J;(n) E {0 otherwise
S

we have that

2+e &<A>n+j
1]
3 , j
SY e 3
(2n)2+€ #Fix, | 1)

Sn,a®) =
X€Fixp 4 j
Making the substitution t = t/og, V/n, we obtain
d-1 n+j ;
S, a%) = LZ J Z o ita®)/ogn (@/25) Z Giler ) oeam
’ 2+e ; . :
(2m) j=0 I(m’fs‘/ﬁ) s #FXny X€FiXpy

We prove the following theorem.
Theorem 2(see [24]). Suppose that fi: X, — Z2*€ satisfies conditions (A1) and (A2). Then
d-1

Z 0.{25+en2+e/2 (l/lfs

#FiX,,

i
)n ] dese  _ as,Dglas)/Zn
(27-[)2+e/2 e :

#{x € Fixn+j:fsn+j(x) =af}— =0,

s j=0
uniformly in a® € Z2*€.

Proof. Using the identity (valid for any positive definite Hermitian matrix D¢, ),
e_(“s'DEslaS>/2n = —1 f Z e—i(t'as)/afs‘/ﬁe_<t‘D§st)/za§s dt
(2m)2+€/2 | oate ’

we have established the bound

—(fsa )O.2+en2+e/2 n+j d —<a5,Dgsla5>/2n

(2 Z Y iy M € Bt 100 = ) - <
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d—1 .
+ .
Z f J-ilta®yog iR y™ Z e loem _ o ~(eoet)2d |
s UO(‘sUfs‘/ﬁ) j=0 #len+1 XEFan+j
+Z J- it} \/‘Z y"t Z ei(t,fsnﬂ(x))/o’gs\/ﬁ
was \Uo(&r; \/_) #Fan+] X€FiXp 4 j

Jo-itaae i, —<t,D§st>/2U§s dt

+Z |
]R2+E\UO 50’5 \/—)

- (As)l(n: as) + (As)z(nv as) + (As)3(nv as)'

where y = 4/ . An easy calculation shows that lim,, o, SUpgsezz+e (A5)3(n, @®) = 0, so it remains to consider
(45)1 and (45),.

Fort € U, (5055\/5), we have that

d-1 . nd-1

+
rS Y s (S
#Fix, 4 O yn

x€Fixp4j s Jj=0

> + 0(6M).

d-1 ¢ j

A —d| < (1 +e)6?
2.0 (g —df=ase
j=0 s S

. . —(t,Dg_t)/202
for some constant € > 0. By Proposition 2 , we know that A3 (t/ ogsx/ﬁ)n converges uniformly to e < &s >/ %s,
as n — oo, Furthermore, we have the estimates

t \" 2
() -y et
N O-ES\/E N

<Y skl
N

and

d-1

st " s _ tD;S >/‘“’E 52
|Z /11(055\/5> ’11(05\/—) d <(1+6)Z

Thus, by the Dominated Convergence Theorem, we obtain

=0

limsup sup A)i(na’) < (1+e) {f
R

noowo gSezlte =

e_<t'Dfst>/ 4"gsdt} 82,

2+€

Finally, we consider (4),. If t € U%Z1 U, (80¢,Vn), then

n+j .
s D B )
n+j

On the other hand, if t € U2} Ur(6 O'fs\/ﬁ), then
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n . i
S Y e

Z -
#Fix
ntj x€Fixp4; s

d—-1 t Tl+j
Z Z e2mir(n+))/d s < _ t(r)) )
j=0 s O—fs\/ﬁ
1+ e Dt
< ( E)Z e (t'0g,¢ )“”252 +0(6M),

€

N

for some constant € > —1 and where t' = t — g Vnt(™, the last estimate following from (2.2), the analyticity
of A7 and the vanishing of its first derivatives. This gives us

limsup sup (Ag),(n, a® {f Z ~{emge /4"€sdt}5
nooo gSeZlte p R2+€

Combining the above estimates we have

<a5,1)§_ s1 as)

—(fsa )0.2+e 245 yn+1 E—

de
: +
limsup sup | Z #Fixns; #{x € Fixpy;: £ J(X) =qa }_

—|
N  aSepite (27‘[)2+_

(Et2e+D (e +2e+ 1) J‘ z ~(eDg ¢ /Mdet 52,
- E(ZTL’)Z+E R2+€

Since this holds for all sufficiently small § > 0, the proof of the theorem is complete.

We state the special case where {; = 0 as a corollary. Here we write D, = D and 0, = 0.

Corollary 2.1 [24]. Suppose that fi: X, — Z2*€ satisfies condition (Al) and [ f,du = 0, where p is the
measure of maximal entropy. Then

d-1
2+ 2+€/2
lim GG_L#{X € Fixyyj: fi (0) = @} — Le
n-oo | £ 4 #Fan+j J (2ﬂ)2+6/2
]=

—(a® D ta%)/2n| — 0,

uniformly in a® € Z2%€
Remark [24]. In particular, we have recovered the main result of [15], namely that #{x € Fixg,: f.%"(x) = 0} ~

(1+¢€) (A)?S"/n“f/ 2 as n — oo, for some constant € > 0. However, the above method does not allow us to
estimate the error term in this approximation. (The O(n_l/ 2) error estimate claimed there is erroneous and
needs to be corrected to O(n'l/ 2+€). Conjecturally, the optimal error estimate is 0(n™1).)

V. FREE GROUPS

We shall deduce Theorem 1 from Theorem 2 and give an explicit expression for the matrix D. Let G be the free
group on € = 0 generators. Define a (2(2 +€) + 1) X (2(2 + €) + 1) matrix 4, indexed by {*,1,2,...,2(2 +
€)}, by Ag(*,x) = 0,A,(*,j) =1 forall j =1,2,...,2(2 + €), Ag(i,*) = 0 for all i = 1,2, ...,2(2 + €), and, for
i,j=12,..,2(2 +e),

A _{1ifj¢i+2+6(m0d2(2+€))
s = 0ifj =i+ 2+ e(mod2(2 + ¢€))
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Then the maximal eigenvalue A of Ag is equal to 2(2+€)— 1. Let By denote the 2(2+€) X 2(2+¢€)
submatrix of A, indexed by {1,2, ...,2(2 + €)}; it is easy to check that B is aperiodic and that U,,», Fix, € Xp_.
If we index the generators of G by {af, oy Qager Qe = 15 o, Ay (gpe) = az_ie}, then it is clear that there is a
natural bijection between cyclically reduced words of length n in G and elements of Fix,,, and between reduced
words of length n and all sequences of the form (xg,xq,...,x,) Wwith xo =* and Ag(y,, Xmeq) =1, m =
1,...,n — 1. In particular, #W, (n) = (u, ATv), where u = (1,0, ...,0) (with the 0 occurring in the * position) and
v =(1,1,..,1), and that #C(n) = trace A}.

If we define a function fg: X, — Z**¢ by f,(i,)) = [af] then it is easy to see that the element of Z2*€

corresponding to the cyclically reduced word associated to x € Fix, is f*(x). In particular, #C(n,a®) =
#{x € Fix,: fJ*(x) = a®} and

U (" (x): x € Fix,} = U ([g°]: ° € Cn)} = Z2*<,

nz1 n21

This last identity implies that the restriction f;: Xp_ — Z**€ satisfies condition (Al).

If u denotes the measure of maximal entropy on Xg_ then it is well-known that the periodic points of o: X —
Xp, are equidistributed with respect to u. More precisely, we have the identity

f Z ]csd/l=11i—r>{>lo#Flixn Z Z fsanX)'

x€Fixy

The symmetry [g~%] = —[g°] then shows that we have [ f,du = 0. A simple calculation shows that Ay, is the

ZZ+E

subgroup of consisting of all even elements, so that d = |ZZ+€ /Af5| =2

The following result now follows immediately from Corollary 2.1. A simple symmetry argument shows that the
covariance matrix D is diagonal, D = diag (62, ...,02), say, and the explicit formula for g2 given by (0.1) is
due to [18].

Proposition 3 [24].

lim sup E
n—-oo “SEZZ'FG 5

Proof of Theorem 1. We shall now discuss the modifications necessary to prove the result for W;(n). For t €
R?*€/2n7%*€, we introduce matrices (Ay);, (By); defined by (A,):(i,j) = As(i,)e s and (By).(i,)) =
B, (i, j)eXtfs(tD) - A simple calculation shows that (A), has the same non-zero spectrum as (B,),. Since B is
aperiodic and f;: Xp, — Z2*€ satisfies (A1) and (A2), the maximal eigenvalue AS(t) continues to enjoy the
properties described in Section 2.

_NySn2 2
lla®l“/20%n =0.

#C(n,a®) #C(n+ 1,a3)> 2
o

#C(n) #en+1) ) (mzrerz®

2+€n2+e/2 (

We note that #W,(n) = 2(2 + €)(A)" ! and that

2(2+€)

#Ws(n,a®) = Z Z ;f e Uta@eltle’lqe = Z LJ- Z ve HEEY (AN (%, j)dt
S (21-[)2+e 1) (27-[)2+e 1) S
95 EWs(n) s j=1 s
1 J‘ Z s
=—— e K@)y, (A)Tv)dt.
(2m)>+e 1(m) <5 st

For t € U,.(9), we have

(u, (A)rv) = (DX (t — t @) (w,w,_,m) + 0((OD)™),
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where w; is the elgenprOJectlon of v for (Ay), associated to the eigenvalue A5 (t). It is easy to see that w, =
22+e)/22+e)—11,..,1).

Applying the analysis of the preceding section to

g2ten2te/2 (#WS(n’ a’) #Wi(n+1, as))

#W;(n) #W;(n+1)

we obtain

—lasi2 /202
(2m)?te 02+en2+e/zz (#Ws(n,as) #Ws(n + 1‘055)) _ 2e7 eI /207n

#W;(n) #W,(n+ 1) (2m)2+e/2
u, (A" v> <u, AL >
< Z J- -i(tas)/oVn < (A)esovm + (A)ejava? _2e-ltiz/z\ gy
- Uo (80 #W,(n) #W;(n+1)
n+1
+ Z f —i(t,a5)/ovn <u’ (AS)t/a\/ﬁnv> <u’ (AS)t/m/_v>
- I(moVR)\Uo(8avn) #Ws(n) #W;(n+1)

2e—itas)/ovng=Itl? /24y

£y f
= R2+€\ Uy (80vn)

Now, for t € Uy(8avn),

! Z ei(t,[95]>/wﬁ+z _r Z Utlg*) /o
#W,(n) #W,(n+1)

s gSeEWs(n) s gSeEWs(n+1)
n
= /15< ) 1+/15< ) u,w +0(6™
Z ovn < ovn < t/m/ﬁ) Gl

and for t € U, (80/n),

z Z Utlg/ovn 4 Z __r Z eltlg*h/ovn
H#W, (n) #W,(n+1)

gSeEWs(n) s gSeEWs(n+1)
n t
-3 () (1 (2 ) ) + 06
4 =" ovn 1 ovn ( t/m/ﬁ) Cl9)

Thus we may repeat the arguments in the proof of Theorem 2 to obtain the estimate

limsup sup
nooo gSez2te

<(1+e { f e‘(t'mV‘“’zdt} 5,
]R2+E

for some constant € = 0. (The only additional feature being that (u, w;) = (u, wy) + O(ll t II).) Since this holds
for all sufficiently small § > 0, Theorem 1 is proved.

#Ws(n, a®) #Ws(n+1,a3)) 2e-lasI2/20%n
O- —

H#W(n) #W,(n+1) (2m)2+el2

2+€n2+e/2 (

VI. STRONGLY MARKOV GROUPS

We shall sketch the generalizations necessary to extend our results to certain groups G satisfying the
following strong Markov property: for any finite symmetricgenerating set S, there exists
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(i) a finite directed graph consisting of vertices V and edges E c V X V;
(i1) a distinguished vertex *€ V, with no edges terminating at *;

(iii) a labeling map p: E — S;

such that

(a) there is a bijection between finite paths in the graph starting at * and passing through the consecutive edges
e, .-, €y, say and elements g° € G given by the correspondence g° = p(e;) -+ p(e,,) (where the empty path
corresponds to the identity element);

(b) the word length |g*| is equal to the path length n.
In particular, this condition is satisfied by all (Gromov) hyperbolic groups [3], [7].

Write |V| = 1 + 1. Let A, denote the incidence matrix of the graph (V,E), i.e., Agisa (I + 1) X (I + 1) matrix,
indexed by V, with entries Ag(i,j) = 1 if (i,j) € E and 0 otherwise. Let By denote the | X [ submatrix of A
obtained by deleting the row and column corresponding to *. We shall assume that B is aperiodic with maximal
eigenvalue 1 > 1..

The abelianization of G takes the form G/[G,G] = Z'*€ @ torsion. We suppose that € = 0 and write [.] : G —
Z*€ for the natural homomorphism. As in the case of free groups, we define a function fsi Xug = Z1*€ by
fs(x) = [p(xo,x1)]. A new feature here is that it is not clear that the group I, generated by {f"(x): x € Fix,} is
not necessarily equal to Z1*€. However, we still have that I} /Ay, is a finite cyclic group and it was shown in
[22] that Z!*€ /Ty, is finite; we set dg = T}, /A | and d; = |Z+€ /Ty, |.

As before, for t € R’ /21729, define matrices (4;);, (Bs), by (45).(i,j) = Ag(i, )eXtHEN) and (BY),(i,)) =
B,(i,j)eXts(tD) and note that again (A,), has the same non-zero spectrum as (B),. There are d = dyd,
values, t(® =0,...,t(@=Y of t for which (A;), has an eigenvalue of maximum modulus /Ti(t(r)) with
|25(¢™)| = A. Furthermore, A5(¢t(™) = e2™/d0}. (Note that each e?™7/0 occurs for d; values of t.)

One can show that fi: Xp — Z1+€ satisfies that [ f,du = 0, where u is the measure of maximal entropy on X Bq
or, equivalently, that (A;); and (Bs), have spectral radius 1 [22].

From the definition it is easy to see that we have the identities

B =) > AN =) (wAT)

jEV s s

and
s 1 —i(t,aS) n
#Ws(n, a ) = W z e ’ (u, (As)t ‘U)dt,
1m &

where u = (1,0, ...,0) (with the 1 occurring in the * position) and v = (1,1, ...,1). Furthermore, for t €
U.(6),r=0,1,..,d — 1, we still have

(u, (A)Pv) = e2™m7/80]s (¢ — M) (u, wy) + 0((OA)™),

where w, is the eigenprojection of v for (4,), associated to the eigenvalue A5 (t) and 0 < 6 < 1. Mimicing the
proof of Theorem 1, we obtain the following result, where, as in Corollary2.1,D = —V?23(0). (It is worthwhile
noting that it is possible to have Wy(n + j, @®) # @ for several values of j € {0,1, ...,dy — 1}.)
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Theorem 3 [24]. Let G be a strongly Markov group such that G/[G, G] = Z'*€ @ torsion with € > 0. Let S be
finite symmetric generating set and suppose that the associated matrix By defined above is aperiodic. Then there
exists a symmetric positive definite real matrix D such that

do s dq-1
lim gltepl+e/2 #Ws(n+j,a®) do

noo L #W,(n+j)  (2m) 2 (u,wy)
Jj=0 r=0

S

(rST—1,S
(ul Wt(dor))e (IZ 'D @ >/2n = Ol

uniformly in a® € Z*€.

Remark [24]. A similar analysis can be made in the case where B is irreducible, i.e., when, for each pair (i, j),
there exists n(i,j) > 0 such that B, @0 (i,j) > 0. In this case, the maximum modulus eigenvalues of B, are the

q-th roots of the maximum modulus eigenvalues of a certain aperiodic matrix, where ¢ = hcf {n(i,i):i € V \ {*
}} is called the period of Bi.

We obtain the following more complicated formulae along the subsequence nq,n > 1.

If d,, does not divide g then

do ) q-1 di—-1 (m)
lim o1+ (ng)i+er? #W;(nqg + jq,a®) _ do Xm=0 Lr=o <u. Wt(dor)> o-{asD1a%) 2na| _ o
noe & = #Ws(nq + jq) (2m)1+e/2 Zﬁn_:lo <u' Wém)>

uniformly in a® € Z1*€.
If d,, divides g then

a-1 sd-1 < m)

& ; do Yo L0 (uw >
lim olte(ng)l+e/? #Ws(nq + jq,a*) _ 0 Zm=0 Zr=o (b M) e—(aD71as)/2nq| — ¢
[ = #Ws(nq + jq) (2m)1+e/2 Z;In—zlo (u, Wém)>

uniformly in a® € Z1*€,

Here, the terms W( ) are certain eigenvectors, associated to eigenvalues e2™m/a 1 (¢(™) ,m=0,..,qg—1, of
(D] g 1 q
t)

B;.)

A particular group presentation satisfying our hypotheses is the fundamental group G of a compact orientable
surface of genus g* > 2 given the standard one-relator presentation

gS

G =af, .., a% b5, ...,bgs:ﬂ asbsarshys = 1). (5.1)

i=1

(Note that G/[G, G] = Z%$” ) This is an example of a hyperbolic group and thus is strongly Markov; however, in
this case the result follows from earlier explicit constructions due to [2] and [21]. In particular, By is aperiodic.
A nice feature of this construction is that closed loops in the directed graph (V,E) correspond precisely to
conjugacy classes in G, from which one can deduce that Iy, = Z2%°. One can also see that Af is the set ofeven

elements of Z29°, so that d = 2. The following result now follows immediately from Theorem 3.

Theorem 4 [24]. Let G be the fundamental group of a compact surface of genus g° = 2 equipped with the
presentation (5.1). Then there exists a symmetric positive definite real matrix D such that

HW,(n,a®) #W,(n+1,a%)
#W,(n) #W,(n+1)

lim

n—-oo

) 2 2)gs el@pTle%)2n| = g,
Vs

S
0.1+eng (

N
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uniformly in a® € 729"
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