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Abstract 

Let G be a finite group and let 𝛷(𝐺) denote its Frattini subgroup. In this paper, we determine the Frattini 

subgroups of several important families of finite non-abelian groups by explicit structural methods. First, for the 

dihedral group 𝐷𝑛of order 2𝑛, we prove that 𝛷(𝐷𝑛) is trivial when 𝑛is odd, while if 𝑛 = 2𝑘with 𝑘 ≥ 2, then 

𝛷(𝐷𝑛) =  〈𝑟2〉, where 𝑟is a rotation of order 𝑛. Consequently, the minimal number of generators of 𝐷𝑛is two in 

the 2 − 𝑝𝑜𝑤𝑒𝑟 case. Next, for generalized dihedral groups 𝐷𝑖ℎ(𝐴) = 𝐴 ⋊ 𝐶2associated with a finite abelian 

group A, we show that 𝛷(𝐷𝑖ℎ(𝐴)) = {1} whenever 𝐴is not a 2 − 𝑔𝑟𝑜𝑢𝑝, while 𝛷(𝐷𝑖ℎ(𝐴)) = 𝐴2when 𝐴is a 

2 − 𝑔𝑟𝑜𝑢𝑝. This establishes a precise dependence of the Frattini subgroup on the 2 − 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 of the abelian 

base group. Finally, for 𝑠𝑒𝑚𝑖𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 (𝑞𝑢𝑎𝑠𝑖𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙) groups 𝑆𝐷2𝑛of order 2𝑛with 𝑛 ≥ 4, we prove that the 

Frattini subgroup is cyclic and given explicitly by 𝛷(𝑆𝐷2𝑛) = 〈𝑟2〉. 

As applications, we describe the structure of the quotients 𝐺/𝛷(𝐺), determine minimal generating sets, and 

illustrate how nilpotency and maximal subgroup structure govern the triviality or non-triviality of the Frattini 

subgroup in dihedral-type groups. 

Keywords: Frattini subgroup; dihedral groups; generalized dihedral groups; semidihedral groups; finite 

group theory; computational group theory 
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I. Introduction 

The Frattini subgroup 𝛷(𝐺) of a group 𝐺occupies a central position in finite group theory, particularly 

in the study of generating sets, maximal subgroups, and structural invariants. Originally introduced by Frattini in 

the late nineteenth century, the Frattini subgroup is defined as the intersection of all maximal subgroups of 𝐺, or 

equivalently as the set of nongenerators of 𝐺(Frattini 1885; Gaschtz 1954). This dual characterization 

establishes 𝛷(𝐺) as a fundamental bridge between subgroup structure and generation theory. 

The systematic study of Frattini subgroups began with finite p-groups, where their structure admits a remarkably 

elegant description. Classical results, originating in the foundational work of Burnside (1912) and Hall (1959), 

show that for a finite 𝑝 − 𝑔𝑟𝑜𝑢𝑝 𝐺, 
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𝛷(𝐺) = 𝐺𝑝|𝐺, 𝐺|, 

and consequently, the quotient 𝐺/𝛷(𝐺) is an elementary abelian 𝑝 − 𝑔𝑟𝑜𝑢𝑝. This identity highlights the role of 

𝛷(𝐺) as the principal obstruction to generation and establishes its importance in the classification and analysis 

of finite p-groups (Hobby 1960; Berkovich 1999). Subsequent refinements by Leedham-Green and McKay 

(2002) have extended these ideas to broader families of nilpotent and 𝑝𝑟𝑜 − 𝑝 𝑔𝑟𝑜𝑢𝑝𝑠. 

In contrast, the behaviour of the Frattini subgroup in finite groups that are not 𝑝 − 𝑔𝑟𝑜𝑢𝑝𝑠 is 

considerably more subtle. In many non-nilpotent groups, the Frattini subgroup is trivial, while in others it 

reflects intricate interactions between maximal subgroups, commutator structure, and nilpotent components. 

Recent studies have emphasized the close connection between 𝛷(𝐺) and the Fitting subgroup, as well as the 

influence of Sylow subgroups and centralizers in determining the Frattini structure of finite solvable groups 

(Aivazidis and Ballester-Bolinches 2016; Burness, Garonzi and Lucchini 2020; Gonzlez-Snchez and 

JaikinZapirain 2021). These advances place Frattini structure within a broader architecture of modern finite 

group theory. 

Among finite non-abelian groups, dihedral groups form one of the most classical and accessible 

families. Defined as symmetry groups of regular polygons, dihedral groups possess an explicitly describable 

subgroup lattice, well classified maximal subgroups, and transparent Sylow decompositions. These features 

make them a natural testing ground for investigating how maximal subgroups determine the Frattini subgroup 

and how nilpotency governs generation properties (Scott 1987; Cox 2004). 

A defining structural feature of dihedral groups is the sharp contrast between cases in which the 

rotation subgroup has odd order and those in which it has even order. When the rotation subgroup has odd order, 

the group fails to be nilpotent, and the existence of maximal subgroups with trivial intersection forces the 

Frattini subgroup to be trivial. Conversely, when the group is a 2 − 𝑔𝑟𝑜𝑢𝑝, nilpotency ensures that every 

maximal subgroup contains the Frattini subgroup, allowing 𝛷(𝐺) to be expressed explicitly in terms of squares 

and commutators. This dichotomy reflects a broader phenomenon in finite group theory, namely the decisive 

role of p-structure in controlling generation and maximal subgroup behaviour (Glauberman 1985; Isaacs 2008). 

The present study adopts a structural and process-driven approach to the determination of Frattini 

subgroups. Since 𝛷(𝐺) is defined as the intersection of all maximal subgroups, the analysis begins with a 

complete classification of maximal subgroups in each group under consideration. For dihedral groups, these 

arise naturally from 𝑖𝑛𝑑𝑒𝑥 − 𝑝 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑠 of the rotation subgroup together with subgroups generated by 

reflections (Herstein 1996; Dixon and Mortimer 1996). This explicit description allows intersections to be 

computed directly, yielding transparent criteria for triviality or non-triviality of 𝛷(𝐺). 

A second fundamental methodological component is the distinction between 𝑛𝑖𝑙𝑝𝑜𝑡𝑒𝑛𝑡 and 𝑛𝑜𝑛 −

𝑛𝑖𝑙𝑝𝑜𝑡𝑒𝑛𝑡 cases. In 𝑛𝑜𝑛 − 𝑛𝑖𝑙𝑝𝑜𝑡𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝𝑠, the presence of multiple non-conjugate maximal subgroups 

often leads to a trivial Frattini subgroup. In contrast, for finite 𝑝 − 𝑔𝑟𝑜𝑢𝑝𝑠, 𝑛𝑖𝑙𝑝𝑜𝑡𝑒𝑛𝑐𝑦 implies that the 

𝐹𝑟𝑎𝑡𝑡𝑖𝑛𝑖 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 coincides with the subgroup generated by 𝑝𝑡ℎ powers and commutators. For 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 2 −

𝑔𝑟𝑜𝑢𝑝𝑠 and related families, this reduces the problem to explicit computations of squares and commutators, 

which are carried out directly from group presentations (Robinson 1996; Gorenstein 2007). 

The role of the center and centralizers provides an additional structural layer to the analysis. In several 

cases, particularly for even-order groups, the Frattini subgroup is shown to be central. This phenomenon follows 

from the characteristic nature of 𝛷(𝐺) together with the central role that commutator-generated subgroups play 

in controlling the internal structure of finite groups (Aschbacher 2000; Kurzweil and Stellmacher 2004). 

These methods extend naturally beyond classical dihedral groups. For generalized dihedral groups 

constructed from finite abelian groups, the structure of the Frattini subgroup is shown to depend critically on 

whether the abelian component is a 2 − 𝑔𝑟𝑜𝑢𝑝. When it is not, 𝑛𝑜𝑛𝑛𝑖𝑙𝑝𝑜𝑡𝑒𝑛𝑐𝑦 forces the Frattini subgroup to 

be trivial; when it is, the Frattini subgroup is determined by the subgroup of squares of the abelian component. 
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This bifurcation mirrors the classical dihedral case and demonstrates the robustness of the structural approach 

(Hall and Senior 1964; Leedham-Green and McKay 2002). 

A similar process applies to 𝑠𝑒𝑚𝑖𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 (𝑞𝑢𝑎𝑠𝑖𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙) groups, which arise naturally among 

finite 2 − 𝑔𝑟𝑜𝑢𝑝𝑠. Although their defining relations differ from those of 𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 𝑔𝑟𝑜𝑢𝑝𝑠, direct computation 

of squares and commutators from the presentation yields an explicit cyclic description of the Frattini subgroup. 

This illustrates how presentation-level relations translate into global generation properties (Alperin and Bell 

1995; Blackburn, Neumann and Vaughan-Lee 2007). 

In parallel with these classical and structural investigations, recent work has expanded Frattini theory 

into broader contexts, including Frattini-injectivity in pro-p and Galois groups (Snopce and Tanushevski 2020), 

Frattini-closed and almost Frattini-closed subgroups in solvable groups (De Mari 2023), and algorithmic 

approaches to computing Frattini subgroups in polycyclic groups (Holt 2022). These developments underscore 

the continued relevance of Frattini theory across diverse areas of modern group theory and computational 

algebra (Baumslag, Cannonito and Miller III 2005; Eick and Leedham-Green 2007). 

In this paper, we investigate the Frattini subgroup in classical dihedral groups, generalized dihedral 

groups, and 𝑠𝑒𝑚𝑖𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 2 − 𝑔𝑟𝑜𝑢𝑝𝑠. By combining explicit subgroup classification with structural and 

nilpotency-based methods, we obtain exact descriptions and precise formulas for the order of 𝛷(𝐺) in each case. 

The results unify classical observations with recent developments and provide a transparent framework for 

further investigations of Frattini subgroups in other families of finite solvable groups. 

 

II. Preliminaries 

We recall the basic definitions and results used throughout this paper. 

For completeness and clarity, we collect in this section all definitions used throughout the paper. All groups 

considered are assumed to be finite unless otherwise stated. 

Definition 2.1 (Group). A group is a pair (G,·) consisting of a nonempty set G together with a binary operation 

· satisfying: 

1. (𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦) (𝑎𝑏)𝑐 =  𝑎(𝑏𝑐) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏, 𝑐 ∈  𝐺; 

2. (𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦) 𝑇ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑒 ∈  𝐺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎𝑒 =  𝑒𝑎 =  𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐺; 

3. (𝐼𝑛𝑣𝑒𝑟𝑠𝑒) 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎 ∈  𝐺 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎−1 ∈  𝐺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎𝑎−1 = 𝑎𝑎−1 = 𝑒. 

Definition 2.2 (Subgroup). 𝐴 𝑠𝑢𝑏𝑠𝑒𝑡 𝐻 ⊆ 𝐺 is a subgroup of G if it is itself a group under the operation of G. 

We write 𝐻 ≤ 𝐺. 

Definition 2.3 (Normal Subgroup). A subgroup 𝑁 ≤ 𝐺 is called normal if 𝑔𝑁𝑔−1 = 𝑁 for all 𝑔 ∈ 𝐺. This is 

denoted by 𝑁 ⊲ 𝐺. 

Definition 2.4 (Maximal Subgroup). A proper subgroup 𝑀 < 𝐺 is called maximal if there is no subgroup 𝐻 

such that 

𝑀 < 𝐻 < 𝐺. 

Definition 2.5 (Frattini Subgroup). Let 𝐺 be a group. The Frattini subgroup of 𝐺, denoted by 𝛷(𝐺), is defined as 

the intersection of all maximal subgroups of 𝐺. If 𝐺 has no maximal subgroups, then 𝛷(𝐺) = 𝐺. 

Definition 2.6 (non-generator). An element 𝑥 ∈ 𝐺 is called a non-generator if for every subset 𝑆 ⊆ 𝐺, 

〈𝑆 ∪ {𝑥}〉 = 𝐺 

The set of all non-generators of 𝐺 coincides with 𝛷(𝐺). 

Definition 2.7 (Generating Set). A subset 𝑆 ⊆ 𝐺 is called a generating set of 𝐺 if  
〈𝑆〉 = 𝐺. A generating set is minimal if no proper subset of it generates 𝐺. 

Definition 2.8 (Minimal Number of Generators). The minimal number of generators of a finite group 𝐺, denoted 

𝑑(𝐺), is the cardinality of a smallest generating set of 𝐺. 

Definition 2.9 (Center). The center of a group 𝐺 is 
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𝑍(𝐺) = {𝑥 ∈ 𝐺|𝑥𝑔 = 𝑔𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝐺}. 

Definition 2.10 (Commutator and Commutator Subgroup). For 𝑥, 𝑦 ∈ 𝐺, the commutator of 𝑥 and 𝑦 is 

[𝑥, 𝑦]  =  𝑥−1𝑦−1𝑥𝑦. 

The commutator subgroup of 𝐺 is 

[𝐺, 𝐺]  = 〈 [𝑥, 𝑦] | 𝑥, 𝑦 ∈ 𝐺〉. 

Definition 2.11 (𝑝𝑡ℎ Power Subgroup). For a 𝑝𝑟𝑖𝑚𝑒 𝑝, the 𝑝𝑡ℎ Power Subgroup of 𝐺 is 

𝐺𝑝 = 〈𝑔𝑝|𝑔 ∈ 𝐺〉 

Definition 2.12 (p-Group). A finite group G is called a 𝑝 − 𝑔𝑟𝑜𝑢𝑝 if|𝐺| = 𝑝𝑛for some prime 𝑝 and integer 𝑛 ≥

1. 

Definition 2.13 (Sylow p-Subgroup). Let 𝑝 be a prime dividing |𝐺|. A Sylow 𝑝 − 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 of 𝐺 is a subgroup 

of order 𝑝𝑛 where 𝑝𝑛is the highest power of 𝑝 dividing |𝐺|. 

Definition 2.14 (Nilpotent Group). A finite group 𝐺 is called nilpotent if it is the direct product of its Sylow 

subgroups. 

Definition 2.15 (Elementary Abelian Group). A group is called elementary abelian if it is abelian and every non-

identity element has prime order. 

Definition 2.16 (Direct Product). Let 𝐻 and 𝐾 be groups. Their direct product is 

𝐻 × 𝐾 = {(ℎ, 𝑘)|ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}, 

with component wise multiplication. 

Definition 2.17 (Semidirect Product). Let 𝑁 and 𝐻 be groups and let 𝜑: 𝐻 → 𝐴𝑢𝑡(𝑁) be a homomorphism. The 

semidirect product N o H is the group with underlying set 𝑁 × 𝐻 and multiplication 

(𝑛1, ℎ1)(𝑛2, ℎ2) = (𝑛1𝜑(ℎ1)(𝑛2), ℎ1ℎ2) 

Definition 2.18 (Dihedral Group). For a positive integer 𝑛, the dihedral group of order 2𝑛 is 

𝐷𝑛 = 〈𝑟, 𝑠|𝑟𝑛 = 1, 𝑠2 = 1, 𝑠𝑟𝑠 = 𝑟−1〉 

 

Definition 2.19 (Generalized Dihedral Group). Let 𝐴 be a finite abelian group. The generalized dihedral group 

associated with 𝐴 is 

𝐷𝑖ℎ(𝐴) = 𝐴 ⋊ 𝐶2, 

where the nontrivial element of 𝐶2acts on 𝐴 by inversion. 

Definition 2.20 (Automorphism Group). The automorphism group of a group G, denoted 𝐴𝑢𝑡(𝐺), is the group 

of all isomorphisms from 𝐺 to itself under composition. 

Definition 2.21 (Characteristic Subgroup). 𝐴 subgroup 𝐻 ≤ 𝐺 is called characteristic if 𝜑(𝐻) = 𝐻 for all 𝜑 ∈

𝐴𝑢𝑡(𝐺). 

Definition 2.22 (Fitting Subgroup). The Fitting subgroup 𝐹(𝐺) of a finite group 𝐺 is the largest normal 

nilpotent subgroup of 𝐺. 

III. Main Results 

Lemma 2.1. For any finite group 𝐺, the Frattini subgroup 𝛷(𝐺) is characteristic in 𝐺. 

Proof. Every automorphism of 𝐺 permutes the maximal subgroups of 𝐺. Hence it preserves their intersection, 

and 𝛷(𝐺) is characteristic.  

 

Lemma 2.2. If 𝐺 is a finite nilpotent group with Sylow subgroups 𝐺𝑝, then 

Φ(𝐺) = ∏ Φ(𝐺𝑝)

𝑃||𝐺|

 

Proof. Since 𝐺 = ∏ 𝐺𝑝𝑃 , each maximal subgroup of 𝐺 has the form 

𝑀𝑝 × ∏ 𝐺𝑞

𝑞≠𝑃

 

where 𝑀𝑝is a maximal subgroup of 𝐺𝑝. Intersecting all such maximal subgroups yields the stated product.  
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Lemma 2.3. If G is a finite p-group, then 

𝛷(𝐺)  =  𝐺𝑝[𝐺, 𝐺] 

Proof. Every maximal subgroup of a finite 𝑝 − 𝑔𝑟𝑜𝑢𝑝 has index 𝑝 and is normal. The quotient 𝐺/𝐺𝑝[𝐺, 𝐺] is 

elementary abelian, hence has trivial Frattini subgroup. This forces  
𝛷(𝐺)  =  𝐺𝑝[𝐺, 𝐺]     

Theorem 2.1. Let 𝐷𝑛be the dihedral group of order 2𝑛. 

1. If 𝑛 is odd, then 𝛷(𝐷𝑛) = {1}. 

2. If 𝑛 = 2𝑘with 𝑘 ≥ 2, then 𝛷(𝐷𝑛) = 〈𝑟2〉. 

Proof. If 𝑛 is odd, 𝐷𝑛is not nilpotent and its maximal subgroups intersect trivially, yielding 𝛷(𝐷𝑛) = {1}.If 𝑛 =

2𝑘, then 𝐷𝑛is a 2 − 𝑔𝑟𝑜𝑢𝑝. By the previous lemma, 

𝛷(𝐷𝑛)  =  𝐷𝑛
2[𝐷𝑛 , 𝐷𝑛] 

 

A direct computation shows that both𝐷𝑛
2and [𝐷𝑛 , 𝐷𝑛] are generated by 𝑟2, giving 𝛷(𝐷𝑛) = 〈𝑟2〉.  

Theorem 2.2. Let 𝐺 = 𝐷𝑖ℎ(𝐴), where 𝐴 is a finite abelian group. 

1. If 𝐴 is not a 2 − 𝑔𝑟𝑜𝑢𝑝, then 𝛷(𝐺) = {1}. 

2. If A is a 2-group, then 𝛷(𝐺)=𝐴2. 

Proof. If 𝐴 is not a 2 − 𝑔𝑟𝑜𝑢𝑝, then 𝐺 is not nilpotent and maximal subgroups intersect trivially. If 𝐴 is a 2 −

𝑔𝑟𝑜𝑢𝑝, then 𝐺 is a 2 − 𝑔𝑟𝑜𝑢𝑝 and 

𝛷(𝐺)  =  𝐺2[𝐺, 𝐺] = 𝐴2 

since A is abelian and all commutators lie in 𝐴2.  

Theorem 2.3. Let 𝑆𝐷2𝑛 be the 𝑠𝑒𝑚𝑖𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 group of order 2𝑛with 𝑛 ≥ 4. Then 

𝛷(𝑆𝐷2𝑛) = 〈𝑥2〉 

Proof. The group 𝑆𝐷2𝑛 is a 2 − 𝑔𝑟𝑜𝑢𝑝. Using 𝛷(𝐺)  =  𝐺2[𝐺, 𝐺] and the defining relations, one verifies that 

both squares and commutators generate 〈𝑥2〉.    .  

Frattini Subgroup and Minimal Generating Sets 

Theorem 2.4. Let 𝐺 be a finite group. Then the minimal number of generators of 𝐺 is equal to the dimension of 

the vector space 𝐺/𝛷(𝐺) over 𝐹𝑝 for each prime 𝑝 dividing |𝐺|. 

Proof. By definition, 𝛷(𝐺) consists of all non-generators of 𝐺. Hence an element of 𝐺/𝛷(𝐺) is nontrivial if and 

only if its representative participates in some minimal generating set of 𝐺. 

If 𝐺 is a p-group, then 𝐺/𝛷(𝐺) is an elementary abelian 𝑝 − 𝑔𝑟𝑜𝑢𝑝, so it has the structure of a vector space 

over 𝐹𝑝. A basis of this vector space lifts to a minimal generating set of 𝐺, and conversely any minimal 

generating set projects to a basis of 𝐺/𝛷(𝐺). Thus the minimal number of generators of 𝐺 equals 𝑑𝑖𝑚𝐹𝑝(𝐺/

𝛷(𝐺)). 

For a general finite group, the same argument applies Sylow component wise, and the result follows.  

Frattini Subgroup and Maximal Subgroups 

Theorem 2.5. Let G be a finite group. If every maximal subgroup of G is normal, then G is nilpotent and 

Φ(𝐺) = ∏ Φ(𝐺𝑝)

𝑃||𝐺|

 

where Gpis the Sylow p-subgroup of G. 

Proof. If every maximal subgroup of 𝐺is normal, then 𝐺is nilpotent by a classical result of finite group theory. 

Hence 𝐺decomposes as a direct product of its Sylow subgroups. The formula for 𝛷(𝐺) then follows from the 

lemma on Frattini subgroups of nilpotent groups, since maximal subgroups arise by replacing exactly one Sylow 

subgroup by a maximal subgroup. 
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Triviality Criteria for the Frattini Subgroup 

Theorem 2.6. Let G be a finite group. Then 𝛷(𝐺) = {1} if and only if 𝐺 is generated by its maximal subgroups. 

Proof. Suppose 𝛷(𝐺) = {1}. Then the intersection of all maximal subgroups is trivial, so for any nontrivial 

element 𝑔 ∈ 𝐺 there exists a maximal subgroup not containing g. Hence the maximal subgroups together 

generate 𝐺. 

Conversely, if G is generated by its maximal subgroups, then no nontrivial element can lie in the intersection of 

all maximal subgroups, forcing 𝛷(𝐺) = {1}.  

Corollary 2.1. If 𝐺 has a faithful primitive permutation representation, then 𝛷(𝐺) = {1}. 

Proof. A faithful primitive permutation representation implies the existence of a core-free maximal subgroup. 

The intersection of all maximal subgroups is therefore trivial, and the result follows.  

Frattini Subgroup and Direct Products 

Theorem 2.7. Let 𝐺 = 𝐻 × 𝐾 be a direct product of finite groups. Then 

𝛷(𝐺) = 𝛷(𝐻) × 𝛷(𝐾). 

Proof. Maximal subgroups of G are precisely the subgroups of the form 𝑀 × 𝐾 or 𝐻 × 𝑁, where 𝑀 and 𝑁 are 

maximal subgroups of 𝐻 and 𝐾, respectively. Taking intersections over all such maximal subgroups yields 

𝛷(𝐺) = (⋂ 𝑀) × (⋂ 𝑁) =  𝛷(𝐻) × 𝛷(𝐾) 

 

Applications to Dihedral-Type Groups 

Theorem 2.8. Let 𝐷𝑛be a dihedral group. 

1. If 𝑛 is odd, then 𝐷𝑛is generated by any reflection together with a rotation. 

2. If 𝑛 = 2𝑘, then every minimal generating set of 𝐷𝑛has exactly two elements. 

Proof. If 𝑛 is 𝑜𝑑𝑑, then 𝛷(𝐷𝑛) = {1}, so 𝐷𝑛/𝛷(𝐷𝑛) ≅ 𝐷𝑛and any pair consisting of a reflection and a rotation 

generates the group. If 𝑛 = 2𝑘, then 𝛷(𝐷𝑛)=〈𝑟2〉 and 

𝐷𝑛/𝛷(𝐷𝑛) ≅ 𝐶2 × 𝐶2, 

which has dimension 2 as a vector space over 𝐹2. Hence every minimal generating set of 𝐷𝑛has exactly two 

elements.  

Frattini Subgroup and Automorphisms 

Theorem 2.9. Let 𝐺 be a finite group. Then every automorphism of 𝐺 induces an automorphism of 𝐺/𝛷(𝐺). 

Proof. Since 𝛷(𝐺) is characteristic in 𝐺, it is invariant under all automorphisms. Hence any automorphism of 𝐺 

descends to a well-defined automorphism of the quotient 𝐺/𝛷(𝐺).  

Corollary 2.2. If 𝐺/𝛷(𝐺) is elementary abelian, then 𝐴𝑢𝑡(𝐺) embeds into 𝐺𝐿(𝐺/𝛷(𝐺)). 

Proof. By the previous theorem, each automorphism of 𝐺 induces a linear transformation of the vector space 

𝐺/𝛷(𝐺). Distinct automorphisms induce distinct transformations, giving the required embedding.  

Corollary 2.3. For every group considered in this paper, the quotient 𝐺/𝛷(𝐺) is elementary abelian. 

Proof. If 𝛷(𝐺) is trivial the result is immediate. Otherwise, 𝐺 is a 2 − 𝑔𝑟𝑜𝑢𝑝 and the conclusion follows from 

the structure of 𝛷(𝐺).  

Corollary 2.4. A dihedral or generalized dihedral group has trivial Frattini subgroup if and only if it is not 

nilpotent. 

Proof. Nilpotent groups have nontrivial Frattini subgroups, while non-nilpotent groups admit maximal 

subgroups with trivial intersection.  
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Conclusion and Open Problems 

IV. Conclusion 

This paper provides explicit descriptions of the Frattini subgroup for several families of finite non-

abelian groups, namely dihedral groups, generalized dihedral groups, and 𝑠𝑒𝑚𝑖𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 2 − 𝑔𝑟𝑜𝑢𝑝𝑠. The 

results are obtained through a combination of maximal subgroup classification and structural arguments based 

on nilpotency, commutators, and power subgroups. 

For the dihedral group𝐷𝑛 ,of order 2𝑛, we showed that 𝛷(𝐷𝑛) is trivial when n is odd, while for 𝑛 =

2𝑘with 𝑘 ≥ 2 it is generated by the square of a rotation. This leads directly to a determination of minimal 

generating sets and shows that dihedral 2-groups require exactly two generators. 

For generalized dihedral groups 𝐷𝑖ℎ(𝐴), the Frattini subgroup is shown to be trivial when the abelian 

base group A is not a 2-group, and equal to A2 when A is a 2-group. A similar explicit description is obtained for 

𝑠𝑒𝑚𝑖𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 groups 𝑆𝐷2𝑛, where 𝛷(𝑆𝐷2𝑛) = 〈𝑥2〉. In all cases considered, the quotient 𝐺/𝛷(𝐺) is 

elementary abelian, providing a clear interpretation of generation and automorphism behaviour. 

Open Problems 

The results obtained here suggest several directions for further research. 

1. Determine the Frattini subgroups of other important families of 2 − 𝑔𝑟𝑜𝑢𝑝𝑠, such as generalized 

quaternion and modular 2 − 𝑔𝑟𝑜𝑢𝑝𝑠. 

2. Extend the analysis to more general semidirect products and metacyclic groups, and identify conditions 

under which the Frattini subgroup is trivial. 

3. Investigate the relationship between the Frattini subgroup and the Fitting subgroup in broader classes 

of finite solvable groups. 

4. Develop effective computational methods for determining Frattini subgroups of finitely presented 

solvable groups. 

These problems indicate that Frattini theory remains a useful tool for understanding generation and subgroup 

structure in finite groups. 
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