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Abstract

Following in the same way the systematic methodology and smooth theory of the pioneers authors in their
survey paper [31] showing all exceptional sequences with a non singular weight, that they form a complete
orthogonal set in their natural Hilbert space setting. Among the exceptional sequence of sets already known are two
types of exceptional Laguerre polynomials, called the Type I and Type II exceptional Laguerre polynomials, each
delete and omitting m polynomials. They clearly discuss these polynomials and construct the self-adjoint operators
generated by their corresponding second-order differential expressions in the complete Hilbert spaces. They present
a novel derivation of the Type III family of exceptional Laguerre polynomials along with a detailed wide of its
properties. They include several basic representations of these polynomials. orthogonality, norms, completeness,
the location of their local extrema and roots, root asymptotics, as well as a complete spectral study of the second-
order Type TIT exceptional Laguerre differential expression. An application and an abbreviation for competents are
verified and valid.
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I. Introduction
An exceptional orthogonal polynomual system 1s a sequence {p,}pem,a with the following characteristic

properties:
(a) deg(p,) = nforn € Ng\A. where A is a finite subset of N:
(b) there exists an interval ] = (a, b) and a Lebesgue measurable weight w > 0 on I such that

| Prmw = kb € NaAD)
I
for some k,, > 0: here §,, ,,, denotes the Kronecker delta symbol:

(c) there exists a second-order differential expression
P[y](xs) = az (xs)y”(xs) + ﬂl(xs)yr(xs) + au(xs)y(xs)
and, for eachn € Ny\A, there exists a A3 € C such that y = p,,(x,) 1s a solution of
v](xs) = A5, v (x,) (x, €1);
(d) forn € A. there does not exist a polynomial p of degree n such thaty = p(x,) satisfies £[y] = A5y for
any choice of 4° € C:
(e) all of the moments

f xIw(xs)dx, (n € Nyp)
i
of w exist and are finite.

We call a sequence {p,lnen,\a satisfying conditions (a).(e) above an exceptional polynomial sequence of
codimension |A|. Where |4| is the cardinality of A for A = {0} see [12]. where the authors classified exceptional
orthogonal polynomials with one missing degree. and introduced the X,-Laguerre and the X,-Jacobi polynomials.
The fact that these sequences omit a constant polynomial distinguishes their characterization from the Bochner
classification [2] characterizing the Jacobi. Laguerre, and Hermite polynomials: of course. the Bochner
classification corresponds to A = ¢. See [12] by finding other sequences of exceptional polynomials {pn}nENg\ A
satisfying each of the conditions in (a).(e).
We show (see [31]) the three families of exceptional Laguerre polynomials. each spanning a flag of codimension
m. So. we deal with two such exceptional Laguerre sequences associated with

A=1(01,..,m.1} (1.1)
and another where

A=1012__mb 121
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The two exceptional Laguerre sequences are known as the Type I and Type II exceptional Laguerre polynomials
with (1.1). obtained by [25.24]: for properties see [14.15.18]. We develop (see [31]) the spectral theory of the two
second-order exceptional Laguerre differential equations having the Type I and Type II sequences as
eigenfunctions. We name the sequences of polynomials associated with (1.2). type III exceptional Lagueire
polynomials. see [10].
Recently. the exceptional orthogonal polynomials is one of the most interesting. and intensive studies see
[13.15.11.17.16.20.21.25.24,26.27]. [22]. [7.9]. [29]. [19]. The lowest (in = 1) such examples. the exceptional X, -
Laguerre and X;-Jacobi polynomials. are equivalent to those introduced by [12]. Subsequently. (see [26.27]) who
first related these orthogonal polynomials to the Darboux transformation and classical orthogonal polynomials. [25]
first introduced higher order codimension exceptional orthogonal polynomials for arbitrary positive integers m.
Now, there are several implications of generalizing the Bochner classification theorem. The new exceptional
orthogonal polynomials see [23] of constructing self-adjoint operators from Lagrangian symmetric secondorder
differential expressions. The exceptional orthogonal polynomial sequences found to date are complete in Hilbert
space setting. Then the three exceptional Laguerre sequences that we show (see [31]) are complete since each of
them are missing m polynomials. Their completeness suggests that interesting Miintz-type theorems (see. for
example. [3] and [5. Theorem 7.6]) in weighted L?-spaces.
Hence in the following. we review some essential facts shown [31] about the classical Laguerre expression and its
solutions, give a rational factorizations and the Darboux transformation as it relates to the Laguerre case, the main
properties of the Type I exceptional Laguerre polynomials and then develop the spectral theory of their associated
second-order differential expression. construct a self-adjoint operator, generated from the second-order Type I
exceptional Laguerre differential expression. which has the Type I exceptional Laguerre polynomials as
eigenfunctions. discuss another interesting self-adjoint operator. generated by the Type I exceptional Laguerre
differential expression. which has a complete set of eigenfunctions involving the Type III exceptional Laguerre
polynomials, treat Type IT exceptional Taguerre polynomials in a similar fashion and infroduce the Type IIT
exceptional Laguerre polynomials and develop many of their properties. They also compute the norms of these
polynomials in Hilbert space H and show that the sequence of Type III exceptional Laguerre polynomials, despite
missing polynomials p of degrees 1 < deg(p) < m. forms a complete orthogonal set of polynomials in H,
determine the location of the roots of these polynomials. and show that the Type III exceptional Laguerre
polynomial of degree (in + 1 + €) has (1 + €) positive roots and m negative roots and we give properties of these
roots with the roots of the two classical Laguerre polynomials L2+ (x,) and L;(HE)(f x;). They also discuss the
asymptotic behavior of the roots of these Type III exceptional Laguerre polynomials, and develop spectral
properties of the second-order Type TIT exceptional Laguerre differential expression £2M7¢[ Jand. in particular,
determine the self-adjoint operator in H. generated by £11%7¢[ ], which has the Type III exceptional Laguerre
polynomials as eigenfunctions. Lastly. in the Appendix. list some examples of Type III exceptional Laguerre
polynomials (see [31]).
All exceptional differential expressions considered are related to the classical Laguerre differential expression by a
1-step Darboux transformation. So. the class of exceptional Laguerre polynomials was generalized to include
families that are related to the classical Laguerre polynomials by a multi-step Darboux transformation [6]. Indeed.
it can be shown that all three families considered here are particular cases of a general scheme introduced. For the
type III class the equivalence takes the form of some interesting identities that involve Wronskian-like determinants
of Laguerre polynomials. Thus. Theorems 5.3 and 5.4 are particular cases of Corollary 6.4 and Theorem 6.3 in [6].
respectively (see [31]).
For Ny := Ny U {0}. The set #will denote the vector space of all complex-valued polynomials p(x;) in the real
variable x;. For n € Ny, let 2,, denote the (n + 1)-dimensional vector space of all polynomials of degree< m + €.
J_Ze.rThe- classical Laguerre differential expression and rational factorizations

Oyl = —x, y" + (—(2 + ) + x)y’ (2.1)
denote the classical Laguerre differential expression. Then, for each m € Mg, v = LLF<(x.) is a solution of
T Y](xs) = my(x,)-
Remark 2.1 [31]. In the contributions [12.15]. the authors define the Laguerre expression as
e[yl = x, v + (2+ € — x)y';
for operator-theoretic and spectral-analytic reasons. we elect to define the Laguerre expression as in (2.1).
A rational factorization of —f1%€[.] is an identity of the form

—f1%€ = BA — 2%, (2.2)

where A and B are first-order linear differential expressions with rational coefficients. We call
Pite:= AB — A° (2.3)
the partner operator corresponding to the above rational factorization. Suppose ¢(x) is a quasirational solution

L prEn
(that is, L

pYe) is a rational function) of A[y] = 0. Notice. from (2.2). that

CE [P () = AP (xs)-

The operators A and B are given by
P’ (xs)
A xs) = b(x. xs) ——— Xs
[V1(xs) = b( )(,V( ) B0 y(xs)
and

By1(xs) = b(x) (¥ (x5) — W)y (),

where b(x,) is a rational function. called the factorization gauge. and

B = o, W) =S IO 2

+ _
_ e $(x)  Dblxs) x5
In this case. the second-order partner operator is given by
Pyl () = 25y (x5) + @)y’ (oc5) + 7(x5) ¥ (%),
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where
b'(x,)
Xg———
, b(xs)
A o~ r -~ o~ o~
7o) = = (W) + (W(x)°) = Ga)w(rs) — 4%
In choosing the b(x;), we are guided by two principles: (a) we want polynomial eigenfunctions of the partner
operator and (b) we do not want these polynomial eigenfunctions to have a common factor. For further information
on rational factorizations and the above transformation formulas, see [14, Section 3].
As in [8]. the quasi-rational solutions of the differential equation £2+¢[y] = A°y are given by the following:

Gxs) =3+€— x;— 2

o (xs) = LEH(x,) E=m
1 (x5) = e* L5 (—x,) X =—((2+e)+ m) (24)
¢, (x5) = x; L () F=m-(1+e) (2.5)
3 (x) = x7 HHDexe 1 1 (—x ) 2= (m+1) (2.6)

Our choice of labels differs from [8] to better conform to the Type I. II. III nomenclature for the exceptional
Laguerre polynomials.
As in [14]. each of these quasi-rational solutions corresponds to a rational factorization of £11€[.] and. through the
Darboux transform (2.3), lead to the Type L Type Il and, the Type III exceptional Laguerre operators.
3. The Type I exceptional Laguerre polynomials
For the Type I exceptional Lagueire polynomials, we assume that the parameter € = 0. For properties of these
polynomials see [14.15.18]. We discuss some properties of these polynomials and then study the spectral properties
of the associated second-order Type I differential expression (see [31]).
3.1. Properties of the Type I exceptional Laguerre polynomials
For fixed m € N, the classical Laguerre polynomial LE (—x,) has no roots in [0,00) when € > —1.
Taking ¢, (x,) in (2.4) as the quasi-rational sclution and the classical Laguerre polynomial L5 (—x,) as the
factorization gauge, it can be seen that the classical Laguerre expression £ €[.]. given in (2.1). may be rewritten as
—pite = plate, qlive Loy m 4 2 where
AT V() = LR (=x0)y' (35) — L2 (—x,)y(x,) and

Bl,l+s [y](l‘ ) = xsyr(xs) + (E + Z)y(xs)
" ’ L€ (=x;)
With these definitions. the Type I exceptional Laguerre expression é’f;erE [.] may be written as

Oate = (Af oBif e+ m+1)

Note that we shifte —» € — 1 1n the above definition in order so that the numerator of the exceptional weight (see
(3.3)) has the same form as the classical weight. Another way to motivate the shift is that the exceptional operator
should generalize the classical one. withm = 0 corresponding to the classical case. This requirement necessitates
a shift of the parameter.
Written out. this expression is given by

Ot ] = — e y] () + 2(10’g Lo (—x5))" (xey"(x) + (1 + E)}”(xs)) —my(xs)
Ly, (—x 2(1+e)( L5, (—x
The Type I exceptional Laguerre polynomial y = L‘;;i;ie(xs)(m +e€N\{0,1,2,...,m — 1}) satisfies the
second-order differential equation 1 + €
it V] = Aprey (0 <x, <)

=—x.v"(xs) + (xs — €+ 2x,

where
mie =€ (e=0m+ 1,m+ 2,...)
s0{dieleE=0m + 1L,m + 2,...} =N,
The nth degree Type I exceptional Laguerre polynomial can be expressed in terms of classical Laguerre
polynomials through the formula

Lhie (xs) = L}JE(—IS)LE(IS)-F L%, (_xs)l‘]éti(x!f) (E = 0) (32)

mm+e

In fact, (3.2) follows by expanding the expression

1, o I, -

Lmre(xs) i= —An [LE](x,) (e 2 0).
The Type I exceptional Laguerre polynomials {L‘;;t;i E]:D:D are orthogonal on (0, «) with respect to the weight
function

lteg—xs
White (x )= (0 < x, < w). (33)

2
(Lin (7xs))

Remark 3.1 [31]. Notice that, since L5, (—x,) is positive and increasing on (0, =). the function 1/ (Lfﬂ (—xs)) is

both bounded and bounded away from zero on (0, »). Consequently. all moments of the weight function W,>**< on

the interval (0, o) exist and are finite.
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In [15]. the Type I exceptional Laguerre polynomials {L,é:;e]m are shown to be complete in the Hilbert

space L2 ((0, o); Whte ) With ||. |5+ denoting the norm

1
w 3
IFIEe = ( | 1r Gl e (xs)dxs) (rer(omme) G
0
In L2((0, o0); W'+ ). derived from the inner product

(f. o)t = f FxGIWRE (x)dxs (f,g € L2((0,00); W ™€),

the explicit norms of the Type I exceptional Laguerre polynomials are given by
(HL[‘HE ||I,1+E) _ (1+2e+ m)I'(1+2¢)

m,m+ell, el (E = 0)!
see [14].
In [18], the authors prove the following two theorems concerning the zeros of {Lﬁ:ﬂJ? .
Theorem 3.1 ([18. Proposition 3.2]). For € = 0, the Type I exceptional Laguerre polynomial Lﬁ;;ﬁrl e (xs) has k

simple zeros in (0, o0) and m simple zeros in (—eo, 0). More specifically. the positive roots of L‘;ﬂl:ﬂ 14e (X5) are
located between consecutive roots of Li%S(x,) and L1*(x,) with the smallest positive root
Li+e

L,

of L‘;;;ilﬂ (xs) located to the left of the smallest root of L11£(x,).The negative roots of L, 5., (x) are

located between the consecutive roots of LL7€, (—x,) and L€ (—x,).

Theorem 3.2 ([18. Corollary 3.1 and Proposition 3.4]). Fore = 0. the following asymptotic results for the roots
of Lﬂﬂl:'nius (x,) hold:
(a) Let{jy4;} denote the sequence of zeros of the Bessel function of the first kind J,, (x,) listed in

1+€ }

1red Sy ¢ denote the positive zeros of LI}

o) arranged in increasing

increasing order and let [(xs o e e (X

order. Then
Ji+ei
E,L -
: € N).
(i ew
(x,) converge to the m roots of LS, (—x,).

im (1 +e)(xa)iiey =

1+e
(b) Ase — oo, the m negative roots of Lm malte

2. Type I exceptional Laguerre spectral analysis
Tn Lagrangian symmetric form, the Type T exceptional Laguerre differential expression (3.1) is given by

ser s 1 vE+r2eo%s ) \ 2(1+ e)xitee (15, (— \5)} nu}*‘e”‘s)
O [y](xe) = —rm () | [ ———— v (xe 0w | (35
m DIGe) = )( ((L; ) m) ( (L5 (—x,))° 5 (-x5))° B

Whenm = 1, the spectral analysis of (3.5) in L?((0, ); Wf’“f ) was completed in [1].
The maximal domain associated with -{?;',‘IHE [.]1n the Hilbert space (Lz (0, 0); WWI;HE) 1s detined to be
L €= {f:(0,00) > CIf,f" € AC1pc(0,0); f, 4 [f] € L2((0,00); Wy ™). (3:6)
The associated maximal operator
TIA s DT © 12 ((0,00); W) = L2((0,00); W),

is defined to be
T f = (]
F DA = A,
For f,g € ALY™®  Green’s formula [30. Chapter 9] is given by

[ e 10 Wi (i,
= [f.gl,(L+em xSy + f " PG e [g) e W (x,)dx,,

where [,.]h1+e (-) is the sesquilinear form defined by

e+2 ,—x
€ e s —r ) _ X
[f,glm e (x) == ﬁ(f(xs)g (x5) = f'(x)3(x5))(0 < x; < o0),
Xg)
Lf. 0l [y = Lf.gli*e (@) — [f. gl (0.
By Green’s formula and the definition of .dfﬂHE . both limits

[F. gl ™€ ()i = lim [ £, 012" (xs) and [ £, gl (0):= lim, [£,gTh " (xs)

J’:L+e

and where

exist and are finite forall f, g € 4,
The adjoint of the maximal operator in L2 (0, ); W17 i< the minimal operator

DOI: 10.35629/0743-12023253 www.questjournals.org 35 | Page



A survey the spectral analysis of three families of exceptional Laguerre polynomials

Té:rln+e; 'ZD(T;;:E) c [? ((ij);wri:l"'e) N ((0 OO);.W?;,He),
defined by
Té':nl:Ef — {JIJ."‘E [f]f c D(TI 1+€) — {f€ dI 1+€ | [f g]f d+e |x:—0 0 for aug e Ai;il-l-e }

o,m

We seek to find the self-adjoint extension T.5 ™ in L2 ((0, w); Wn‘;“E). generated by €517 [.]. which has the
Type I exceptional Laguerre polynomials

oo . - - o~ - - .
{L‘;‘nlfnie} , as eigenfunctions. To do this. we first need to study the behavior of solutions near the singular
' e=

endpoints x, = 0 and x; = o in order to determine the deficiency indices and to determine the appropriate
boundary conditions (if any).
We show the following theorem (see [31]):
Theorem 3.3. Fore = 0. let P;’,‘FE [.] be the Type I exceptional Laguerre differential expression (3.1) on the
mterval (0, o).

(a) ¢517F[]is in the limit-circle case atx, = Owhen 0 < e < 1and is in the limit-point case at x, =

0 whene = 0.

(b) 51 [.]is in the limit-point case at x, = oo for any choice of € = 0.
Proof. (a) The endpoint x;, = 0 is. in the sense of Frobenius, a regular singular endpoint of the Type I exceptional
Laguerre expression #-1%¢ [y] = 0. The Frobenius indicial equation atx, = 0ist (r + € +1) =

Consequently, two linearly independent solutions of é’; 1+e [¥] = 0 on (0, ) will behave asymptotically like

zZ;(xs) = 1 and  zy(x;) = x, —(1+e)

near x, = 0. Now. for any € = 0. we see from Remark 3.1 that

“ 2 1,1+¢ * xS ee—xs -
|Zl(x5)| Wn{ (xs) dxs = € Xy = .
0 (L (- xs))
However. for any choice of x; € (0, o).
x2 ; xt x—(1+el —x
| eor i g dx, = [ ax, < e
o 0 (Lin(_xs))

only when 0 < € < 1. In the language of the Weyl limit-point/limit-circle theory, it follows that the Type I
exceptional Laguerre differential expression is in the limit-circle case atx, = Owhen0 < € < land is in the
limit-point case at x, = O0whene = 0.

(b) Since x; = oois an irregular singular endpoint of the Type I exceptional Laguerre differential expression. the
above Frobenius method cannot be employed. Fortunately. we are able to explicitly solve the differential equation

Lt yl(x) =0 (0 < x; < )
for a basis {y; (x5), y2(xs)} of ‘301[1110115 and, from this. we are able to determine the L* behavior of these solutions
near x; = co. The function y; (x;) = L‘;nl’:f xs) = [1F€(—x,). the Type I exceptional Laguerre polynomial of

degree m, is one solution of -{.’;;‘iHE [¥1(x5) = 0 on (0, o). Using the well-known reduction of order method. we

obtain a second linearly independent solution y, (x;). Indeed.
Xg et I (—t 2
yz(xs) - Ll+e( xs) M

5 dt, (3.7)
e+l pet2 (LeJrl(_t))
where a is a fixed, arbitrary. positive constant. Clearly y, € L2 (({] ©0); W‘r e+l ) However, as we now show. y, &

L’ ((0, o); W,:f“). To see this, note that since
t

2 -
—t 2z
lim (Lfng) = 1, lim——= - R

t—co Lgl(_t) t—o tET2
there exist constants € > 0 and (x;), > 0 such that

Xg et LE —f) 2 Xg
m -
J - (?) dt = (1+ 2¢) ezdt (1+E)ez X, = (xg)o-
(o £ \ Ly (1) @s)o

Hence. from (3.7) with the choice a = (x,),, we see that

2 [E+1 _ LE+L( xS) g+1 _xs e et Lfn t)
2l W, (s)—( e xs)) U( = ) dr)

*slo

= (1 + 5)2 E+1(LE+1(_XS)L$11 (_xs))zv Xs = (xs)o- (3'8)
Since the latter is O(x5™1) as x; — +oo, the integral

j 172 ) PWE*E (o, )l
1]

8

diverges.
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As aresult, (see [31])

Theorem 3.4. Let Téﬁ:l be the minimal operator in L2 ((0, oo);WTf;EH) generated by the Type I exceptional

. : . pletl
Laguerre differential expression £5; '~ [.].

(a) If0 < € < 1, the deficiency index of TIA¢ is 1,1):
y

om
- - : Let1',
(b) If e = 0. the deficiency index of Ty'r " is (0, 0).
If e = 0. there is only one self-adjoint extension (restriction) of the minimal operator T(f'fn“ (maximal
Le+1 _mle+l Le+1 _ Let+1l e . - - - S . . o]
operator Ty, ). namely T, " := Tgn™" = Ty . However, when 0 < € < 1, there are infinitely many self-

s : Le+1 . ~ . . - . -
adjoint extensions of T,’;"" . Furthermore, when 0 < € < 1, in order to obtain a self-adjoint extension of the

Tf,e+1

minimal operator Ty,

having the Type I exceptional Laguerre polynomials
Le+1 1%
{Lm,m+e}e=u

as eigenfunctions, the Glazman—Krein—Naimark theory (see [23]) requires that we impose one particular boundary
condition of the form,
Te+1 _ Ie+1l
[f, g0l () =0 (f €45™),

where g, € L‘Iif“ \2( T;J’f;l ). We claim go = 1 on (0, =) is an appropriate choice.
Note that the function y(x;) = x, — (€ + 1) € L2 (0,0); W,L*** when 0 < ¢ < 1. Remarkably. it is the case that
fif“ [xs—(e+1)] =(-m — e— 1)xs—(s+1):

—(e+1)
s

e A for0 < e < 1. Additionally,
[ —(e+1) ILe+1l .
X, ,1] (0)=(+1) lm —
" 0 (15, (—x,))
sogo=1€ Af,‘f“ \‘ZD(TJ:;H)‘ Furthermore, a calculation shows that
[£,1057(0) =0 & lim x£*2 £/(x;) = 0. (3.10)
Therefore. we obtain the following theorem.

Theorem 3.5.Lete = 0.
(a) Suppose 0 < € < 1. The operator

Ty DT E) € L2((0,0): W) = 12 (0, e2); i),

hence, 1t follows that x
“x,

=0 (3.9)

defined by
Tl ™f = &A1
F eD(Th ) ={F e 4t~ lim x5 F/(x) = 0,

is self-adjoint in L? ((0 o); W,,I;l_e) and has the Type I exceptional Laguerre polynomials [Li‘nlr;is}io as Eigen

functions. Moreover, the spectrum of T;* ¢

consists only of eigenvalues and is given by
o(T5 %) =N,
(b) Suppose € = 0. The operator
Trx;iue . D(T;;He) c 12 ((0’ ); w;'{l,ue) g2 ((0’ »); mi,l+e)’
defined by
TRe f = dhe 1]
f c ,D(n{‘;l+€) = A;";11+E ,
is self-adjoint inL? ((O,M);W,QHE) and has the Type I exceptional Laguerre polynomials {Lﬁ;ﬂe}io as

eigenfunctions. Moreover, the spectrum of T12€ consists only of eigenvalues and is given by
a(TE) = N,.

4. The Type II exceptional Laguerre polynomials
We letm € N: allowing m = 0 reproduces the classical Laguerre polynomials. We also assume that

€ >0 (4.1)
see [14.15.18] for full details of the Type II exceptional Laguerre polynomials. We brietly discuss some of their
properties, and later, develop the spectral theory for the Type II exceptional Laguerre differential expression (see
[31D.
4.1. Properties of the Type II exceptional Laguerre polynomials
Choosing the factorization function ¢,(x,), as given in (2.5), and letting x, L:n(mflﬂ) (x;) be the factorization
gauge. the classical Laguerre differential expression (2.1) may be written as

- 1m—1+ m—1+
—gmTite = g MTITE o 4 MTITE 1 + e, where

AR D) = XL ™ T ()Y () + (=1 + )L (x)y(xs) and
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y!(xs) - y(xs)

BH,m—1+e x.) = .
m 1Gxs) L o)

Based on this factorization. we define the Type II exceptional Laguerre expression -Pi;lm_l“ [-10by
{;H,m—l-%—e [}’] _ _(All,m+e o BH’ m+£ ] + E)
m m
= —{m” 1+E[y] (xs) 2)65(10g L;nm_s (xs))r(y(xs) - _)”(XS)) + ’ny(xs)

2, (L;me (xs))') Y

=—xy'(x)+| —m—e + x, + ———
5 5 5 L?nm E(xs)

+(m — ZxS%)y(xs). (4.2)

The Type II exceptional Laguerre polynomial y = LH"”_”E(JCS). where e = 0. satisfies the second-order

m,m+e

differential equation

'Pfrijm_l*—e [ ] =1 m+el (O < Xg < 00)
where

Ape=€(e =2 0).

Note that {13,, .12, = N,.
The nth degree Type II exceptional Laguerre polynomial is explicitly given by
Lo () = —(L + 26 ™ [LT*] () = xs L™ () LT (s) — €L 72 ()L (x5) (e = 0).

The sequence {L‘;imm +15+6}6= of Type II exceptional Laguerre polynomials is orthogonal on (0, o) with respect to

the weight function
xm i+e e s

W”,?n—l-l—f (x ) — ( e (OJDQ))
m s ( L—m € S))z
Remark 4.1 [31]. Requiring € > 0 is equivalent to L;;;" ¢ (x,) having no zeros in [0, 0): see [25, Proposition 4.1].
Notice that the function 1/ (L‘m_e( xs))z 1s bounded and bounded away from zero on (0, «): hence all moments

HIm—1+e

for the weight function W}, on the interval (0, o0) exist and are finite.
IIm—1+¢e }‘”

In fact. in [15]. the authors show that [LmeJrE _, forms a complete orthogonal set in the Hilbert

space L? ((D. o); erf‘m_lﬁ) With || [|2E™~*€ denoting the norm in L? ((0, w); W,j:”n_HE)defmed by
1

i =U IFGI? W24 (), )E (£ & 12 () mgim=2+e))

in L? ( (0, e); VI’If‘meE). derived from the inner product

(Lt - [ reagtomin axs (1.9 € 2 (0,00 w2

the norms of the Type II exceptional Laguerre polynomials are explicitly given by
m—1+eilm—1+e 2el(m+2e+1) N
(llemnt+e E” ) (E)' (E = U);
see [14].

In [18]. the authors establish the following two theorems concerning properties of the zeros of

{L”'m_“E}:OTheorem 4.1 ([18. Propositions 4.3. 4.4. and 4.5]). Fore = 0. the Type II exceptional Laguerre

mmte
oo lm-1+ : I : IIm-1+ g :
polynomial L,."7 "¢ (x;) has € simple. positive zeros in (0, o). Moreover, L, = (x5) has either 1 or 0 negative

roots according to, respectively. whether m is odd or even.

Theorem 4.2 ([18. Corollary 4.1 and Proposition 4.8]). Let { Jrn— 1+E,f} denote the sequence of positive zeros of the

- . . . . . . — € “n
Bessel function of the first kind J,,,—; 4 (xs) listed in increasing order and let {(xs)ﬂré}e}i:l denote the positive

m—1+
zeros of LM 7€

mm+e (Xs) arranged in increasing order. Then

-2
lim (m+e€) (x,)mi % =1m7% (i € N).
oo

m+te—

Furthermore, as m + € — oo, the negative and complex roots of

4.2, Type II exceptional Laguerre spectral analysis
In Lagrangian symmetric form. the Type II exceptional Laguerre differential expression (4.2) is given by (see [31])

LH m—1+e

mmie (z) converge to the zeros of L€ (2).
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m+e ,—X
xtEe e

1
W () ((L;{“—f(:cs))

I Y(Xs) = y'(xs)

( mx" it e s 3 215’“"f.s"J‘S(.’L;,,’“‘E(xs))r
(Lo () (Lo =(x0))’
The maximal domain associated with £2-™**¢[.] in the Hilbert space L? ((O »); Wn‘z'm_lﬁ) is defined by
AT = [£1(0,00) = € £, f € (14 26)Croc(0,0); £, 0™ [f] € 12 (0,00 Wi ™).
The associated maximal operator

TH,m—l+E :E(T{J;nm l+E) c Lz ((0 00) Hm 1+6) N Lz ((0, CY)); Wnif,m—1+s) )

1m

1s defined to be

)."(Xs) . (43

IIm—1+¢ _ pllm—1+¢
Tl,m f - 'E‘m [f]
IIom—1+e~ ,_ 4llm—1+e
f € @(Tl,m ) '_ Am .
For f,g € AF™™1*¢  Green's formula is

[t () g e (e,
0

=[f, gl ()| + j FO)E™ 1 (gl e )W ™ M4 (x ) dxs,
1]

x:=0
where [.,.]’™7 %€ () is the sesquilinear form defined by
InIm—1+e x;n+Ee_xS =1 ’ = - -
[f g] (xs): = 72( f(xs)g (xs) _f (xs)g(xs)) (0 =X = CX)), (44)

(L€ (x5))

Xg=00

and where
[, gl™ 1 e[y o= [F,ghm™ 7 (0) — [f, glm™ 7 (0).
By Green’s formula and the definition of /.‘l”m *€  both limits
[, g3 (e = Jim [F, 14 x) and [7, g 5™ 5(0) = lim, [, 1™ 3 (x,)

exist and are finite for all f, g € dff!m the

The adjoint of the maximal operator in L2 ((O,M);W#mﬂ“) is the minimal operator T,f],ﬁnflﬁ. defined
in L2 ((U, co); M}"Ilf,m—1+e). by
Im—1+ey _ pllm—1+
Tom  f=tm" TSl (4.5)
fe 'ZJ( H m— l+s) {f = A.;;'{m—l+e [f, g]ﬁ’im—lﬁ—e (xs)lij;:} = Oforallg € A.;gm—1+e} )
In the same manner as in the Type I exceptional Laguerre case, we seek to find the self-adjoint

extension T™M™¥€ ip 12 ((O o0); W™= 1+E). generated by £I-™ %€ []. which has the Type II exceptional

IIm 1+e]

Laguerre polynomials [me te fo_o @ eigenfunctions. As in the Type I case, we first need to determune the

deficiency index of the minimal operator T;j;:”““e inL? ((0 c0); W, ” me HE) In turn. this requires a study of the

behavior of solutions near the singular endpoints x, = 0andx, = oo of the differential expression (4.2). This
analysis is similar to the Type I case in the previous section so we omit many of the details.

The point x; = 01is a regular singular endpoint of (4.2): the Frobenius indicial equation isr (r+ 1 —¢€) =
Consequently, two linearly independent solutions of #22*7¢[y] = 0 on (0, «) behave asymptotically like z, (x,) =

1 and z,(x,) =x,—1+e€near x, = 0. Cleatly z, € [? ((O,m); Wn‘?‘l_f) but a calculation shows that z,

m

W

12 ((D,l) s wl ’1_6) only when e < 1. Consequently, #/L7¢ [ ]is in the limit-point case at x, = 0 whene =
0 and is in the limit-circle case at x, = 0 when e < 1. More specifically, recalling (4.1),
(1) ifm = 0 (the classical Laguerre case). -{?g’l_‘ [.1is in the limit-circle case atx, = 0when0 < € <
1 and in the limit-point case when e = 0:
(ii) ifm = 1(s0. by (4.1).e = 0), -z‘.’f,‘;’l_e [.1is in the limit-circle case atx, = 0 when0 < € < land
in the limit-point case when e = 1:
(iii) ifm = 2, then € = 0 and thus €II,2+25 [.]1s in the limit-point case atx, = 0.
The point x; = cois an irregular singular endpoint of 3”2”5 [.]. Again, we can explicitly solve fH’ZHE[y] =
0 on (0, ) for a basis of solutions. One solution is y;(x,;) = bt 2+2€( x¢): = L;2¢(x,) which clearly belongs
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to L? ((0, o); W;,f‘“ze). A second solution y, (x,) can be found by the reduction of order method: this method
shows that

R x5 ot []-372¢(p) 2
Ya2(x5) = Ly (xs)f 52 \ 2 () dt (x5 = 0)
a m

where € > 0 is fixed but otherwise arbitrary. An analysis similar to that given in part (b) of Theorem 3.3 shows
that y, & L? (x2,); Wn‘? %€ for some x! > 0. Consequently. f‘;,‘f;”e [.1is in the limit-point case at x; = oo for
any choice of € = 0.

When «E’f}i‘m_HE [.]is in the limit-circle case at x, = 0. the Glazman—Krein—Naimark theory requires that one
appropriate boundary condition be imposed in order to generate a self-adjoint extension of the minimal
operator]":["‘;nm_“E in L? ((O, o0); WJf’m_“E).We are interested in a particular self-adjoint extension. namely that

— . . — o . - .
operator?‘;f;nm €that has the Type II exceptional Laguerre polynomials {Lin"”’::,ﬁrl:s}go as Eigen functions. As in

the case of the Type I exceptional Laguerre case, we can take this boundary condition to be
IIm—1+e _
[f, 1l (0) =0,
‘;;;'meE 1s the sesquilinear form given in (4.4). This boundary condition simplifies to
lim x™*€ f'(x,) = 0.
xg—0t

where [, .]

We summarize this discussion in the following theorem.

Theorem 4.3 (see [31]). Let m € N, and € > 0. Let T({{;;”ﬂ“ be the minimal operator. defined in (4.5)

in 12 ((0. »); Vlf;f‘m_lﬁ)generated by the Type II exceptional Laguerre differential expression £.5™ *€[.] given
m (4.2) or (4.3)

- . i1-€ :
(a) The deficiency index of T, © is

o,m
(1) (1,1)whenm = Oande < 2, orwhenm =1land0 <€ < 1;
(11) (0,0) whenm = O0ande = 0,orwhenm = lande = 0, or whene = 0.

(b) The operator
Tt (T %) < 12 ((0,0); W %) = 17 ((0,00); Wi 7°),

m n

defined by
L™ f = 6™ fIf €2(1577°),
1s self-adjoint. The domain of T?f{’l_e is given by
(1)
DT )= € a2

s e =

when the deficiency index of /2~ is (1,1), or by
(ii)
D(Triif,l—e) — A{:’:l—e
when the deficiency index of TJ {,‘nl_e is (0,0).
L“',l*E

oo
ﬂm‘mﬂ]E=D as a complete set

Moreover, in either case, T,‘;f’ke has the Type II exceptional Laguerre polyuomials{

1l,1—¢

of eigenfunctions in 12 ((O, o); W,

by

mi- . . L
). Lastly. the spectrum of T,,;"" "€ consists only of eigenvalues and is given

o(TH¢) = N,
5. A new sequence of exceptional Laguerre polynomials: The Type III exceptional Laguerre polynomials
The Type III exceptional Laguerre polynomials (see [31])
{Lﬁ:jfﬂ n=0m+1Lm+2m+ 3,...}

1s a new class of exceptional Laguerre orthogonal polynomials for the parameter range € < 1. They can be derived
from the quasi-rational eigenfunctions of the classical Laguerre differential expression (2.1) and they can also be
obtained from a transformation of the Type T exceptional Laguerre differential expression (3.1). Both of these
derivations will be developed and introduce the Type III exceptional Laguerre polynomials and derive several

representations of them. We deal with the computation of the norms of these polynomials in L2 ((0. ); Wn‘;" ! ’1_5)
and show that the sequence of Type III exceptional Laguerre polynomials forms a complete set of functions
n L2 ((0 w); W;,i”‘l_e) . We also deal with a comprehensive study of the location of the roots and an asymptotic
analysis of the roots for the Type III exceptional Laguerre polynomials and construct a self-adjoint operator
in L? ((0, ); W,;H'lff). generated by the second-order Type III exceptional Laguerre differential expression,

having the sequence of Type III exceptional Laguerre polynomials as eigenfunctions.
5.1. Two derivations of the Type III exceptional Laguerre differential expression [31]
Consider the transformation arising from the quasi-rational solution @- (x.) in (2.5)
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z(x5) = x5t y(xs). 1)

07 [2)(x) = x0T Y1 (x), (52)

( =)
m (—Xs)
or. equivalently. with the notation M (g)( f (x5)) := g[xs) f(xs).
M(xl ) o P €0 M(xst) = ol (5.4)
With regard to this identity. we say that the Type I and Type III expressions are Iel'lred by a gauge transformation.
We call (5.3) the Type IIT exceptional Laguerre differential expression. In Lagrangian symmetric form, this
expression can be written as

A calculation shows that
where

O T V() = —xs V' (x5) + (f + X5 + 2x; ) Y'(xs) + (=m +1-€)y(x) (5.3)

_ 1 xZ€eT% (—m+1—e)xl e
“gf:g‘l E[y]( s) 1111 5( ) - zy (xs) + 2 y(xs) i (55)
I\ (152(x) (L520x0)
where
1-€,—xs
WAy = (x, € (0,).

(L2 (—x2)
Remark 5.1 [31]. As we will see below, the parameter range for the identity (5.4) is 0 < € < 1. In this regard. we
remark that the Type III polynomials, which we show are solutions of
o] =2,

for a certain sequence of the eigenvalue parameter A°, are related to the L3 family of rational extensions of the
isotonic oscillator which were investigated by Grandati in [10]. From the point of view of Schrédinger operators,
the parameter range € < 1 corresponds to a potential with a weakly attracting singularity at the origin.
Qualitatively. this kind of singularity makes the physics of the system ambiguous and requires the imposition of a
boundary condition at the origin for a well-defined eigenvalue problem:; see Section 5.6.
We note that. if € < 1. then L3, () has no negative zeros. and hence all of the moments of W,
finite. At this point, it is unclear if the eigenvalue problem

0 () = Ay (xs) (5.6)
produces polynomial solutions for certain values of A°. In the next section, we will show that (5.6) has polynomial
solutions of degreesn = Oandalln = m + 1. We now argue that there cannot be polynomial solutions to (5.6)
of degreesn = 1.2..... m for anv value of A° € C. Indeed. suppose v = »(x.) is a polvnomial solution to (5.6)

Me—1 __.
€7 exist and are

for some A* € C. From (5.3). it follows that the term

(3
20, LECE)
m S)
1s a polynomial. However. since the roots of the Laguerre polynomial L;,; (—x;) are simple and negative. we see in
fact that p'(xs)/Lnf (—x5) is a polynomial. Consequently, either p is a constant or a polynomial of degree = m + 1.
More specifically, it is the case, for some polynomial q. that p'(x,) = L,&(—x5)q(x,): see Lemmas 5.2 and 5.3.
To see that (5.6) has orthogonal polynomial eigenfunctions. we turn to a special rational factorization of the
classical Laguerre expression (2.1). Indeed, the rational factorization function in this case is @5 (x,). where @5 is
defined in (2.6), and the corresponding gauge function is x L, (—x;).
Define the first-order operators A” Te=1 and .Efm‘ffl by
A <7 (%) 1= x5 Lpf P (=20 (xs) — (m o+ DL (—x0)y (%)
Bms 1) =y () Lf (- x).
Lemma 5.1. The operators 4,, and Bm €71 satisfy the following factorization properties:
(a) —¢~1 =gl Aif !4 m + 1. where #*1 is the classical Laguerre second-order differential
expression defmed in (2.1):
(b) —plbemt = glite  plile 4 4y ¢4 1.
Proof. The proofs of these idenfities are similar so we give only the proof of part (b). Our proof will make repeated
use of two facts:

Ile—-1

(Lfl_l(fxs))’ =15 _;(—x)foranye > Oandn € N, (5.7)
and
% (Lo () + G — € = D (L2 (-x0) = m+ DIZEE (—x) = O; (5.8)
see [28. Chapter V. (5.1.2) and (5.1.14)]. Now
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r

IH E(B[HE ]) = x, L;f (xs)( e( S)) — (?R + 1)L;15+11( xS)(L_E( xs))

_ —e mE( xs)y” - L_E+l( xs)y ?_ne+11 s)
- stm (—)CS)( (L_E(— ) ( 1) L_E( xs)
= x yr! 4 (—l‘ LmE—Jrl( XS)L?_;E((ir;s; 1)Lm+1( xs)) (59)
Moreover,
—x, Lyt (— xS)L;(r:; VLot (=) _ —xs(L‘m+‘1 (—xs)) L—_E(m + DL (=) (x)by (57)
(= ) (15 (x0) = 20m + DI ()
= ( Lgf(—xs) from (5.8)
_ (xs - E)L;ie (71‘5) - 2(771 + l)l’;le-i—_ll(fxs)
- L () b 67)
(e — Lt (=x0) — 22 (Lyit (=) + (2 — 200) (Lo ()
- ETE by (5.8)
_ (xs - f)L:nE (—1‘5) - 2XS(L?EIE ((__;:s)))! + (ZE - 2XS)L;1€ (_xg)from (57)
=€ —x, — 2x; (LE((J;S))) (5.10)

Substitution of (5.10) into (5.9) ylel(ls

Ill,e IH €
A (B,

(Lf(x)))

y])—xy—&-(f—xs— “x)

adding the term (m — € + 1)y to both sides of this latter identity completes the proof.
Remark 5.2 [31]. With reference to (2.2) and (2.3). where we will notice that the parameters A° in both expressions
are equal. we could define the Type III exceptional Laguerre differential expression by

T I(x): = —(AI 0 B+ m 4+ 1)[Y)(x)

1€
= —x,¥"(x;) +(€ + x, + 2x, (L‘E(( 5))) ¥'(x) + (—m — Dy(x,).
In this case. we would not have the identity (" 4); however, by mimicking the proof of Theorem 5.1, the Type III

1e-1
exceptional Laguerre polynomial y = L, (x,) can be shown to be a solution of the eigenvalue equation

PHLE"1 )] () = Ey[xs) (m+14+e=0m+1,m+ 2,m + 3,...).
5.2. The Type III exceptional Laguerre polynomials [31]
Hence. we assume thate < 1 andm € Ny. Simular to how we introduced the Type I and Type II exceptional
Laguerre polynomials, we define the nth degree
Type III exceptional Laguerre polynomial by

et
Ly, ;:+1+e (x5):= {

From the definition of A% | a calculation shows that

(L1 xs LEE3 () Loy (=x5) + (m + DLE(x) Lot (=xs), if € = 0
m‘m+l+e(xs) { ifm+14+e=0 (512)
The following lemmas (Lemmas 5.2 and 5.3) are critical for several reasons. Indeed. they will ultimately help show

—Ay [LE]0xs) ife=0

ifm+1l+4+e =0 (G11)

thaty = L‘:{ 2 o(x.) is a solution of the eigenvalue equation
O 1) = Aprrse Y(X5), (5.13)
where
A p14e = 2€ (m+1l+e=0m+1m+ 2,m+ 3,...). (5.14)

In addition, both lemmas give new characterizations of the Type IIT exceptional Laguerre polynomials and lead to
an additional representation (Theorem 5.2) of these polynomials. Lastly, these lemmas will be critically important

[He1 } and to proving root

i our analysis of the location of the roots (Lemma 5.4 and Theorem 5.5) of [ mm+1+e

asymptotic results (Theorem 5.6) of these roots.
Lemma 5.2 (see [31]). For (1 +¢) € N,

le-1
( m;i+l+e(xs))

ey —xs LER2(x) + (e + 1 — x ) LS5 (%) + (m + 1)IE (x,). (5.15)
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Proof. Recall the representation (5.12):
Limrase(s) = %o LETOLGE (—5) +(m + DLE)LAE (—xo)-
Using the Laguerre identity
(L53i(xy) = —L5(x,), (5.16)
we see that
11, !
(Lm :1+ll+e (XS))
Litagxs)L75£ _pfs) - X5 Lt:ig (XS)L;TIE(_XS) T X5 LE+1 (X )Liejrll(_xs) - (I?’l
+ DL (xo)Lmiy (=Xs) + (m + 1)LE () L5 (—xo)-

Therefore,

pile=1 (x.) !
M= —x, L3 (x) + (m + 1)IE (x.)

me(_xs)
+ LR (%) (1 + X, m- 1( x;) (m+1) ”"E“(( x;)) (5.17)
Now. using (5.16). b (e "
L_€+L s) ?_nEJrll( xs) me(fxs) + Xs L_E+1( xs) - (TH + 1)1‘;154:11 (7-’55)
S - e R ] , e ()
s (L (—x;)) - (L::;_f E;) —m+ DL (x) 1o

Since y = L5 (x,) satisfies x,y" + (—e — x4)y’ + (m+1)y=0. a simple calculation shows that y =
Lyt (—x,) satisfies

xsy" (et x)y — (m+ Ly =
Hence (5.18) becomes

L) Lei(—x)  (e+1 = x) (L&)
1+ == —~—(m + 1)—= = = = e+l —x 5.19
L7 (%) Lo (%) PN s G
since (L.,‘nf;f (fxs)) = Lo (—x,). Substituting (5.19) into (5.17) establishes (5.15).
Lemma 5.3 (see [31]). For (1 +¢€) € N,

(Entriee@)) = (m + 14+ LGz (). (5.20)

m m+1+E

In particular. for all (1+¢€) €N, the lype Ll exceptional Laguerre polynomual Ly "o (X

extremum at each of the m roots of L, (—x,) and at each of the € roots of LS (x,).
Proof. The Laguerre polynomial y = LZ(x;) is a solution of Laguerre’s equation
V' +(e+1 — x)y + ey = 0.
Consequently, we see that the right-hand side of (5.15) simplifies to
—x L2 (x )+ (e+1 —x )LEH(x ) + (m + 1)L (x)
= —xs(Li (xs)) —(e+1 — xs)(Li(xs)) +(m + 1LE(xs) = (m+ 1+ €)LE (x4).
The result now follows from this identity and (5.15).

LHIE 1
mm+1l+te

s) has a local

r
A degree count implies that all roots of ( (xs)) must be simple.

We now show the following theorem which will establish (5.13) and (5.14).

Theorem 5.1 (see [31]). Form+14+e=0,m + 1,m + 2,m + 3,..., the function y = L‘;{i{‘;jrlue(xs) is a
solution of (5.13). where A3, ,, . 1s given in (5.14).
Proof. The proof is straightforward whenm + 1 + ¢ = 0so we assume € = 0. Withy = Li';‘:’;:rll +e (X). we see

from Lemma 5.1(b) that
T ) = —An B [T Ce) + (o e = DI (1)

‘mm+1lte m,m+l+e

-
HIe ( m ;“Jff (XS)) 1Le-1
A E(—X ) + (—T]’l +e— l)Lm,m+l+e (xs)
m (3

by definition of BII<

A [m + 14+ )LE](x,) + (—m +e— 1)Lgf,f”11+f (xs) by Lemma 5.3

=M+ 1+ lpmiee (6) + (—m + €= DLt L (x) by (5.11) = (2)y(x).

The next two results give new representations of the Type III exceptional Laguerre polynomials.
Theorem 5.2 (see [31]). For (1 +€) e N

et (x) = (m + 1+e)j LE(OLE(—t)dt + (m + 1)(2+2E)( mif). (5.21)
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Proof. This follows immediately from (5.20) and the normalization for the classical Laguerre polynomials

_ 2e
15720 = (,55,). (5.22)
and from (5.12). which gives
Lymrae (0) = (m + DIEO)LLE(0). (5.23)

The following representation of the Type III exceptional Laguerre polynomials will be important for determining
the location of their zeros.
Lemma 5.4 (see [31]). For m,1 + ¢ € N the Type III exceptional Laguerre polynomial L‘;n"; +ll +e(xs) can be
written as

piTLe= _

Lmtave () = 2OLE_; (x)Lf (—x5) + (m + DLE(x)Lnf (—x)

—(m + 1+ e)LE (x )Lt (—xg).  (5.24)
Proof. Recall (5.12):
Lmrave ®s) = s L] ()Lt (=x5) + (m + DLE ()L (=),

From [28, p. 102, (5.1.14)].

xo (Lot () = —(m + 2 )Lk () + (m + 1+ €) Ly e (%),
we see that
xg LY (xg) = —x5(LE(x)) = 2eLey (x) — eLE (x;). (5.25)
Likewise. from the identity (see [28. p. 102. (5.1.13)])

Lihive(Xs) = Lopgae(Xs) — Linse (),

L (=) = Lk (—x5) — Lyf (). (5.26)
Substituting (5.25) and (5.26) into (5.12) vields (5.24).
Remark 5.3 [31]. Our discussion to this point shows that if we take (5.24) (or (5.21)) as our definition of the Type
IIT exceptional Laguerre polynomials, they are orthogonal polynomials for € < 1. Regardless of this parameter
restriction. the polynomial defined in either (5.24) (or (5.21)) is of degree m + 1 + €.
As noted by [10]. the type TIT weight expression is non-singular for a more general range of parameters. The
necessary and sufficient condition for the denominator L,F(—x,) t be non-zero for x, = 0is given in Szego [28,
Section 6.73] as

we obtain

(e+m—=2)(e + m —3)e(e—1) = 0.
Thus, a natural question to ask is whether or not these polynomials are orthogonal. in some sense. for values of € —
1 & (—1,0). It would be interesting to look into this question even when some of the associated moments do not
exist.
We note that the Tvpe III excentional Laguerre nolvnomials are negative at the orizin: that 1s to sav. for € <
land (1 + €) € N. we have

IH e—1 (O) (527)

m mtlte
To see this, recall from Theorem 5.2 that
e _ —e—
Lm,;a+11+e(0) = (m + 1)LE(0)L,51(0).
Now, in general.

e (0) _(” +1+E)F(n+€+2) (e+2)(3+¢€)..(n +1+E)
el n re+2)n! n!
s0 LZ(0) = 0 because € > 0. Restating the assumption on the parameter range as
0<e< 1, weseethat—e+1 + j = Oforj = 0,1,...,m — 1:thus
< 1(0) = —e(—e+1)(—e +2) (—e + m) <0
m (m + 1)!

From (5.28). the inequality in (5.27) now follows. The negativity of L‘g{; +1l +e (0) turns out to be essential in our

anah sis (see Section 5.5) of determining the location of the roots ot!f;f oy +11 e (X5).

3. The norms of the Type III exceptional Laguerre polynomials [31]
We now compute the norms of these Type III polynomuals.
Theorem 5.3 (see [31]). Suppose e < 1. The Type III exceptional Laguerre polynomials

{L”‘TE Lo lm+1l+e=0m+ 1,m+ 2,m + 3,...}

(5.28)

mm+ite
are orthogonal in the Hilbert space L2 ((0, o0); Wn‘zf’e_l) and the norms are explicitly given by

Ie-1 Hle-1\2 ® lme-1 m 1
(”Lm rft+1+e " ) :j ( m;i+1+e(xs)) £ (xs)dxs
0

(m?:— 14+e)l'(1+2¢)
1
r(e)r(—e —i 1)m!
rm—e+1)

ife =20
. (5.29)
ifm+14+e =0
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Proot. We compute the norms 1in this proot: the orthogonality will follow directly trom the seltadjointness of the

operator T?ifl 71 in Theorem 5.8 in Section 5.6. The proof. when € = 0, rests on the following adjoint relationship

Hle-1 Hle—1
for the A, " and B, © ~ operators

B T 1) g )W 2 (x) + A€ g1 () f (o) Wi €72 ()
_ 4 (W) 5.30
= Ir mf(xs)g(xs) , (5.30)

Where we take f = f(x,),g = g(x,) to be polynomials and where W 1(x,) = xf e s is the classical
Laguerre weight. To prove this, divide the left-hand side of (5.30) by
We (xs)
mf (%) 4 (xs)

to obtain

vy e 1) A
e Y L ()

on the other hand. a tedious calculation shows that
d. We 1(
dx, ——log L_?Hf(lslg(ls)

f’(l’s) st;nE*—l(:_Xs:)gr(:xs:) + ((E - l)L;!f+1(:_xs:) - xsl‘;n€+1(_-rs:) - XS(LT;-FI(_XS))J) .g(xs)

T ) X Laf (=) g (%)
f (1 ) DLSL;HE-H-(:_XS:).GF(:XS:) + (_-’CS(L:ni]_(_xs)) + (E -1- Xs:)(L::-#l(_xs:)) )g(]cs)
S ) . Lt (—x)g(x,)
) Lt (—x)g' (x) — (m + DIGE (—x)g(x,) o

e =T ”‘?s.}?(%) from (5.8) withe — e —1

= Ly (—xg) Byt [J{]((KS) + _KSLA;H (_[i]§;(1) by definition of A% *and B .

This establishes (5.30). Setting f = AmE (LS, 14e)and g = LS, 14 in (5.30). integrating and using Lemma 5.1,
Part (a). and (5.11) gives

“ € 2 € €=
- (2 m+ €+ 2) I (Lm+l+e(xs)) w (xs)dxs + j (LIHZm-f—E-%—Z ()C )) Wr;iiHJ 1("Cs)dlxs
0

xg=00
Ile
_ L 2m+e+2(xs)Lm+l+e( <) we(x,)
7]1 ( xs)
xg=0
LIIIZE?niE+2(xS)Lm+1+E (x5) xEe o
= s =0 (5-31)
Loy (=x5) x5=0

Hence.

f (L”I2m+5+2(xs)) minlli.e(xs)dx - (2 m+e + Z)J (Lm+l+s(xs))2ws(xs)dxs
0
Since (see [28. Chapter V. (5.1.1)])

jo (‘m+1+e(xs)) W (xo)dx, =

we see from (5.31) that

(2m+E +2)I'(m+ 2¢ +2)
J, ( {gzemien(xs)) IHe *(x5)dx (m+1+e)!
0

r(m+1+2¢)

(m+1+e¢)! (€ NO),

Replacing 2m + € + 2 by n yields
j (Lme e ))2 WHESE (Y dx, = (m+1+e)l(1+2¢)
0

mm+1+e E'I

fore = 0. as required.
To prove the norm formula in (5.29) forn = 0, we first establish the following identity:

0 -1 ,—xg
f Wo€™ (es) dxs + mJWr;:"i‘f_z (xs)dx; = (5.32)

X; e
Lot (—x5) L (=)

Let(xs) = Lnf(—x.)so thaty'(x;) = L;E 1 (—x,) and "' (x;) = L;E%5 (—x,). Now r,b(x ) is a solution of the

Laguerre diffel entlal equation

xslib”(xs) + (xs — €+ 1)11)'(3’5) - ?nd)(xs) =

Divide this differential equation by tp(xs)(q.‘)’(xs))z and rearrange to obtain
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’

m +x5(1)+6—1—x370
(0 ()" YW )] Tl (xs)

Multiplying by x£~2e~*s yieldsm

mxfe™®s xfle ¥, 1 N\ (xfTle %)
_+ ( | 2 _ (5.33)
(i?{)’(}:s)) !P(XS) l-p (xs) Ip(xs)d) (xs)
Since
xeflefxs xeflefxs 1 !
= =+ ( ) = 0,
(W(x))"  ¥'xs) \W(xo)
we see that (5.33) can be rewritten as
xEle™™s  mxE e xEle™¥s 1 N xElems 1\ (xEle )
i o (B ( )+ ( )+ ). (5.34)
(w(xs)) (w'(xs)) d” (xs) I,b(xs) I,b(xs) I;J) (xs) w(xs)w (xs)
From the product rule for derivatives, notice that
xﬁ_le_’“( 1 )’ N xﬁ_le_”‘f( 1 )’ N (xE"te™*s )
Y (xs) \lxs) Vi) W)/ d(x)yrCe)
) o) ) =l o)
= |-——)|——] xlte | =|— — i 5.35
((wcxa W (xo) L)L () (539
Substituting (5.35) info (5.34) and using the definition of Wn‘;”’efl(xs). we obtain
WP ) + m TS () = = (x5 e Lot (—x)Lpf (=)
integrating this expression now yields (5.32). Applying this relation inductively yields
m-1 e-1-j ,—x
. X e™¥s
J et iz, = mi - [ e asmin = Y 0 () . (5360
j=0 J Lm_f_f(_xs)Lm_; (_xs)

Forr = 0,let C, = C; + C5 + C5 denote the contour given by the ray
C,={x, —ir:0<x, <o}
oriented from right to left. by the left-side semi-circle
C, = {reit Tote S—ﬁ]
2 2T T2
oriented clockwise. and by the ray

C; ={x, +ir:0 < x, < o0}
oriented from left to right. The zeros of L,f(—x,) are all negative. and so by taking r sufficiently small. the
contour €, can be made to not include these negative roots. Observe that the integrand denominator is the square of
a polynomial with simple roots. Hence the residuesof the integrand at the roots of L,f(—x,) vanish. which means
that it suffices to impose the condition that 7 > 0 and that L,f (r) = 0. With this assumption,

@ e 1 B 1 (_Z)e—leﬁi(e—l)e—z
M’;n (xs)dxs - 1 me(efl} 2
_ e _ e
o Cr (Lm (72))
where (—z)~1 denotes the principal branch of the power function. By deforming C, we can rewrite the latter as a
Mellin—Barnes integral, namely

J.m 1 i —r+ico (_Z)e—lg—z
Wt Hx)dxy = —————— —_— (5.37)
o U 2sin(m(1 4 €) )i (L,’,f(—z))z
Applying the same procedure to the usual integral representation of the I'-function gives
i —r+icm
(—z)%e%dz=T(1l+a) (5.38)

2sin(ra) |, _ie
valid for all non-integral values of a and all > 0. Applying (5.37) and (5.38) witha = € — 1 - mto (5.36) gives
= reyr(—e+1m!
L WS (x)dx, = mH (—1)"T(1+e—1—m) = %
This completes the proof of the theorem.
5.4. The completeness of the Type III exceptional Laguerre polynomials [31]
In preparation for the proof of completeness of {L‘;‘:;jrll selm+14+e=0m+ 1L,m+2m+ 3,.. .}, we
remind the reader that the set 2 denotes the vector space of all polynomials with complex coefficients in the real
variable x; and. form + 1 4+ € € N,. let 2,,,, ,,. denote the vector space of allp € 2 with degree < m+ 1+ €.
The following lemma is critical for our argument: a proof can be found in [15. Lemma 3. p. 416].
Lemma 5.5. Suppose n(x,) is a polynomial such that n(x,) + O forallx, = 0. Then. fore > 0. the subspace
n2:=m)p(xs) [p €P)
is dense in L2((0, c0); xg~1e™%s).
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We now show the following completeness result,
Theorem 5.4 (see [31]). The set of Type III exceptional Laguerre polynomials
{Lm’e_l Im+1+e=0m+ 1,m + 2,m + 3]

mm+1+e
forms a complete orthogonal set of polynomials in the Hilbert space L? ((O, o0); Vlr;;;‘q'e_l}.

Proof. The proof that we give of completeness is similar to the proof that we give of completeness in Theorem 5.9;
we give the full proof since some essential ingredients of the proof below are different.

Lete > Oandlet f € L? ((0,00); WJIH‘E_l). Define

clearly
_ = -1
Il =111,
where ||. ||¥"*denotes the norm in L2 ((0, w); xﬁ_le"‘S). Hence f € LZ((D. w0); x& ‘19_“‘5)‘ From Lemma 3.5.
with
. . n(xs) = L:nf+l(_xs)'
there exists p € 2. say with deg(p) = m + 1 + €. such that
= _ e—1
”f(xs) - Lme(_xs)p(xs)” < €.

Hence it follows that
2

R
2
B Jm IHXS) - (LE;?((_JCXZ))ZP(XS) xEte *edxg

2
Wl (),
ILey\2
)
— 2 p
(L?rf(_xs)) p € Jt‘1+e+3m- (539)

Fiietram = [P € Pltetam |P’(—(xs))-) =0(j= 1,2,...,?7!)},
€ (0,0) are the simple roots of the Laguerre polynomual L.F(x,). We now show

- Lm |FCe) = (L5 (=) p(x,)
B (Hf () — (L (—x5)) " p(xs)

Notice that
where

and where {(xs) }-]:_n:l
that (L;f(—xs))zp(xs) € €14csam- Where
€iteram: = Span {Lﬁi‘;_l l[j=0m+ 1,m+ 2,...,1+¢€ + Sm};
this will complete the proof of the theorem. Note that
dim (E1yerzm) = dim (Fiycram) =2m + 2 + €. (5.40)

Since the span of eigenfunctions of an operator is an invariant subspace of that operator, we see that
Hle-1
Om [E1tetam] © Ersctam:

In particular, if P € €, .43m. then
(Lr_ns(_xs))

IIle—1 _ "
£ S P](xg) = —x P (xs) + (—E + x5 + 2x, s ()

)P’(xs) +(—m +e—1)P(x,) EP.

Consequently. the term

2)65(1;,_716(—3’5))’ r
T o

must be a polynomial. Since L, 7 (x,) is a classical Laguerre polynomial. its roots {(xs) }-}

it follows that P'(—(x,);) = 0 forj = 1,2,...,m. Thus,

Erreram © Frieram-

m -
. © (0, ©0) are simple so
j=

From (5.40) we see, in fact, that

) Eivetam = Firersm
From (5.39). it follows that

_ 2
(Lme(_xs)) P(XS) = El+e+3mf
and this completes the proof.
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5.5. Location of roots and root asymptotics of the Type III exceptional Laguerre polynomials
The following theorem gives us exact location of the m + k (real) roots of the Type III exceptional Laguerre

1 llle-1
polynomial L, "> (%)

Theorem 5.5 (see [31]). Suppose m,1+e €N and € < 1 . The Type III exceptional Laguerre
polynomial et (x;) has 1 + € positive roots which interlace the roots of LS (x;) and m negative roots which

mm+1+e

interlace the roots of L,F(—x,). More precisely. let {(9\’5):,;’ }:71 C (0,0) denote the roots of the Laguerre
polynomial LE (x.) (known to be simple). and let [Z?;i'}zl € (—o0,0) denote the (simple) roots of the Laguerre

polynomial L€ (—x,). with both sets ordered as follows:
Zmn < Zman—1 < S Zpy <0< (X0)g 1 < (Xs)e 2 < < (Xe)e e -
Then

(a) each of the k intervals

(0,22, ()2 1 ()0 ) o s ()% emss (102 ). ((x0)E e 0)

1lLe-1
contains exactly one root of Lm Tt ite -

(b) each of the m intervals
(—m me) (me, mm l) (Zmz Zml)

- . . o I1le—1
contains exactly one root of Lonm+1+e -

Proof. The key identity in establishing both (a) and (b) is the identity given in (5.24), namely
Lg'f‘ril+]l+s(xs) = 26[’2—1()[5)"":116(_)65) + C‘m + 1)"‘2 (XS)L;nil(_xs) - (?n + 1+ E)LZ (xs)L;nE(_xs)'

We first prove part (a). Letting x; = (x)g ;(i = ., € ) yields

IH € € — €
mm+11+s ((xs)e n) = 2(1 + E)L ((xs)s,i)l'me (_(xs)e,i)' (5'4’1)
Since Ly (—x,) has no roots in (0, @) and L,y (0) > 0. we see that
r(—(x)E) =0 (i =12..6€)
Furthermore. from the classical theory. the roots of Lg (x,) and LE_, (x;) interlace and since Lf ,(0) > 0. we see
that
Li—1((xs)g,1) = 0.

Hence. from (5.41). we deduce that
sen (LI, ((05,)) = son (Loa((0)2)) = (1P = 1..6). (542)
It follows that L7 . _(x.) has aroot in each of the e — 1 intervals

T {002 20 (10)2.2), (% 2 102 ) ()8 e (20020,

From (5.27), ngrf;]i +e(0) < 0: hence. from (5.42) with i = 1. we see that there is another root

of meﬂﬂ (x) in the interval (0, (x,)g ;). Lastly. from (5.20). we see that x, = (x;)§ ., and x; = (x,)E . are

the two right-most extreme point of L‘;ngr 14e(x%s) . We already showed that there is a zero

tLIHE 1

mm+1+e (Xs) between these two extreme points. Therefore, regardless of whether x5 = (x;)¢ . is a relative

HIe—1

maximum or relative minimum point, the graph of y = Lomtite (x;) necessarily must cross the x-axis once more

at a point x; > (x;)f . . Therefore. L{ni et (x) has an additional zero in the interval ((xs)irf,w).
HlLe-1
L

Summarizing, we have shown that L »- 25 . (x;) has (1 4 €) distinet. positive roots.
The proof of (b) is similar. In this case. from (5.24), we see that

I,
Lnmeise (Zmg) = (m + DLE (z25)Lni (= 20%). (5-43)
Since LE (x,) has e positive roots and LE (0) > 0, we see that
LE(zp5) =0 (i =12..,m). (5.44)

Moreover, since L, ;(0) = 0. it follows from the interlacing property of the roots of L,,; (x,)and L, 5, , (x,) that
Loty (—zp5 ) = (D' (i=1,2,...,m).
Hence, from (5.43) and (5.44). we see that
[ . - i
sen (LIS o ()(zm) ) = sem (L;H(—zmi)) = (-Di(i = 1,...,m).
This implies that each of the m — 1 intervals

(me: mm 1) (szJ

- HLe-1 ; . ) ILe-1 .
contains a root of L. (x;) We claim that there is an addmonal root of L-70 . (x;) in the
ILe-1

interval ( ™, z€ ) Indeed. from (5.20). x; = z,,%, is the left-most extreme point of L

s Zmtm (x,) so, as in part

mm+lte
(a), there must be another root of L‘:i}i+11+e (x5) at a point z* < z,5, . This completes the proof

that [/t

mmt1+e (¥s)has m roots in (—oo,0). Combining this fact with part (a), we have found all m + k roots

of Lfnf:fn S 4e (x,) and this completes the proof of the theorem.
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Remark 5.4 [31]. Whene =0, Lﬂf;; 1+ (xs) has one positive root: the exact location of this root cannot be

specifically identified. When m = 1. the Laguerre polynomial L7 (—x,) has a unique root z; 7 < 0. In this case.

e . ‘ He-1 , .
the above theorem indicates there is a unique root of Ly, 4. (x) in the interval ( m,zm).

We call the m negative roots of L‘:i;i;ll +e(x5) above the ‘exceptional’ roots of L‘: ‘;111 te
the asymptotic behavior of the roots as e — oo,
Theorem 5.6 (see [31]). Ase — oo;

(a) The exceptional roots of L‘l}; +11 te

(x;) . We now discuss

(x,) converge to the roots of L;,f(—x,).

(b) The first positive root of L{fn‘r e 4e (xg) tends to zero.

Proof. Recall, from (5.12), that
Lovmtaee () = x5 LEEL () Lf (—x) + (m + 1)LE () Lyt (—x,). (5.45)
Now, the outer ratio asymptotics for the classical Laguerre polynomials give

LS (x5) Xs \2 1
== + O( ), ase -
LEF1(xy) ( 1+E) 1+e
with convergence uniform on compact sets that avoid the positive real axis. Therefore, dividing the identity in
(5.45) by LF, (x,) and taking the limit as € — oo, we obtain
LHIE 1 ( )
S

mm+tilte
LT3 (xs)
Part (a) follows by Hurwitz's theorem [28. Theorem 1.91.3] and Theorem 5.5.

By [28. Theorem 6.31.3], the smallest zero of the classical Laguerre polynomial LE (x,) goes to zero ase — oo,
Therefore. by part (a) of Theorem 3.5. the smallest positive zero of L‘;‘;f,f:‘l 1 (x5) goes to zero, also.

5.6. Type III exceptional Laguerre spectral analysis [31]

The maximal domain associated with the differential expression {’1;;;"‘5_1[. ]. given in either (5.3) or (5.3). in the

Hilbert space L? ((0, »); Wn{fj’s_l) is defined to be
A= £ (0,) > € [ 1.1 € ACie(0,); £, 6447 [f] € ()< )} (5.46)
The associated maximal operator

THI,E—l:,D( IHE—].) c 12 ((0 oo); W, ms— ) L2 ((0 oo); W, me— )

1im

= XL (—X5), ase — o,

is defined to be
THLe=1 f= 1?111,5—1 7]

im

fED( HIE 1 c= A;;;:,E—l-

For f,g € A7 Green's formula may be written as

f A g () dxs = [ g1l + [ FOx) e )W ),
s 0

IMe—1

where [.,. T, (.) is the sesquilinear form defined by

[f, gl M (): = xge ™ (Lt (—x0)) " (f () 9" () — £/ (x:)g () (0 < x5 < <o)

and where

[f glm < (x = [f. gl () [f gl (0):= Jim [f, g1 o) = lim, [, g1 ).
The adjoint of the maximal operator in 2 ((0, w); W,;Z”’E_l) is the minimal operatmT(ff?LE ! defined by

THI,E—l f= 3111,5—1[](]
feza(Tme—nOm)—{feaf”““f o

Both endpoints x, = 0Oandx, = oo are singular points of {’ﬁn” “~1.]. In fact. x, = 0 is a regular singular endpoint
in the sense of Frobenius and x, = oo is an irregular singular endpoint. The associated Frobenius indicial equation
atx; = 0isr (r + € —1) = 0. Consequently. two linearly independent solutions of -Pi,?‘efl[y] = 0 will behave
asymptotically like

xs=0

=0forallg € alhs1y.

z1(x:):=1 and  z(x.):=xEt

near x;, = 0. Sincee < 1. it is clear that both solutions are in L2 ((0 oa); W,,;Z”’E_l): in other words, #7571 [] is
in the limit-circle case at x;, = 0.
For the analysis at the irregular singular endpoint, x; = oo, we obtain two linearly independent solutions using the

standard reduction of order method. Solving the differential equation fﬂff’e_l[y](xs) = 0 we have a basis of
solutions {y,; (x,), ¥»(x,)} . where

yi(x) = 1€ 12((0,00); W)
and
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v = | “ret(Laf ()

a te

Mimicking the proof of the Type I case in Section 3.2, we find that y, ¢ L? ((0, ); W,;'L" "’571) .Consequently. we

dt (€ = 0is arbitrary).

obtain the following result on the deficiency indices of Ty 4™,

Theorem 5.7 [31]. Let Téﬁif_l be the minimal operator in L? ((U, m);wgi""'e_l) generated by the Type III

exceptional Laguerre differential expression f‘;,{f’f*l[.] . For € < 1. the deficiency index of T;J‘:f*l 1s(1,1).

For e < 0. we must impose one boundary condition atx, = 0 in order to obtain a self-adjoint extension of the
minimal operator T(,Igf_l‘ We seek to find that self-adjoint operator which has the Type III polynomials
{me_1 (xg)Jm+1+4+4e = 0,m+ 1,m + 2,m + 3,...} as eigenfunctions.

mm+1+e

HLe—1
T

Note thatx, —e —1 € L2 ((O, o); W,;']”fﬂ) since € < 0.4 calculation shows that
—2(e — Dy L (x)

_pf”,e—l —e+17 —
m [x5 ] LE(—x.)

max; €t

Simce

2 e—1

w | ymetlp—etl 1 o 2
|3l’5 _ m—1 ( xs) Xs dl’s <= L—ejl(_xs) xs—e+l€,—xsdxs < o,
| 75— _ 2 _ 4 m—1
o m(X) | (Laf(-x) (Lae(0))* o
we see that £ '[x,—e+1] € L2 ((O, ®); W,fff’e_l) . Consequently, x, —e—1€ AT for e < 0.
Moreover, the calculation

e ¥s

e ¥s
[xs ¥, 1071 (0) = (e — 1) lim ———— # 0,

0L (=)
proves that 1 &€ D( T(ffr‘;’f_l ). the minimal domain. and thus we can use the function 1 as an appropriate Glazman
boundary function. For f € dfn”f*l . further calculations show that

0=[f, 1057 0) = lim_x£ f'(x)

x50

and

lim x¢ (Lm‘e_l (xs)) =0.

xg—50 mm+1+e

Summarizing. and using Theorem 5.4, we obtain the following theorem.
Theorem 5.8 [31]. Suppose € << 1. The operator

T;]I.',e—l :Z( T;;’I,e—l) c ]2 ((O,m); W‘riHJe—l) Lz ((0 o0); m;ﬂ,e—l)l
defined bv

T]ifLE_lf — fi;';',E—l [f]
feo(Th )= {f € alllet

Jim, x67(x) = 0}, (5.47)
1s a self-adjoint extension of the minimal operator Tgﬁfﬂ in1? ((0, ®); Wn‘;" 1’671) having the Type III exceptional

Laguerre polynomials
{ -1

m,m+1+e

lm+14+e=0m+ 1m+ 2m+ 3,...}
as a complete set of eigenfunctions. Moreover. the spectrum of T,ﬁf"'e_l

explicitly by

consists only of eigenvalues and is given

J(T,;”’E_l) =2elm+1+e=0m+1m+2,m+3,...}.
5.7. Spectral equivalence of the type I and the type III operators [31]
Above we mentioned that, formally, the type I and type III differential expressions are related by the gauge
transformation (5.4). From the point of view of spectral theory. the multiplication operator is an isometry between
two weighted Hilbert spaces. and the gauge transformation is interpreted as intertwining relation between two
unbounded. self-adjoint operators. Thus, we must first establish
Proposition 5.1 (see [31]). Suppose that € < 1, and set (1 + €) = € — 1. Then the multiplication operator

M(xek=®) « f(xs) > X3¢ f (o), £ € 12((0,00); W)

is an isometry L? ((0, ™); ergl_e) - 17 ((O, w); WH{LH'I_E) X
Proof. This follows directly by an examination of the two weights:
1-¢
xS

(e (—x))”

xéfeefxs x;l*f

(1t ex) ()’

e s e %

Wt~ (x) = W () =
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The next task is to define the appropriate self-adjoint extension of the type-I minimal operator. From (3.10) we can
interchange the roles of 1 and x;'*¢ to obtain another interesting self-adjoint operator S;’;Il_E . generated
by fi;ll_s[. ].in 12 ((0, 0); W,,‘r;l_f) with different boundary conditions. Observing that

0=[f,2*"Tm “(0) = lim_(xsf"(xs) + (1 - ©)f (xs)) = 0, (5.48)
we are now in position to prove the following the{}l‘ﬂ;l regarding the self-adjoint operatorSLom . defined below in
(5.49). in the space L? ((0, 0); W;ﬁ;l_s). This operator S.,‘;’,}_E is only quasiisospectral to the classical Laguerre
operator in the sense that the commutation transformation that relates the classical Laguerre operator to its Type III

counterpart represents a state-adding transformation in the sense of [4].
Theorem 5.9 (see [31]). Suppose € < 1. Define

SR D(5E0) & 12 (0,000 Wt 0) = 12 ((0, 00 W)
By
Sf,l E _ Il GDc]
2(Sm ski= )= {f g all=e llm (xsf () + (1 —e)f(x5) = 0}
Then SE7¢ is self-adjoint in L2 (((] ); W™ E) Fm'rhelmore.

{x’lJrEL';fm]ﬂie(x Jim+1l+e=0m+ 1m+ 2m+ 3,...}

(5.49)

forms a complete set of (orthogonal) eigen-functions of S,;, Letin 12 ((0 o); W, ; - 1) where

(e e lm+14+e =0m+ Lm+ 2,m + 3,...} (e<1)

1s the sequence of Type III exceptional Laguerre polynomials which we introduce below m Section 5. Finally.
J(S,‘;'f_l)= p(S;';f_l) ={2e|lm+1+e=0m+ Lm+ 2,m + 3,...}.
Proof. The intertwining relation (5.4) implies that the multiplication operator M(x£71) is also an isometry between
the maximal domains AZE™1 - A=€+1 - gee (3 6) and (5.46) for the relevant definitions.
Our next claim is that f € df €1 satisfies the type I boundary condition shown in (5.49) if and only
if M(JcE (f) satisfies the type III boundary condition shown in (5.47). To prove this claim. let f € Af,’ffl .
set f(x,) = x&71L 'f(x). and observe that
XS () = x5 (e — DS f(xs) + x5 (x)) = (€ — D (xs) + xef " (x).
Therefore
ShTH = MG ) o ST e Mz,
where the multiplication operators refer to the isometries between
12 ((0, ®); W?i‘ffl) and L2 ( (0, »); Wé’efl) restricted to ZD(S:;f*l and 2?(5,2“"671) . respectively. The present
claims nowfollow by Theorem 5.8.
Appendix. Examples of type III polynomials (see [31])
The following is a list of a few Type III exceptional Laguerre polynomials {L‘:f .y +ll +E}f0r various values of m and
n. A similar list of Type I and II exceptional Laguerre polynomials can be found in [21].
Form = 1we have:
m e— 1( x)=1
me Mxg)=x2 —2(e —1Dx; + (e —1)e
mf Mxs) = —x2+3ex? —3(e—1D(e+ Dx, + e(e—1)(e+1)

Lf{f‘l( x5) =%x4 - z(e +1)x2 + (4 2)(3e — 1)x2 — (26 — 2)(e + 1) (e + 2)x, +%e( e—1)(e+1)(e+2)
Ll (x) = ——xs += (e + 2)x2 —g(e +3)(2e + 1)x2 +§(E +2)(e +3)(2(e — 1) + 1)x2 —g(e —1)(e

1
+ 1)(e +2)(e + 3)x; -I—g(f —1De(e+ 1)(e+ 2)(e + 3).
Form = 2 we obtain:
) =1

Lm,e—l ) _% 3 3(52— z)xsz +3(f—1)2(f — Z)XS—(E_D(ZE — 2)e
LV (%) = ——x P42(e—1)x2—(e — 2)Be+1)x2 +2(e —1)(e — 2)(e + 1)x,
7(6—1)(6 — 2)e(e+1)

2
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L (x) *4 —%x;‘+§((f—1)2+26 - 3)x§—w%2
+5(E*1)(E — 2)(E+1)(E+2)x _(E*l)(f — De(e +1)(e +2)
4 5
L‘Zﬁe_l(:xs):—l—lzxg—&-e-'_lxss 5(e—1)*+ 19(6—1) + 6 X (e + 1)( E+3)(5(E—1)— 3) . .
(E — 2)(E+2)(E+3)(5E71) 2 (e —1)(e — 2)(e + 1)( E+2)(E+3)

(6—1)6—2)6 E+1)(E+2)(E+3) ’
12

Form = 3:
Ll;ij,e—l(xs) =1

_ 1 2(e — 3) .
Ly () = gxd =53 + (e — 2)(e — xZ -

+('E— (e — 3)(e — 2)e

2(e —1)(e — 2)(e — 3)
3 *s

5(e 762) ., 5(e—3)2e—-1) . 5(e —3)(e —2)(2e+1) ,
x x2 + x

“IE l( s)__f s = 5 5
_5(6—1)(6 — 3)(e — 2)(e —El)x +(E—1)(E — 3)(e 6— 2)e(e+ 1)
6 s 6
[ty y = (e ; 1)x55 N 5(e—1)* + € — 13x;‘ _(e-1)(e *33)(55 + 8)x53
N (e —3)(e — 2)(E+2) (5e ++1) (E— 1)(e — 3)(e — 2)(e + 1)(:E+2)x
(6—1](6—3)€—2)E(E+1)E+2) 2
12
() = _i ; +Ex§ 7(( 6—1)2 + 2¢ — 4)x55 +356((E—1)326+ 2e —8) 4
7(6 — 3)(e +3)(5(e — 1)2 10(e — 1) — 3) +7(E — 3)(e — 2e(e+2)(e+ 3)x2
B 7(e —1)(e — 3)(e — 2)(6 + (e +2)(e +3) . 2
N (e —1)(e — 3)(e — 23)66(6 + 1)(e+2)(e+3)
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