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ABSTRACT

The investigation, Stability Analysis on Double Diffusive Convection with Thermal Diffusion and Internal Heat
Generation and Absorption was carried out for Newtonian fluid systems. The Boussinesq approximation was used
for the density variation with temperature and concentration. Also, the Rosseland approximation was adopted for
the radiative flux. Governing equations that incorporate the coupling effect of thermal diffusion and internal heat
generation and absorption is developed. The governing equations are non- dimensionalised, and the emerging
nonlinear partial differential equations governing the flow are solved using the regular perturbation, normal
mode representation and linear stability analysis processes. In order to compare our mathematical solutions to
findings from existing literature, profiles were developed using Mathematica software to test for the sensitivity of
the pertinent parameters on the onset of instability of the system. The results showed that for a Newtonian fluid,
the increase in Lewis number, Le, internal heat generation, Q, and magnetic field, M, parameters has a delaying
effect on the onset of instability, with higher values of pertinent parameters resulting in a greater stabilization of
the system, while an increase in the Soret, porosity and radiation parameters increases the onset of instability,
that is, higher Soret, porosity and radiation parameters destabilizes the system. Our results are in agreement with
existing literatures. In conclusion, we were able to investigate the stability behaviour of Double Diffusive
Convection for Newtonian fluid systems experiencing the coupling effects of thermal diffusion and internal heat
generation and absorption using linear stability analysis.
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I. INTRODUCTION
Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection caused
by two different density gradients which have different rates of diffusion as a result of density variations within
them due to the composition of the fluid or by thermal expansion, that is difference in temperature. When a fluid
is heated from below thermal expansion takes place, molecules from below which becomes less dense as a result
of the heating moves upward away from the heat source while molecules which are above (cold) replaces them
downwards because they denser. This process is a repeated cycle called heat transfer through convection [1].

Double diffusive convection is relevant in nature and industrial applications. Such complex flow
structures are often found in a wide variety of fields namely: geosciences, oceanography, astrophysics and so on
[2]. Thermal diffusion plays an important role in the study of compositional variation in hydrocarbon reservoirs,
hydrodynamic instability of mixtures and mineral migrations and mass transport in turning matters [3]. Internal
heat generation and absorption as pertains to moving fluids is key in several physical problems dealing with
chemical reactions and dissociating fluids. The analysis of the convection problem is also considered to be of
great importance in structures due to transportation of fluid molecules from one point of a media to another caused
by heating, hence notable researches have been carried out in this area also.
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[4] carried out an investigation for a fully developed unsteady magnetohydrodynamic free convection
flow of a viscous incompressible and electrically conducting Newtonian fluid through porous medium bounded
by an infinite vertical porous plate, in a rotating system in the presence of heat source and thermal diffusion. It
was observed that the velocity boundary layer condenses with the increasing value of Schmidt number, flow
reversal is prevented for low speed of rotation, high value of chemical reacting species and high value of magnetic
parameter.

[5], considered similarities solutions of natural convection with internal heat generation and came to the
conclusion that the presence of internal energy generation leads to increased flow and in some cases, temperature
that exceed the wall temperature, especially for fluids with Pr < 1.0.

[6], studied double diffusive natural convection heating from below the wall in a closed cavity was
studied with direct numerical simulation method. The flow characteristics are presented as isotherms, iso
concentrations, and streamlines. The results show that Rar has signification strong effects on average Nusselt
number, with a more considerable Rar, the value of Nusselt number higher. These were also found to increase
with increasing buoyancy ratio for aiding flow and decrease as buoyancy ratio decreases for opposing flows.

[7], considered the effects of concentration based internal heat and vertical magnetic field on the onset
of double diffusive convection in a horizontal porous layer using normal mode analysis. They concluded that the
concentration based internal heat, y, hastens the onset of instability while the magnetic field, H,, and solutal
Rayleigh number, R delays the onset of instability in the system for stationary and oscillatory convections. They
also presented the influence of Lewis number, L, and porosity, €. [8] inquired into the effects of soret and magnetic
field on thermosolutal convection in a porous medium with concentration based internal source. They employed
linear stability analysis to determine the onset of instability. It was established that the stability of the system
occurred for values of internal heat, y, < 0.7, while instability sets in for y, = 0.7 for all values of Hartmann
number, H,, and Soret, S,..

[9], examined the internal heat source and reaction effects on the onset of thermosolutal convection in a
local thermal non-equilibrium porous medium, where the temperature of the fluid and the solid skeleton may
differ. Their results detect that utilizing the internal heat source, reaction, and non-equilibrium have pronounced
effects in determining the convection stability and instability thresholds.

[10], suggested that possible heat generation effects may alter temperature distribution and therefore,
particle deposition rate. The effect of internal generation and absorption is applicable in reactor safety analysis,
metal waste, spent nuclear fuel, fire and combustion studies, strength of radioactive materials and so on.

[11], investigated double-diffusive convection with chemical reaction in a Darcy—Brinkman porous layer,
heated and salted below. The effect of the thermal contribution of the chemical reaction was found to be more
effective on the convective instability in comparison with the solutal contribution of the chemical reaction. The
reaction parameters ki k>, enhance the onset of convection in the stationary mode, however, in oscillatory mode,
the onset of convection is seen to be delayed.

The impact of viscous dissipation and radiation on unsteady magnetohydrodynamic free convection
stream past an endless vertically warmed plate in some optically thin surroundings with time dependent suction
was studied by [12]. They sort for the impact of key parameters on the temperature and velocity profiles. Their
results show that increase in Grashof number and Eckert number results in an increase in the velocity profile while
increase in magnetic field, radiation and Darcy parameters leads to decrease in velocity. Also, increasing the
Eckert number gives rise to an increment in the temperature while increase in radiation and magnetic parameters
results in a decrease in temperature during the cooling of the plate.

[13], numerically studied micropolar fluid behavior on unsteady two dimensional oscillatory electrically
conducting viscous, incompressible Boussinesq fluid flow along an unbounded vertical plate with periodical
temperature variation about an average non-zero constant value with item. This study is useful in the production
of electro-conductive polymer.

In a research carried out by [14], on unsteady MHD free convection warmth and mass exchange flow of
Newtonian flow past boundless vertical plate with homogenous chemical reaction and heat absorption, they non-
dimensionalized the leading equations and solved them using multiple perturbation method which were subject to
some boundary conditions. This result showed that an increase in the radiation absorption parameter led to an
increase in velocity, temperature and skin friction.

[15] numerically studied the problem of unsteady free convection with heat and mass transfer from an
isothermal vertical plate in a porous media. With the aid of boundary layer, Boussinesq approximation and Darcy-
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Brinkman Forcheimer model, the power law fluid was modelled. This research revealed that the friction factor,
heat and mass transfer tend to a steady state value as the time tends towards infinity.

The literatures reviewed, shows that double diffusive convection in porous media is a multifaceted
phenomenon influenced by coupled physical processes such as temperature gradients, solutal gradients and
radiative heat transfer. While foundational theories by [16], [17] and [18] remain indispensable, contemporary
advancements now allow richer modeling of real systems involving thermal radiation and internal energy sources.

3.1 Mathematical Formulation:

Consider an infinite horizontal porous layer of thickness H filled with binary fluid and confined between two rigid
plates, see Figure 3.1. The horizontal plates are located at Z' = 0 and Z' = H and heated from below, therefore
different temperatures T; and T, and solutal mass concentration C; and C, respectively exist at the bottom and top
of the rigid plates such that AT = T; — T, (> 0) andAC = C; — C, (> 0).
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Fig 1: The Physical Configuration.

We apply a magnetic field of strength B perpendicular to the plates. The saturating fluid is assumed
incompressible, Newtonian and electrically conducting. The Boussinesq approximation is a key simplification for
problems in which fluid varies in temperature (or composition), driving a flow of fluid and heat/mass transfer
[19]. The onset of thermal and solutal convection is under the Boussinesq approximation, consequently we adopt
the state equation [20],

p = poll = Br(T" = To) + Bc(C" = Co)] (M

We take into consideration the absorbing and emitting characteristics of the fluid radiating in a non-scattering
medium. Under the assumptions and considerations above, the governing equations are presented as:

7.V =0 (2)
Po (Z—f,, +V. |7’l7’) = —V'P 4+ v’V — u% +FEo +pg 3)
poCp (";—: V. V’T’) = kV"T = V'.q', + Qo(T' —Ty) 4)

k(& + 7.re ) =v(Dv e + D*C, vT") 5)

where 17’, T, and C, are velocity, reference temperature and concentration respectively.

The boundary conditions are:
V=0, T =Ty+T, —T,, C'=C +C -G, at Z'=0 (6a)

V=0, T'=T, C'=C,, at Z2=H  (6b)
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According to the Boussinesq approximation, density variations only pertains to the buoyancy term in the body
force term, pg, consequently Equation (3) becomes:

av’ 7 oI rpr 2 171 v’ ’ Py I A o
po (5 + V'.TV") = =P 4+ uV " V' = = gBrpo(T" = To)é, + GBepo(C’ = Co)é, + Fem (7)

By the absorbing and emitting characteristics of the fluid, we use the Roseland approximation [21] for the radiative
flux, hence in equation (4), we have:

, acxy'T!*

q,=-T1 ()

We then assume that the difference in temperature within the fluid and the porous medium is sufficiently small.

By this assumption, T" can be expressed as a linear function of the temperature, T', and expanded about the free
stream temperature, T, using Taylor series and neglecting higher order terms to obtain [20]:

T ~ 4T,3T' — 3T,*

We then have

! 40* ! 3 4

qr=—¥‘7(4ToT —3T0)

’ 160+ 1

q,=——5T°V'T ©)

Next, we consider the electromagnetic force, F,,,, = J, X Bin equation (7). The electromagnetic force is defined
by:

Jo=0(-V'Q,+V'xB) (10)

With electrically insulated boundaries, the electric potential Q, is constant [22]. Thus, the induced magnetic
field is negligible and equation (10) reduces to

J=0(l' xB) (11)

and consequently, F,,, in equation (7) becomes

o(V' x B) x B = —aB?V' (12)
Substituting Equations (9) and (12) into Equations (7) and (4) we obtain the governing equations as:

av’ 7 o 1pr 12 17 = 7 A = ’ N 44 7
po (S +V.FV) = VP +uv” V' = GBrpo(T' = To)é, + §Bepo(C’ = Co)é, — u=— oB?V' (13)

poCr (50 + V'.V'T") = KV T + 22T 30T + Qo (T" = T) (14)
at 36
ac’ 120 vaT 1 T 12 Ay * 12y
k(35 +7.7'C") =v(DV”C' + DG 7°T") (15)

subject to the boundary condition in equation (6a) and (6b).

The last term in equation (14) is based on the amount of heat generated or absorbed per unit volume, with Q,
being constant coefficient that may take either positive or negative values. The source term represents the heat
generation that is distributed everywhere when Q, is positive (@, > 0) and heat absorption when @, is negative
(Qp < 0); Qo = 0 is the case where there is no heat generation or absorption.

We present the non-dimensional variables as follows:

_th = HV' I _T'-Ty
t_ﬁ ] V_T: (xly,z)—g(x;y;z); H_Tl_TZ
c'-c pP'H? 160% Ty H?
= = , =—20 , X =— (16) Under these non-
Cl—Cz povz 3ké k
M= o B2H?3 0= H2Qg _ D'Co(T1-Tp)
PoVv ’ poCpv’ D(C1-C7)

dimensional variables, the governing equations take the form:
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?9—‘:+V.\7V=\7P+\72V—i—T9+i—CC—XV—MV (17)

99 —Ltp2gr Rpe2

V.V = V20 + V20 +QF (18)
% L v.vC =2 (W2C + SV20) (19)

at ! Le

Subsequently, non dimensionalizing the boundary conditions, Equations (6a) and (6b) with relevant variables
from Equation (16), we obtain our dimensionless boundary conditions as:

V=0 6=1 (=1 at z=0 (20)
V=0 6=0 (=0 at z=1 (21)
3.2 Stability Analysis

3.2.1 Basic state and flow linearization

. o . . a .
The basic state of the system is given by the static solution V' = 0 and Py 0 of equations (17) — (21). Thus, the
static temperature, T , solutal mass concentration, Cs and pressure, P, are obtained as:

1
PS(Z) = P_rf(RTTs - RCCS) dz (22)
_ PrQ _ PTrQ , PrQ
T,(z) = cos ( o R)) z — cot ( o R)) sin < r R)> z (23)
Cs(2) = (S]_iqu)Sc [cotVesinvez — cosvez—z + 1] —z + 1 (24)

3.2.2 Linear Stability Analysis

To access the stability of the state solutions, we let the initial solutions described by equations (22), (23) and
(24) to be slightly perturbed. Thus, we define a perturbation of the form [23]:

V=0+Wwuvw),0=T+6, C=C+C, P=P+P (25)

Upon substituting these perturbations into the non-dimensional Equations (17) — (19) and neglecting the
products of disturbances, the linearized perturbation equations are obtained as:

(%-V2+x+M)@wv,w) =VP - (R - RO, (26)

(Pr% —(1+R)V? - PrQ) g = Prw 27)
9 1 o\~ _ 1 ar2i

(E‘EV )c_w+55|7 0 (28)

w=0 =1 C=1 at z= (29)
w=0, 6=0 C=0 at z=1 (30)

Proceeding on the analysis, we reduce equation (26) to a scalar equation by taking the double curl of it, using the
equation of continuity (V.V=0) and keeping only the vertical component of the velocity yields:

9 2w 1 = =
(5—72+X+M)§:P—T(RTV,$9—RCVfC) G1)
5 2% | 8% . . . .
Where Vi = pyes + 3 1 the Laplacian operator in the horizontal plate.

3.2.3 The dispersion Relation

We next examine the reaction of the system to all possible disturbances. This can be
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accomplished by expressing an arbitrary disturbance as a superposition of certain modes. Accordingly following
[23], we apply the normal mode representation of the form

w=W@f(x,ye 0=02)f(xy)e” C=¢@f(xy)e” (32)

Where 2 = 2z + if); is complex and (2, {2 are real numbers. Substituting equation (32) into equation (27),
(28), (29), (30) and (31) we obtain the equations below:

(D? — a?+x Q—x N)0 = —x W (33)

(D? — a% — Le)¢ = —S(D? — a®)0 — Zv—e (34)

(D? = a?)(D? —a? — x — M — Q)W ——R;a?0 + —Rca’p = 0 (35)
g2 9% _ 2 2 __pPr _9 2 _ _ 2 A _ q —

Note: 7 _azz_D a?, °<_(1+R)'!2_6t' Vi=—-a*, C=¢, 6=0

subject to:

W=0 6=1 ¢=1 at z=0 (36)

W=0 0=0 ¢=0 at z=1 37)

D? = 0 on a free surface. (38)

where a? is a wave number arising from the separation of variables.
Next, we reduce the system (33), (34) and (35) to a singular scalar equation by eliminating

0 and ¢ through solving for the determinant of a matrix as seen below:

a’R a’R
(D?-a®)(D?—-a?—y-M-0) — L -
P, P,
e (D? — a’+x Q—x ) 0
1
— —-S(D? —a?) (D? — a? — Le)
Le
a®Rr

(D? —a®>)(D?—a? —y—M —D)[(D? — a’+x Q—x 2)(D? — a®? — LeQ)]W +P—[oc (D? —a? — LeN) —
— = (D? — >+ Q- xz)] W=0

a?R.

oW +
Pr

[—oc S(D? — a?)
2
(D2 —a®)(D?2 —a? — y—M — 2)(D? — a®>+x Q—x 2)(D? — a? — Le)W + %RT(D2 —a—LeMW —
a’R¢
Pr

[i (D? — a?+ Q—x ) + S « (D? — az)] W=0 (39)

now subject to:

W=D*W=D*W=-.=0 at Z=0 or 1 (40)
Where;

a2 a5 _ Pr _d

E+W_ o VT

For the dispersion relation (39) in which the boundary condition (40) holds, we assume the solution of (40) for
the lowest state in the form below [17]:

W =wysinnz W, is a constant 41

Substituting equation (41) into (39) and simplifying for R; we obtain:
2
L (D% — a2 - Lefl) = —(D? — a®)(D? — a? — y — M — Q) (D? — a?+x Q—oc 0)(D? — a® — Le) +

2 r 2
LR (P2 — g4 Q—x 0) + L2852 (p2 _ g2)
PrLe Py
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Substituting D? = w2 in the above equation we have:

— (1+R) 2 4 2Y(r2 4 o2 24 ,2_PrQ  Pra 24 2
Rp = pET [(T[ +a’)(m*+a*+xy+M+02) (n +at - (1+R)) (m* +a” + Le2) +
a®Re( 2, 2 _ PrQ , Pro a%SRc ;5 . 2
PrLe (n ta et (1+R)) ey (*+a )] 42)

The transition from stability to instability occurs through a stationary state. Thus, to study the case of marginal
stability which corresponds to stationary convection, we set 2 = 0 in equation (42) to obtain

_ _a+R) 2 23 (2 2 2 2 _ _PrQ 2 2 a*R¢ (2 2 _ _PrQ
Rr = Gorees [(n +a?)(m? +a?+ y + M) (n +a (1+R)) (? + a?) + 5 (n +a (1+R)) +
aZSRC (7_[2 + az)]
(1+R)
Therefore,

_(+R) , 5 2 2 2 2 2 PrQ (1+R)R¢ 2 2 PrQ
Ry = 2 (m*+a* )T +a*+xy+M) (n +a (1+R)) + Erad)pie (n +a (1+R)) +R.S
(43)

Let a = a, and the corresponding thermal Rayleigh number be R.,; in equation (43) we have:

pro
(1+R)

PrQ ) (1+R)R,

2 2
e+ a.” —
(1+R) (n2+ac2)PrLe ( ¢

(44)

(14+R)
Rreri = 7@2 +a)(m?+al+yxy+M) (7‘[2 + a2 — ) +R.S

where a, is the critical wave number and Rr.,;is the critical thermal Rayleigh number. The critical wave number
for the onset of instability is determined when:

ORTcri =0 (45)

dac

Using condition (45) we differentiate equation (44) in parts to obtain:

0+ () o+ 0 2 % 0] [l + 02 4 0] (B2 ¢

2ac__ReQ _
e 1o =0 (46)

Simplifying equation (46) we have:

Le(1 + R)[-2r%a.? + 2m®a.* — 2w ®ya,® — 2n®Ma,? + 8w *a.® + 2m % ya b + 2n *Ma, ® + 7n%a B +
xa®+ Mas® + 2a,'° — 710 — w8y — M| + PrLeQ[n® + w6y + w°M + 2m%a,? + 2ntya ? +
2n*Ma? + ¥ yat + n°Ma* — 2n%a b —aB]+ a*R.Q = 0 47)

Rearranging the terms in the order of a,:

[2Le(1 + R)]a.t® + [7Le(1 + R)m? + Le(1 + R)x + Le(1 + R)M — PrLeQla.® + [8Le(1 + R)m* +
2Le(1+ R)m 2y + 2Le(1 + R)m*M — 2PrLeQn?]a.® + [2Le(1 + R)m ® + PrLeQm?y + PrLeQm*M +
R.Qla.* + [2PrLeQm ® + 2PrLeQn*y + 2PrLeQmn*M—2Le(1 + R)n® — 2Le(1 + R)m ®y —

2Le(1 + R)m°M]a,? + [PrLeQn® + PrLeQm ®y + PrLeQm °M — Le(1 + R)n'® — Le(1 + R)n8y —
Le(1+ R)n®M] =0 (48)

IV. RESULTS AND DISCUSSION

To be able to understand the physical implications of our model and compare our mathematical solutions to
findings from existing literatures, profiles were developed using Mathematica software to test for the impact of
various parameters such as Lewis number, Le, Soret parameter, S, Poroxity, y, Heat Source, Q, Radiation, R, and
Prandtl number, Pr, on the onset of instability for our system.
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Figure: 2: Effect of Lewis number, Le, on the onset of instability for:

@=1R=1Rc=1708,M =1.0156,S =1,y =2
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Figure: 3: Effect of Soret parameter, S, on the onset of instability for:

Q=1R=1Rc=1708,M = 1.0156,Le = 1,y = 2
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Figure: 4: Effect of Porosity, y, on the onset of instability for:
Le=1,Q=1R=1Rc=1708,M = 1.0156,S =1
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Figure: 5: Effect of internal heat parameter, Q, on the onset of instability for:

Le=1,y=2,R=1,Rc =1708,M = 1.0156,S =1
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Figure: 6: Effect of Radiation, R, on the onset of instability for:
Le=1,y=2,Q=1,Rc=1708,M = 1.0156,5 =1
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Figure: 7: Effect of Magnetic field, M, on the onset of instability for:
Le=1,y=2,R=1,Rc=1708,R=1,S=1
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4.2 DISCUSSION

Figure 2: shows results for the effect of Lewis number, Le, on the onset of instability of our model. It is
observed that as Le increases, thermal Rayleigh number R decreases, hence delaying the onset of instability and
causing a stable system. An increase in Lewis number, represents an enhanced solute diffusivity, which results in
a stronger stability of the solutal gradient that suppresses thermal convection. This leads to a reduction in thermal
Rayleigh number, indicating increased stability. This result aligns with [24], who reported that high Le values
suppress convection in porous media.

Figure 3: indicates the effect of Soret parameter, S, on the onset of instability. It is noted from our plot
that as the Soret value increases, the thermal Rayleigh number Ry also increases. The increase in the thermal
Rayleigh number R instigates the onset of instability thereby yielding a more unstable system. The Soret effect
induces mass flux due to temperature gradients. A higher Soret number amplifies solutal buoyancy effects, which
augment thermal buoyancy, destabilizing the system. This aligns with [25] and also [21].

Figure 4: shows the effect of Porosity, y, on the onset of instability. It is observed from our plot that an
increase in Porosity, y, yields an increase in thermal Rayleigh number Ry, thereby facilitating the onset of
instability. This implies that a higher Porosity, y value translates into an unstable system. A higher porosity
reduces resistance to fluid flow, promoting convection and increasing instability. [26] confirm that enhanced
porosity increases Rayleigh numbers in porous media.

Figure 5: showcases the effect of Internal heat generation, @, on the onset of instability. It is seen from
our plot that as Internal heat generation, Q, increases, the thermal Rayleigh number Ry, reduces leading to a more
stable system. An increase in Internal heat generation, @, delays the onset of instability in the system. Internal
heating tends to uniformly raise fluid temperature, reducing temperature gradients that drive convection. This
stabilizes the system [27] discovered a similar trend in porous flows with internal heat generation.

It is shown in Figure 6 that an increase in Radiation, R, also yields an increase in thermal Rayleigh
number Ry, facilitating the onset of instability. This implies that a higher Radiation, R, value translates into a
destabilized system. Radiation enhances the thermal energy within the system, thereby increasing the temperature
gradient and promoting instability. [28] noted this destabilizing influence of thermal radiation.

As shown in Figure 7, an increase in the Magnetic field yields a corresponding rise in the thermal
Rayleigh number. This goes to mean that the system will need a stronger thermal Rayleigh gradient for convective
motion to occur. It implies that the magnetic field has a high stabilizing effect on the system which suppresses
fluid particle motion thereby requiring a higher thermal driving force to destabilize the system. Our result is
consistent with the conclusion drawn by [29], who showed that magnetic field suppresses the onset of instability.

V. Conclusion

This study conducted a linear stability analysis on double diffusive convection in a fluid layer considering
thermal diffusion and internal heat generation and absorption. In the course of this research work, a mathematical
model was developed for the Newtonian fluid. The effects of Lewis number, Soret, Porosity, Internal heat source,
Radiation, Prandtl number and other key factors on the onset of stationary instability were individually considered
for our model, and a graphical representation provided for a better understanding of the behavior of the system
under consideration.

By solving the perturbed equations and analyzing the behavior of thermal Rayleigh number as a function
of various governing parameters, we draw the conclusion that: for a Newtonian fluid, the increase in Lewis
number, Le, Internal heat generation, Q, and Magnetic field, M, parameters has a delaying effect on the onset of
stationary instability, with higher values of these parameters resulting in a greater stabilization of the system,
while an increase in the Soret, Porosity and Radiation parameters increases the onset of stationary instability, that
is, higher Soret, Porosity and Radiation parameters destabilizes the system. Though our results were obtained
from an idealized geometry, they are in agreement with existing literatures. Hence, they can be generalized and
put into a wide range of applications as the need arises.
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