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ABSTRACT 

The investigation, Stability Analysis on Double Diffusive Convection with Thermal Diffusion and Internal Heat 

Generation and Absorption was carried out for Newtonian fluid systems. The Boussinesq approximation was used 

for the density variation with temperature and concentration. Also, the Rosseland approximation was adopted for 

the radiative flux. Governing equations that incorporate the coupling effect of thermal diffusion and internal heat 

generation and absorption is developed. The governing equations are non- dimensionalised, and the emerging 

nonlinear partial differential equations governing the flow are solved using the regular perturbation, normal 

mode representation and linear stability analysis processes. In order to compare our mathematical solutions to 

findings from existing literature, profiles were developed using Mathematica software to test for the sensitivity of 

the pertinent parameters on the onset of instability of the system. The results showed that for a Newtonian fluid, 

the increase in Lewis number, Le, internal heat generation, Q, and magnetic field, M, parameters has a delaying 

effect on the onset of instability, with  higher values of pertinent parameters resulting in a greater stabilization of 

the system, while an increase in the Soret, porosity and radiation parameters increases the onset of instability, 

that is, higher Soret, porosity and radiation parameters destabilizes the system. Our results are in agreement with 

existing literatures. In conclusion, we were able to investigate the stability behaviour of Double Diffusive 

Convection for Newtonian fluid systems experiencing the coupling effects of thermal diffusion and internal heat 

generation and absorption using linear stability analysis.     

Keywords:  Stability Analysis, Double Diffusive Convection, Thermal Diffusion, Porous Medium, Internal Heat 
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I. INTRODUCTION 
Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection caused 

by two different density gradients which have different rates of diffusion as a result of density variations within 

them due to the composition of the fluid or by thermal expansion, that is difference in temperature. When a fluid 

is heated from below thermal expansion takes place, molecules from below which becomes less dense as a result 

of the heating moves upward away from the heat source while molecules which are above (cold) replaces them 

downwards because they denser. This process is a repeated cycle called heat transfer through convection [1]. 

Double diffusive convection is relevant in nature and industrial applications. Such complex flow 

structures are often found in a wide variety of fields namely: geosciences, oceanography, astrophysics and so on 

[2]. Thermal diffusion plays an important role in the study of compositional variation in hydrocarbon reservoirs, 

hydrodynamic instability of mixtures and mineral migrations and mass transport in turning matters [3].  Internal 

heat generation and absorption as pertains to moving fluids is key in several physical problems dealing with 

chemical reactions and dissociating fluids. The analysis of the convection problem is also considered to be of 

great importance in structures due to transportation of fluid molecules from one point of a media to another caused 

by heating, hence notable researches have been carried out in this area also. 

http://www.questjournals.org/
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[4] carried out an investigation for a fully developed unsteady magnetohydrodynamic free convection 

flow of a viscous incompressible and electrically conducting Newtonian fluid through porous medium bounded 

by an infinite vertical porous plate, in a rotating system in the presence of heat source and thermal diffusion. It 

was observed that the velocity boundary layer condenses with the increasing value of Schmidt number, flow 

reversal is prevented for low speed of rotation, high value of chemical reacting species and high value of magnetic 

parameter.  

[5], considered similarities solutions of natural convection with internal heat generation and came to the 

conclusion that the presence of internal energy generation leads to increased flow and in some cases, temperature 

that exceed the wall temperature, especially for fluids with Pr < 1.0. 

 [6], studied double diffusive natural convection heating from below the wall in a closed cavity was 

studied with direct numerical simulation method. The flow characteristics are presented as isotherms, iso 

concentrations, and streamlines. The results show that RaT has signification strong effects on average Nusselt 

number, with a more considerable RaT, the value of Nusselt number higher. These were also found to increase 

with increasing buoyancy ratio for aiding flow and decrease as buoyancy ratio decreases for opposing flows. 

[7], considered the effects of concentration based internal heat and vertical magnetic field on the onset 

of double diffusive convection in a horizontal porous layer using normal mode analysis. They concluded that the 

concentration based internal heat, 𝛾, hastens the onset of instability while the magnetic field, 𝐻𝑎 , and solutal 

Rayleigh number, 𝑅𝑠 delays the onset of instability in the system for stationary and oscillatory convections. They 

also presented the influence of Lewis number, 𝐿𝑒  and porosity, ε. [8] inquired into the effects of soret and magnetic 

field on thermosolutal convection in a porous medium with concentration based internal source. They employed 

linear stability analysis to determine the onset of instability. It was established that the stability of the system 

occurred for values of internal heat, 𝛾𝑐 < 0.7, while instability sets in for 𝛾𝑐 ≥ 0.7  for all values of Hartmann 

number, 𝐻𝑎, and Soret, 𝑆𝑟 . 

[9], examined the internal heat source and reaction effects on the onset of thermosolutal convection in a 

local thermal non-equilibrium porous medium, where the temperature of the fluid and the solid skeleton may 

differ. Their results detect that utilizing the internal heat source, reaction, and non-equilibrium have pronounced 

effects in determining the convection stability and instability thresholds. 

 [10], suggested that possible heat generation effects may alter temperature distribution and therefore, 

particle deposition rate. The effect of internal generation and absorption is applicable in reactor safety analysis, 

metal waste, spent nuclear fuel, fire and combustion studies, strength of radioactive materials and so on. 

[11], investigated double‐diffusive convection with chemical reaction in a Darcy–Brinkman porous layer, 

heated and salted below. The effect of the thermal contribution of the chemical reaction was found to be more 

effective on the convective instability in comparison with the solutal contribution of the chemical reaction. The 

reaction parameters k1 k2, enhance the onset of convection in the stationary mode, however, in oscillatory mode, 

the onset of convection is seen to be delayed. 

The impact of viscous dissipation and radiation on unsteady magnetohydrodynamic free convection 

stream past an endless vertically warmed plate in some optically thin surroundings with time dependent suction 

was studied by [12]. They sort for the impact of key parameters on the temperature and velocity profiles. Their 

results show that increase in Grashof number and Eckert number results in an increase in the velocity profile while 

increase in magnetic field, radiation and Darcy parameters leads to decrease in velocity. Also, increasing the 

Eckert number gives rise to an increment in the temperature while increase in radiation and magnetic parameters 

results in a decrease in temperature during the cooling of the plate. 

[13], numerically studied micropolar fluid behavior on unsteady two dimensional oscillatory electrically 

conducting viscous, incompressible Boussinesq fluid flow along an unbounded vertical plate with periodical 

temperature variation about an average non-zero constant value with item. This study is useful in the production 

of electro-conductive polymer. 

In a research carried out by [14], on unsteady MHD free convection warmth and mass exchange flow of 

Newtonian flow past boundless vertical plate with homogenous chemical reaction and heat absorption, they non-

dimensionalized the leading equations and solved them using multiple perturbation method which were subject to 

some boundary conditions. This result showed that an increase in the radiation absorption parameter led to an 

increase in velocity, temperature and skin friction. 

[15] numerically studied the problem of unsteady free convection with heat and mass transfer from an 

isothermal vertical plate in a porous media. With the aid of boundary layer, Boussinesq approximation and Darcy-
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Brinkman Forcheimer model, the power law fluid was modelled. This research revealed that the friction factor, 

heat and mass transfer tend to a steady state value as the time tends towards infinity. 

The literatures reviewed, shows that double diffusive convection in porous media is a multifaceted 

phenomenon influenced by coupled physical processes such as temperature gradients, solutal gradients and 

radiative heat transfer. While foundational theories by [16], [17] and [18] remain indispensable, contemporary 

advancements now allow richer modeling of real systems involving thermal radiation and internal energy sources. 

3.1 Mathematical Formulation: 

Consider an infinite horizontal porous layer of thickness H filled with binary fluid and confined between two rigid 

plates, see Figure 3.1. The horizontal plates are located at  𝑍′ = 0 and  𝑍′ = 𝐻 and heated from below, therefore 

different temperatures  𝑇1 and 𝑇2 and solutal mass concentration 𝐶1 and 𝐶2 respectively exist at the bottom and top 

of the rigid plates such that  ∆𝑇 =  𝑇1 −  𝑇2 (> 0)  and ∆𝐶 =  𝐶1 −  𝐶2  (> 0).  

 

   𝑧′ 

    

                                                   𝑔⃑       𝑇2 , 𝐶2  
      𝑧′ = 𝐻  

 

 

       𝑥′ 𝑧′ = 0         

        𝑇0 + ∆𝑇  ,     𝐶0 + ∆𝐶            𝑇1 , 𝐶1  

            𝐵⃑⃑ 

   𝑦′ 

 

Fig 1: The Physical Configuration. 

We apply a magnetic field of strength 𝐵⃑⃑ perpendicular to the plates. The saturating fluid is assumed 

incompressible, Newtonian and electrically conducting. The Boussinesq approximation is a key simplification for 

problems in which fluid varies in temperature (or composition), driving a flow of fluid and heat/mass transfer 

[19]. The onset of thermal and solutal convection is under the Boussinesq approximation, consequently we adopt 

the state equation [20],  

𝜌 = 𝜌0[1 − 𝛽𝑇(𝑇
′ − 𝑇0) + 𝛽𝑐(𝐶

′ − 𝐶0)]                               (1) 

We take into consideration the absorbing and emitting characteristics of the fluid radiating in a non-scattering 

medium. Under the assumptions and considerations above, the governing equations are presented as: 

     𝛻.⃑⃑⃑⃑ 𝑉⃑⃑′ = 0                                            (2) 

     𝜌0 (
𝜕𝑉⃑⃑⃑′

𝜕𝑡′
+ 𝑉⃑⃑′. 𝛻⃑⃑′𝑉⃑⃑′) = −𝛻′𝑃′ + 𝜇𝛻′

2
. 𝑉⃑⃑′ − 𝜇

𝑉⃑⃑⃑′

𝑘
+ 𝐹⃑𝑒𝑚 + 𝜌𝑔                                    (3) 

     𝜌0𝐶𝑃 (
𝜕𝑇′

𝜕𝑡′
+ 𝑉⃑⃑′. 𝛻′𝑇′) = 𝑘𝛻′

2
𝑇′ − 𝛻′. 𝑞′

𝑟
+ 𝑄0(𝑇

′ − 𝑇0)                                   (4) 

     𝑘 (
𝜕𝐶′

𝜕𝑡′
+ 𝑉⃑⃑′. 𝛻′𝐶′ ) = 𝜈(𝐷𝛻′

2
𝐶′ + 𝐷∗𝐶0 𝛻

′2𝑇′ )                            (5) 

where 𝑉⃑⃑′, 𝑇0 and 𝐶0 are velocity, reference temperature and concentration respectively. 

The boundary conditions are: 

      𝑉⃑⃑′ = 0,         𝑇′ = 𝑇0 + 𝑇1 − 𝑇2 ,             𝐶
′ = 𝐶0 + 𝐶1 − 𝐶2                  at     𝑍′ = 0            (6a) 

     𝑉⃑⃑′ = 0,         𝑇′ = 𝑇0,                              𝐶
′ = 𝐶0 ,                                at    𝑍′ = 𝐻         (6b) 



Stability Analysis on Double Diffusive Convection for a Newtonian Fluid with Thermal Diffusion .. 

DOI: 10.35629/0743-12025465                              www.questjournals.org                                               57 | Page 

According to the Boussinesq approximation, density variations only pertains to the buoyancy term in the body 

force term, 𝜌𝑔, consequently Equation (3) becomes: 

𝜌0 (
𝜕𝑉⃑⃑⃑′

𝜕𝑡′
+ 𝑉⃑⃑′. 𝛻⃑⃑′𝑉⃑⃑′) = −𝛻′𝑃′ + 𝜇𝛻′

2
. 𝑉⃑⃑′ − 𝜇

𝑉⃑⃑⃑′

𝑘
− 𝑔𝛽𝑇𝜌0(𝑇

′ − 𝑇0)𝑒̂𝑧 + 𝑔𝛽𝑐𝜌0(𝐶
′ − 𝐶0)𝑒̂𝑧 + 𝐹⃑𝑒𝑚    (7) 

By the absorbing and emitting characteristics of the fluid, we use the Roseland approximation [21] for the radiative 

flux, hence in equation (4), we have: 

       𝑞′
𝑟
= −

4𝜎∗𝛻′𝑇′
4

3𝛿
                                (8) 

We then assume that the difference in temperature within the fluid and the porous medium is sufficiently small. 

By this assumption, 𝑇′
4
can be expressed as a linear function of the temperature, 𝑇′, and expanded about the free 

stream temperature, 𝑇0, using Taylor series and neglecting higher order terms to obtain [20]: 

𝑇′
4
≈ 4𝑇0

3𝑇′ − 3𝑇0
4                                                                            

We then have 

𝑞′
𝑟
= −

4𝜎 ∗

3𝛿
𝛻′(4𝑇0

3𝑇′ − 3𝑇0
4) 

𝑞′
𝑟
= −

16𝜎∗

3𝛿
𝑇0
3𝛻′𝑇′                                                                                   (9) 

Next, we consider the electromagnetic force, 𝐹𝑒𝑚 = 𝐽𝑒 × 𝐵⃑⃑ in equation (7). The electromagnetic force is defined 

by: 

𝐽𝑒 = 𝜎(−𝛻
′𝑄𝑒 + 𝑉⃑⃑

′ × 𝐵⃑⃑ )                                                                                                          (10) 

With electrically insulated boundaries, the electric potential 𝑄𝑒  is constant [22]. Thus, the induced magnetic 

field is negligible and equation (10) reduces to 

𝐽 = 𝜎(𝑉⃑⃑′ × 𝐵⃑⃑)                                                                                                                       (11) 

and consequently, 𝐹𝑒𝑚 in equation (7) becomes 

𝜎(𝑉⃑⃑′ × 𝐵⃑⃑) × 𝐵⃑⃑ = −𝜎𝐵2𝑉⃑⃑′                                                                                                   (12) 

Substituting Equations (9) and (12) into Equations (7) and (4) we obtain the governing equations as: 

𝜌0 (
𝜕𝑉⃑⃑⃑′

𝜕𝑡′
+ 𝑉⃑⃑′. 𝛻⃑⃑′𝑉⃑⃑′) = 𝛻′𝑃′ + 𝜇𝛻′

2
. 𝑉⃑⃑′ − 𝑔⃑𝛽𝑇𝜌0(𝑇

′ − 𝑇0)𝑒̂𝑧 + 𝑔⃑𝛽𝑐𝜌0(𝐶
′ − 𝐶0)𝑒̂𝑧 − 𝜇

𝑉⃑⃑⃑′

𝑘
− 𝜎𝐵2𝑉⃑⃑′   (13) 

 𝜌0𝐶𝑃 (
𝜕𝑇′

𝜕𝑡′
+ 𝑉⃑⃑′. 𝛻′𝑇′) = 𝑘𝛻′

2
𝑇′ +

16𝜎∗

3𝛿
𝑇0
3𝛻′

2
𝑇′ + 𝑄0(𝑇

′ − 𝑇0)      (14) 

𝑘 (
𝜕𝐶′

𝜕𝑡′
+ 𝑉⃑⃑′. 𝛻′𝐶′ ) = 𝜈(𝐷𝛻′

2
𝐶′ + 𝐷∗𝐶0 𝛻

′2𝑇′ )                                       (15) 

subject to the boundary condition in equation (6a) and (6b). 

The last term in equation (14) is based on the amount of heat generated or absorbed per unit volume, with 𝑄0 

being constant coefficient that may take either positive or negative values. The source term represents the heat 

generation that is distributed everywhere when 𝑄0 is positive (𝑄0 > 0) and heat absorption when 𝑄0 is negative 

(𝑄0 < 0); 𝑄0 = 0 is the case where there is no heat generation or absorption. 

We present the non-dimensional variables as follows: 

𝑡 =
𝑡′𝜈

𝐻2
   ,      𝑉⃑⃑ =

𝐻 𝑉⃑⃑⃑′

𝜈
 , (𝑥, 𝑦, 𝑧) =

1

𝐻
(𝑥′, 𝑦′, 𝑧′), 𝜃 =

𝑇′−𝑇0

𝑇1−𝑇2

𝐶 =
𝐶′−𝐶0

𝐶1−𝐶2
     ,      𝑃 =

𝑃′𝐻2

𝜌0𝜈
2 ,    𝑅 =

16𝜎∗ 𝑇0
3

3𝑘𝛿
        ,   𝜒 =

𝐻2

𝑘

𝑀 =
𝜎 𝐵2𝐻3

𝜌0𝜈
    ,      𝑄 =

𝐻2𝑄0

𝜌0𝐶𝑃𝜈
,   𝑆 =

𝐷∗𝐶0(𝑇1−𝑇2)

𝐷(𝐶1−𝐶2)

             

}
 
 

 
 

                                 (16) Under these non-

dimensional variables, the governing equations take the form: 
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𝜕𝑉

𝜕𝑡
+ 𝑉. 𝛻𝑉 = 𝛻𝑃 + 𝛻2𝑉 −

𝑅𝑇

𝑃𝑟
𝜃 +

𝑅𝐶

𝑃𝑟
𝐶 − 𝜒𝑉 −𝑀𝑉                                     (17) 

𝜕𝜃

𝜕𝑡
+ 𝑉. 𝛻𝜃 =

1

𝑃𝑟
𝛻2𝜃 +

𝑅

𝑃𝑟
𝛻2𝜃 + 𝑄𝜃                   (18) 

𝜕𝐶

𝜕𝑡
+ 𝑉. 𝛻𝐶 =

1

𝐿𝑒
(𝛻2𝐶 + 𝑆𝛻2𝜃)                              (19) 

Subsequently, non dimensionalizing the boundary conditions, Equations (6a) and (6b) with relevant variables 

from Equation (16), we obtain our dimensionless boundary conditions as:  

𝑉 = 0,     𝜃 = 1,      𝐶 = 1                             at    𝑧 = 0             (20) 

𝑉 = 0,     𝜃 = 0,      𝐶 = 0                                   at     𝑧 = 1             (21) 

3.2 Stability Analysis 

3.2.1 Basic state and flow linearization  

The basic state of the system is given by the static solution  𝑉 = 0 and 
𝜕

𝜕𝑡
= 0 of equations (17) – (21). Thus, the 

static temperature,  𝑇𝑠 , solutal mass concentration,  𝐶𝑠 and pressure,  𝑃𝑠 are obtained as: 

𝑃𝑠(𝑧) =
1

𝑃𝑟
∫(𝑅𝑇𝑇𝑠 − 𝑅𝐶𝐶𝑠) 𝑑𝑧                      (22) 

𝑇𝑠(𝑧) = 𝑐𝑜𝑠 (√
𝑃𝑟𝑄

(1+ 𝑅)
) 𝑧 − 𝑐𝑜𝑡 (√

𝑃𝑟𝑄

(1+ 𝑅)
) 𝑠𝑖𝑛 (√

𝑃𝑟𝑄

(1+ 𝑅)
) 𝑧                                        (23) 

𝐶𝑠(𝑧) =
𝑆𝑃𝑟𝑄𝑠

(1+𝑅)𝑐
[𝑐𝑜𝑡√𝑐𝑠𝑖𝑛√𝑐𝑧 − 𝑐𝑜𝑠√𝑐𝑧 − 𝑧 + 1] − 𝑧 + 1               (24) 

3.2.2 Linear Stability Analysis  

To access the stability of the state solutions, we let the initial solutions described by equations (22), (23) and 

(24) to be slightly perturbed. Thus, we define a perturbation of the form [23]: 

𝑉 = 0 + (𝑢, 𝑣, 𝑤) , 𝜃 = 𝑇𝑠 + 𝜃̅ ,     𝐶 = 𝐶𝑠 + 𝐶̅  ,     𝑃 = 𝑃𝑠 + 𝑃̅                                      (25) 

Upon substituting these perturbations into the non-dimensional Equations (17) – (19) and neglecting the 

products of disturbances, the linearized perturbation equations are obtained as: 

(
𝜕

𝜕𝑡
− 𝛻2 + 𝜒 +𝑀) (𝑢, 𝑣, 𝑤) = 𝛻𝑃 −

1

𝑃𝑟
(𝑅𝑇𝜃̅ − 𝑅𝐶𝐶̅)𝑒𝑧̂                                                  (26) 

(𝑃𝑟
𝜕

𝜕𝑡
− (1 + 𝑅)𝛻2 − 𝑃𝑟𝑄) 𝜃̅ = 𝑃𝑟𝑤                                                                                (27)                                    

(
𝜕

𝜕𝑡
−

1

𝐿𝑒
𝛻2)𝐶̅ = 𝑤 +

1

𝐿𝑒
𝑆𝛻2𝜃̅                                                                                   (28) 

with the boundary condition given as: 

𝑤 = 0,      𝜃̅ = 1     𝐶̅ = 1                             at    𝑧 = 0                                                (29) 

𝑤 = 0,      𝜃̅ = 0     𝐶̅ = 0                             at     𝑧 = 1                                                        (30) 

Proceeding on the analysis, we reduce equation (26) to a scalar equation by taking the double curl of it, using the 

equation of continuity (𝛻.V=0) and keeping only the vertical component of the velocity yields:  

             

(
𝜕

𝜕𝑡
− 𝛻2 + 𝜒 +𝑀)

𝜕2𝑤

𝜕𝑧2
=

1

𝑃𝑟
(𝑅𝑇𝛻ℎ

2𝜃̅ − 𝑅𝐶𝛻ℎ
2𝐶̅)                                                                (31) 

Where  𝛻ℎ
2 =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
  is the Laplacian operator in the horizontal plate. 

3.2.3 The dispersion Relation  

We next examine the reaction of the system to all possible disturbances. This can be  
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accomplished by expressing an arbitrary disturbance as a superposition of certain modes. Accordingly following 

[23], we apply the normal mode representation of the form 

𝑤 = 𝑊(𝑧)𝑓(𝑥, 𝑦)𝑒𝛺𝑡 ,      𝜃 = 𝛩(𝑧)𝑓(𝑥, 𝑦)𝑒𝛺𝑡      𝐶 = 𝜙(𝑧)𝑓(𝑥, 𝑦)𝑒𝛺𝑡                                (32) 

Where 𝛺 = 𝛺𝑅 + 𝑖𝛺𝐶   is complex and 𝛺𝑅 , 𝛺𝐶 are real numbers. Substituting equation (32) into equation (27), 

(28), (29), (30) and (31) we obtain the equations below: 

(𝐷2 − 𝑎2+∝ 𝑄−∝ 𝛺)𝛩 = −∝ 𝑊                                                                                        (33) 

(𝐷2 − 𝑎2 − 𝐿𝑒𝛺)𝜙 = −𝑆(𝐷2 − 𝑎2)𝛩 −
𝑤

𝐿𝑒
                                                                          (34)  

(𝐷2 − 𝑎2)(𝐷2 − 𝑎2 − 𝜒 −𝑀 − 𝛺)𝑊 −
1

𝑃𝑟
𝑅𝑇𝑎

2𝛩 +
1

𝑃𝑟
𝑅𝐶𝑎

2𝜙 = 0                                  (35)      

Note: 𝛻2 =
𝜕2

𝜕𝑧2
= 𝐷2 − 𝑎2 ,    ∝=

𝑃𝑟

(1+𝑅)
,   𝛺 =

𝜕

𝜕𝑡
,    𝛻ℎ

2 = −𝑎2,      𝐶̅ = 𝜙,    𝜃̅ = 𝛩  

subject to: 

𝑊 = 0,      𝛩 = 1     𝜙 = 1                             at    𝑧 = 0                                                  (36) 

𝑊 = 0,     𝛩 = 0     𝜙 = 0                             at     𝑧 = 1                                                       (37) 

𝐷2 = 0 on a free surface.                                                                                                      (38)  

where 𝑎2 is a wave number arising from the separation of variables. 

Next, we reduce the system (33), (34) and (35) to a singular scalar equation by eliminating 

𝛩 and 𝜙 through solving for the determinant of a matrix as seen below: 

(

  
 
(𝐷2 − 𝑎2)(𝐷2 − 𝑎2 − 𝜒 −𝑀 − 𝛺) −

𝑎2𝑅𝑇
𝑃𝑟

𝑎2𝑅𝑐
𝑃𝑟

∝ (𝐷2 − 𝑎2+∝ 𝑄−∝ 𝛺) 0
1

𝐿𝑒
−𝑆(𝐷2 − 𝑎2) (𝐷2 − 𝑎2 − 𝐿𝑒𝛺))

  
 

 

(𝐷2 − 𝑎2)(𝐷2 − 𝑎2 − 𝜒 −𝑀 − 𝛺)[(𝐷2 − 𝑎2+∝ 𝑄−∝ 𝛺)(𝐷2 − 𝑎2 − 𝐿𝑒𝛺)]𝑊 +
𝑎2𝑅𝑇

𝑃𝑟
[∝ (𝐷2 − 𝑎2 − 𝐿𝑒𝛺) −

0]𝑊 +
𝑎2𝑅𝑐

𝑃𝑟
[−∝ 𝑆(𝐷2 − 𝑎2) −

1

𝐿𝑒
(𝐷2 − 𝑎2+∝ 𝑄−∝ 𝛺)]𝑊 = 0  

(𝐷2 − 𝑎2)(𝐷2 − 𝑎2 − 𝜒 −𝑀 − 𝛺)(𝐷2 − 𝑎2+∝ 𝑄−∝ 𝛺)(𝐷2 − 𝑎2 − 𝐿𝑒𝛺)𝑊 +
𝑎2∝𝑅𝑇

𝑃𝑟
(𝐷2 − 𝑎2 − 𝐿𝑒𝛺)𝑊 −

𝑎2𝑅𝑐

𝑃𝑟
[
1

𝐿𝑒
(𝐷2 − 𝑎2+∝ 𝑄−∝ 𝛺) + 𝑆 ∝ (𝐷2 − 𝑎2)]𝑊 = 0   (39) 

now subject to: 

𝑊 = 𝐷2𝑊 = 𝐷4𝑊 = ⋯ = 0             at  𝑍 = 0   or   1                                                       (40) 

Where; 

𝑑2

𝑑𝑥2
+

𝑑2

𝑑𝑦2
= −𝑎2 ,     ∝=

𝑃𝑟

(1+𝑅)
, 𝐷 =

𝑑

𝑑𝑧
     

For the dispersion relation (39) in which the boundary condition (40) holds, we assume the solution of (40) for 

the lowest state in the form below [17]: 

𝑊 = 𝑤0 𝑠𝑖𝑛 𝜋𝑧                          𝑤0 is a constant                                                                (41) 

Substituting equation (41) into (39) and simplifying for 𝑅𝑇  we obtain: 

𝑎2∝𝑅𝑇

𝑃𝑟
(𝐷2 − 𝑎2 − 𝐿𝑒𝛺) = −(𝐷2 − 𝑎2)(𝐷2 − 𝑎2 − 𝜒 −𝑀 − 𝛺)(𝐷2 − 𝑎2+∝ 𝑄−∝ 𝛺)(𝐷2 − 𝑎2 − 𝐿𝑒𝛺) +

𝑎2𝑅𝑐

𝑃𝑟𝐿𝑒
(𝐷2 − 𝑎2+∝ 𝑄−∝ 𝛺) +

𝑎2𝑆𝑅𝑐∝

𝑃𝑟
(𝐷2 − 𝑎2)  
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 Substituting 𝐷2 = 𝜋2  in the above equation we have: 

𝑅𝑇 =
(1+𝑅)

𝑎2(𝜋2+𝑎2+𝐿𝑒𝛺)
[(𝜋2 + 𝑎2)(𝜋2 + 𝑎2 + 𝜒 +𝑀 + 𝛺) (𝜋2 + 𝑎2 −

𝑃𝑟𝑄

(1+𝑅)
+

𝑃𝑟𝛺

(1+𝑅)
) (𝜋2 + 𝑎2 + 𝐿𝑒𝛺) +

𝑎2𝑅𝑐

𝑃𝑟𝐿𝑒
(𝜋2 + 𝑎2 −

𝑃𝑟𝑄

(1+𝑅)
+

𝑃𝑟𝛺

(1+𝑅)
) +

𝑎2𝑆𝑅𝑐

(1+𝑅)
(𝜋2 + 𝑎2)]                                     (42) 

The transition from stability to instability occurs through a stationary state. Thus, to study the case of marginal 

stability which corresponds to stationary convection, we set 𝛺 = 0  in equation (42) to obtain 

𝑅𝑇 =
(1+𝑅)

𝑎2(𝜋2+𝑎2)
[(𝜋2 + 𝑎2)(𝜋2 + 𝑎2 + 𝜒 +𝑀) (𝜋2 + 𝑎2 −

𝑃𝑟𝑄

(1+𝑅)
) (𝜋2 + 𝑎2) +

𝑎2𝑅𝑐

𝑃𝑟𝐿𝑒
(𝜋2 + 𝑎2 −

𝑃𝑟𝑄

(1+𝑅)
) +

𝑎2𝑆𝑅𝑐

(1+𝑅)
(𝜋2 + 𝑎2)]  

Therefore, 

𝑅𝑇 =
(1+𝑅)

𝑎2
(𝜋2 + 𝑎2)(𝜋2 + 𝑎2 + 𝜒 +𝑀) (𝜋2 + 𝑎2 −

𝑃𝑟𝑄

(1+𝑅)
) +

(1+𝑅)𝑅𝑐

(𝜋2+𝑎2)𝑃𝑟𝐿𝑒
(𝜋2 + 𝑎2 −

𝑃𝑟𝑄

(1+𝑅)
) + 𝑅𝑐𝑆                                                                                                                             

(43) 

Let 𝑎 = 𝑎𝑐 and the corresponding thermal Rayleigh number be 𝑅𝑇𝑐𝑟𝑖 in equation (43) we have: 

𝑅𝑇𝑐𝑟𝑖 =
(1+𝑅)

𝑎𝑐
2
(𝜋2 + 𝑎𝑐

2)(𝜋2 + 𝑎𝑐
2 + 𝜒 +𝑀) (𝜋2 + 𝑎𝑐

2 −
𝑃𝑟𝑄

(1+𝑅)
) +

(1+𝑅)𝑅𝑐

(𝜋2+𝑎𝑐
2)𝑃𝑟𝐿𝑒

(𝜋2 + 𝑎𝑐
2 −

𝑃𝑟𝑄

(1+𝑅)
) + 𝑅𝑐𝑆 

                            (44) 

where 𝑎𝑐 is the critical wave number and 𝑅𝑇𝑐𝑟𝑖is the critical thermal Rayleigh number. The critical wave number 

for the onset of instability is determined when: 

𝜕𝑅𝑇𝑐𝑟𝑖

𝜕𝑎𝑐
= 0                   (45) 

Using condition (45) we differentiate equation (44) in parts to obtain:  

(1 + 𝑅) {(
𝜋 2+𝑎𝑐

2+𝜒+𝑀

𝑎𝑐
2 ) [4𝑎𝑐(𝜋

2 + 𝑎𝑐
2) − 2

𝑃𝑟𝑄

(1+𝑅)
𝑎𝑐] + [(𝜋

2 + 𝑎𝑐
2)2 −

𝑃𝑟𝑄

(1+𝑅)
(𝜋2 + 𝑎𝑐

2)] (
−2𝜋 2−2𝜒−2𝑀

𝑎𝑐
3 )} +

2𝑎𝑐

(𝜋2+𝑎𝑐
2)2

𝑅𝑐𝑄

𝐿𝑒
= 0                        (46)  

Simplifying equation (46) we have:   

𝐿𝑒(1 + 𝑅)[−2𝜋8𝑎𝑐
2 + 2𝜋6𝑎𝑐

4 − 2𝜋  6𝜒𝑎𝑐
2 − 2𝜋  6𝑀𝑎𝑐

2 + 8𝜋  4𝑎𝑐
6 + 2𝜋  2𝜒𝑎𝑐

6 + 2𝜋  2𝑀𝑎𝑐
6 + 7𝜋2𝑎𝑐

8 +
𝜒𝑎𝑐

8 +𝑀𝑎𝑐
8 + 2𝑎𝑐

10 − 𝜋10 − 𝜋8𝜒 − 𝜋8𝑀] + 𝑃𝑟𝐿𝑒𝑄[𝜋8 + 𝜋  6𝜒 + 𝜋  6𝑀 + 2𝜋6𝑎𝑐
2 + 2𝜋4𝜒𝑎𝑐

2 +
2𝜋4𝑀𝑎𝑐

2 + 𝜋2𝜒𝑎𝑐
4 + 𝜋2𝑀𝑎𝑐

4 − 2𝜋2𝑎𝑐
6 − 𝑎𝑐

8] + 𝑎𝑐
4𝑅𝑐𝑄 =  0                                   (47) 

Rearranging the terms in the order of 𝑎𝑐: 

[2𝐿𝑒(1 + 𝑅)]𝑎𝑐
10 + [7𝐿𝑒(1 + 𝑅)𝜋2 + 𝐿𝑒(1 + 𝑅)𝜒 + 𝐿𝑒(1 + 𝑅)𝑀 − 𝑃𝑟𝐿𝑒𝑄]𝑎𝑐

8 + [8𝐿𝑒(1 + 𝑅)𝜋  4 +
2𝐿𝑒(1 + 𝑅)𝜋  2𝜒 + 2𝐿𝑒(1 + 𝑅)𝜋  2𝑀 − 2𝑃𝑟𝐿𝑒𝑄𝜋2]𝑎𝑐

6 + [2𝐿𝑒(1 + 𝑅)𝜋  6 + 𝑃𝑟𝐿𝑒𝑄𝜋2𝜒 + 𝑃𝑟𝐿𝑒𝑄𝜋2𝑀 +
𝑅𝑐𝑄]𝑎𝑐

4 + [2𝑃𝑟𝐿𝑒𝑄𝜋  6 + 2𝑃𝑟𝐿𝑒𝑄𝜋4𝜒 + 2𝑃𝑟𝐿𝑒𝑄𝜋4𝑀−2𝐿𝑒(1 + 𝑅)𝜋8 − 2𝐿𝑒(1 + 𝑅)𝜋  6𝜒 −
2𝐿𝑒(1 + 𝑅)𝜋  6𝑀]𝑎𝑐

2 + [𝑃𝑟𝐿𝑒𝑄𝜋8 + 𝑃𝑟𝐿𝑒𝑄𝜋  6𝜒 + 𝑃𝑟𝐿𝑒𝑄𝜋  6𝑀 − 𝐿𝑒(1 + 𝑅)𝜋10 − 𝐿𝑒(1 + 𝑅)𝜋8𝜒 −
𝐿𝑒(1 + 𝑅)𝜋8𝑀] = 0                           (48) 

IV.  RESULTS AND DISCUSSION 

To be able to understand the physical implications of our model and compare our mathematical solutions to 

findings from existing literatures, profiles were developed using Mathematica software to test for the impact of 

various parameters such as Lewis number, Le, Soret parameter, S, Poroxity, 𝜒, Heat Source, Q, Radiation, R, and 

Prandtl number, Pr, on the onset of instability for our system. 
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Figure: 2: Effect of Lewis number, Le, on the onset of instability for: 

𝑄 = 1, 𝑅 = 1, 𝑅𝑐 = 1708,𝑀 = 1.0156, 𝑆 = 1, 𝜒 = 2 

 

Figure: 3: Effect of Soret parameter, S, on the onset of instability for: 

𝑄 = 1, 𝑅 = 1, 𝑅𝑐 = 1708,𝑀 = 1.0156, 𝐿𝑒 = 1, 𝜒 = 2 
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Figure: 4: Effect of Porosity, 𝜒, on the onset of instability for: 

𝐿𝑒 = 1, 𝑄 = 1, 𝑅 = 1, 𝑅𝑐 = 1708,𝑀 = 1.0156, 𝑆 = 1 

 

 

 

Figure: 5: Effect of internal heat parameter, Q, on the onset of instability for: 

𝐿𝑒 = 1, 𝜒 = 2, 𝑅 = 1, 𝑅𝑐 = 1708,𝑀 = 1.0156, 𝑆 = 1 
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Figure: 6: Effect of Radiation, R, on the onset of instability for: 

𝐿𝑒 = 1, 𝜒 = 2, 𝑄 = 1, 𝑅𝑐 = 1708,𝑀 = 1.0156, 𝑆 = 1 

 

 

 

Figure: 7: Effect of Magnetic field, M, on the onset of instability for: 

𝐿𝑒 = 1, 𝜒 = 2, 𝑅 = 1, 𝑅𝑐 = 1708, 𝑅 = 1, 𝑆 = 1 

 



Stability Analysis on Double Diffusive Convection for a Newtonian Fluid with Thermal Diffusion .. 

DOI: 10.35629/0743-12025465                              www.questjournals.org                                               64 | Page 

 4.2 DISCUSSION 

Figure 2: shows results for the effect of Lewis number, Le, on the onset of instability of our model. It is 

observed that as Le increases, thermal Rayleigh number 𝑅𝑇 decreases, hence delaying the onset of instability and 

causing a stable system. An increase in Lewis number, represents an enhanced solute diffusivity, which results in 

a stronger stability of the solutal gradient that suppresses thermal convection. This leads to a reduction in thermal 

Rayleigh number, indicating increased stability. This result aligns with [24], who reported that high Le values 

suppress convection in porous media.  

Figure 3: indicates the effect of Soret parameter, S, on the onset of instability. It is noted from our plot 

that as the Soret value increases, the thermal Rayleigh number 𝑅𝑇 also increases. The increase in the thermal 

Rayleigh number 𝑅𝑇 instigates the onset of instability thereby yielding a more unstable system. The Soret effect 

induces mass flux due to temperature gradients. A higher Soret number amplifies solutal buoyancy effects, which 

augment thermal buoyancy, destabilizing the system. This aligns with [25] and also [21]. 

Figure 4: shows the effect of Porosity, 𝜒, on the onset of instability. It is observed from our plot that an 

increase in Porosity, 𝜒, yields an increase in thermal Rayleigh number 𝑅𝑇, thereby facilitating the onset of 

instability. This implies that a higher Porosity, 𝜒 value translates into an unstable system. A higher porosity 

reduces resistance to fluid flow, promoting convection and increasing instability. [26] confirm that enhanced 

porosity increases Rayleigh numbers in porous media. 

Figure 5: showcases the effect of Internal heat generation, 𝑄, on the onset of instability. It is seen from 

our plot that as Internal heat generation, 𝑄,  increases, the thermal Rayleigh number 𝑅𝑇, reduces leading to a more 

stable system. An increase in Internal heat generation, 𝑄, delays the onset of instability in the system. Internal 

heating tends to uniformly raise fluid temperature, reducing temperature gradients that drive convection. This 

stabilizes the system [27] discovered a similar trend in porous flows with internal heat generation.  

It is shown in Figure 6 that an increase in Radiation, 𝑅, also yields an increase in thermal Rayleigh 

number 𝑅𝑇, facilitating the onset of instability. This implies that a higher Radiation, 𝑅, value translates into a 

destabilized system. Radiation enhances the thermal energy within the system, thereby increasing the temperature 

gradient and promoting instability. [28] noted this destabilizing influence of thermal radiation. 

As shown in Figure 7, an increase in the Magnetic field yields a corresponding rise in the thermal 

Rayleigh number. This goes to mean that the system will need a stronger thermal Rayleigh gradient for convective 

motion to occur. It implies that the magnetic field has a high stabilizing effect on the system which suppresses 

fluid particle motion thereby requiring a higher thermal driving force to destabilize the system. Our result is 

consistent with the conclusion drawn by [29], who showed that magnetic field suppresses the onset of instability. 

V. Conclusion 

This study conducted a linear stability analysis on double diffusive convection in a fluid layer considering 

thermal diffusion and internal heat generation and absorption. In the course of this research work, a mathematical 

model was developed for the Newtonian fluid. The effects of Lewis number, Soret, Porosity, Internal heat source, 

Radiation, Prandtl number and other key factors on the onset of stationary instability were individually considered 

for our model, and a graphical representation provided for a better understanding of the behavior of the system 

under consideration. 

By solving the perturbed equations and analyzing the behavior of thermal Rayleigh number as a function 

of various governing parameters, we draw the conclusion that: for a Newtonian fluid, the increase in Lewis 

number, Le, Internal heat generation, Q, and Magnetic field, M, parameters has a delaying effect on the onset of 

stationary instability, with  higher values of these parameters resulting in a greater stabilization of the system, 

while an increase in the Soret, Porosity and Radiation parameters increases the onset of stationary instability, that 

is, higher Soret, Porosity and Radiation parameters destabilizes the system. Though our results were obtained 

from an idealized geometry, they are in agreement with existing literatures. Hence, they can be generalized and 

put into a wide range of applications as the need arises. 
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