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Abstract. In this paper, we investigate the existence of pokitive solution for the singular
sixth-order differential system with sixth variable parameters

—u® + A ()u + By ()" + C1(t)u = pu+ f(t,u, ), 0<t<1

=0 + A1) ™ + Bo(t)¢" + Ca(t)p = pg(t,u, v, u®), 0<t <1
u(0) = u(1) = "(0) = u"(1) = u?(0) =« (1) = 0,

0(0) = p(1) = ¢"(0) = ¢"(1) = p™(0) = ¥ (1) = 0,
where p > 0 is a constant, and the nonlinear terms f, g may be singular with respect to
the time and space variables. Using a fixed point theorem in cones and an operator spectral
theorem we give an new existence result for singular differential system. The existence of the
positive solution depends on u, i.e. there exists a positive number 7 such that if 0 < pu < 7,
the boundary value problem has a positive solution.
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I.  INTRODUCTION

Boundary value problems for ordinary differential equations can be used to describe a large number of
chemical, biological and physical phenomena. The existence of positive solutions for such problems has become
an important area of investigation in recent years. It is well known that the bending of an elastic beam can be
described with fourth-order boundary value problems. An elastic beam with its two ends simply supported, can
be described by the fourth-order boundary value problem

ul(t) = f(t,u(t),u’(t), 0<t<1, (1)
u(0) = u(l) =u"(0) =u"(1) = 0. (2)

Existence of solutions for problem (1) was established for example by Gupta [1,2], Liu [3], Ma [4], Ma et. al. [5],
Ma and Wang [6], Aftabizadeh [7], Yang [8], Del Pino and Manasevich [9], RP Agarwal et.al. [10,11.12] (see also
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the references therein). All of those results are based on the Leray-Schauder continuation method, topological
degree and the method of lower and upper solutions.

Recently, Wang and An [13] studied the existence of positive solutions for a second-order differential system
by using the fixed point theorem of cone expansion and compression.
It is well known that the deformation of the equilibrium state, an elastic circular ring segment can be described
by a boundary value problem for a sixth-order ordinary differential equation. However, there are only a handful
of articles on this topic.
In this paper we shall discuss the existence of positive solutions for the sixth-order boundary value problem

—u'® 4 A t)u? + Bi@ty” + Ci(u = pu + f(t,u, @), 0<t<1

(4})

—09 + ()™ + Ba(t)” + Ca(t)p = pg(t,u,u” ,u 0<t<1

w(0) = u(1) = u”(0) =u’(1) = u¥(0) = ¥ (1) =0,

P(0) = p(1) = ¢"(0) = ¢"(1) = ¢ (0) =W (1) =, (3)

where i is a positive parameter, Ar(t), Be(t), Cr(t) € C[0,1], (k =1.2), and f(t.u, ) : (0,1) x [0,+00) x

[0 4+ 00) — (0,+00) and g(t,u,v,w) : (0,1) x (0,400) x (—o0,0) x (0,400) — (0, +00) is continuous. In

fact as we will see below one could consider in Section 2 and 3 f(t,u,¢) = fi(t) f2(t,u, @) with fo(t,u, @) :
[0,1] x [0, 400) x [0, +00) —+ (0, +00) and fi : (0,1) — (0, +oc) is continuous, provided

1ol pl
f / / Gi1a(1.7)G2,1(T,8)G3,1(s,v) fi(v)dv dsdr < +oc;
o Jo Jo

here G; 1, (i = 1,2, 3) is as defined in Section 2. Moreover, our hypotheses allow but do not require g(t, u, v, w) :
[0,1] x (0, 400) % (—00,0) x (0,4+00) — (0, +0o0) to be singular at u =0, v =0 and at w = 0. The existence of
the positive solution depends on p, i.e. there exists a positive number T such that if 0 < g < 7, the boundary
value problem (3) has a positive solution. For this, we shall assume the following conditions throughout:

(H1) ap = sup,gg ) Ak(t) > —m2, b = infie(0,1) Be(t) > 0, cx = sup,, .11 Cr(t) <0, ™ Lapmt —bpm? 4o >
0, where ax, br, cx € B, ar = A Ao p+Aan > —T2,be = —Ai Ao e—Ao pAdak—AL s e > 0,6k = Ao pdae <
0 and A1g > 0> Aoy > —7%,0 < Az < —Ag, (k=1,2).

Assumption (H1) involves a three-parameter nonresonance condition.

2. Preliminaries

Let Y =C[0,1]and Yy ={ueY :u(t) >0, ¢t €[0,1]}. It is well known that ¥ is a Banach space equipped
with the norm ||ul|, = sup,¢(p 1 [u(t)] -

We denote the norm |[[u||, by
llully = max {[lull, , [[«"]]4} -
It is easy to show that Z = {u € C?[0,1]: u(0) = u(1) = 0} is complete with the norm |u||, and |jul, <
l[ellg + [lu”llo < 2 lull, -

Set X = {u e C*[0,1] : u(0) = u(1) = v”(0) = w”(1) = 0} . For given y > 0 and v > 0, we denote the norm
Il By
Il = sup {[a® @] +x|u"@] +vlu@]}, wex.
te[0,1]

We also need the space X equipped with the norm

el = max {ull s [, ], }

In [11], it is shown that X is complete with the norms I, and ||lu|[y, and moreover Vu € X, [lufl, = |||, <

[+,
0
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‘We will investigate the existence of positive solutions for problem (3) by the following fixed point theorem
of cone expansion and compression of norm type:

Lemma 1 ([14]). Let E be a real Banach space and let P C E be a cone in E. Assume {1, {l2 are open
subset of E with 6 € 2y, O C Q. andlet T: PN (ﬁg\ﬂl) — P be a completely continuous operator such that
either

(@) || Tu|| < |jul|, ve PNoh and || Tul| = ||ul|, v € P Nofls; or

(i1) |Tu] > [[ull, u € PO, and |Tul < |[u]], u € P 16O,

Then T has a fixed point in P N (22\Q4) .

Firstly, we will transform the problem (3) into a new form.
For h €'Y, consider the following linear boundary value problem:
—w'® + akwm + bpw” + epw = hit), 0<t<1

w(0) = w(1) = w"(0) = w"(1) =w™®(0) =™ (1) =0, (4)

where ag, br, cx satisfy the assumption
70+ apmt —bpm® x>0 (5)

and let Ty = 7% © apm* — bp? + ck. The inequality (5) follows immediately from the fact that I'x = w4
apmt — bpm? + e is the first eigenvalue of the problem —w'® L g L b L epw = Aw, w(0) = w(l) =
w”(0) = w’(1) = w(0) = w¥ (1) = 0 and ¢1(t) = sin~t is the first eigenfunction, i.e. Tx > 0. Because
the line 1, = { (a,b.c): x° + ak7r4 — b+ = 0} is the first eigenvalue line of the three-parameter boundary
value problem —w'® + apw™® + brw" + cpw = 0, w(0) = w(1) = w”(0) = w”(1) = w™(0) = w¥ (1) = 0, if
(ag, by, ex) lies in 1, then by the Fredholm alternative the existence of a solution of the boundary value problem
(4) cannot be guaranteed.

Let P(Ar) = ,\i 4+ BrAr — g where [ < Qﬁz,ﬂk > 0,(k=1,2). It is easy to see that equation P(Ax) =0
has two real roots Ay g, Az = m, with Ajp > 0 > Ao > —7?. Let Azx be a number such that
0 < A3e < —Az,k. In this case, (4) satisfies the following decomposition form:

2

d d? 42
5 + Ak —=5 +Aop)(—=5 + Asp)w, O0<t <1, (6)

Tdi2 di?

—w® + g™ 4 baw” + crw = (

It is obvious that ap = A + Ao p + Aqp > —?Tz,bk = _)\lJc/\Q.k — )\Q:kAg,k — )\1.,&/\3__1‘- =>0,c= /\1__;?)\31;9/\3__13 < 0.
Suppose that G; x(t,s), (i =1,2,3), (k=1,2) is the Green function associated with
—w” + Aipw =0, u(0)=u(l)=0. (7)

We need the following lemmas.

Lemma 2 ([14]). Let wik = /|Aix|, then Gix(t,s)(i = 1,2,3) can be expressed as
sinhw; rtsinhwi (1 — s)

. Wi,k 8inh w;
(i) when A > 0,Gin(t:s) =1 ginhaw, ;:::sinh w:::(l —t)

wi i sinh w;
t(l—s), 0<t<s<1
s(1—t), 0<s<t<1

0<t<s<1

k]

, 0ss=t=1

(i) when Aix = 0,Gik(t, s) = {

sinw; gt sinw; k(1 — s)

. 0=st<s<1
Wi ke S Wi &

iii)w —? 1 F = . .
(iif)when —7~ < Air < 0,Gi x(t. 5) sinw; s sinwi (1 — 1)

: , 0<s<t<1
wg__ksmwi,k

Lemma 3 ([14]). Gix(t, s)(i = 1,2, 3) has the following properties:
(i) Gik(t,s) >0, Vt,s < (0,1);
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(ll) Gi:]\- (t, S) S Cl,ng__k(S, S), Vf, 5 & [0. 1]
(111) Gi,k(tg S) 2 §i,kG€,k(tlf)Gl,k (.S', S)., Vt.,s c [D, ]_] )
(iv) |Gik(t1, 8) — Gig(ta, 8)| < lig |t1 —ta|, ¥ti,t2,s €[0,1];

where C;p = 1,8 x = Lbi—kk, fXNe>0:Ci=1L0Gie=11iNr=0Ci =

sinh w;

-,51,k = Wi k SINW; k, if

sinw;

-t < Aie <0, and l:k is a positive constant.

In what follows, we shall let
1
Dix =/ Gix(s,s)ds, (i=1,2,3), (k=1,2). (8)
0

Now, since from the second equation of (3), we have

; " ? & 2
—0' + 0290 + 529" + 29 = (— 5z + M12) (— gz +A22) (— gz + As2)
2 2 2
= (= gz T 222)(— g + M) (=g +As2)p = h(h), (9)

where h(t) = pg(t, u(t), u” (t),u' ().

The solution of boundary value problem (9) can be expressed by
1 p1 p1
et) = / / [ G12(t,v)G2,2(v, 8)Gs2(s, T)h(T)drdsdv, t€[0,1]. (10)
o Jo Jo

Thus, for every given h € Y, the boundary value problem (9) has a unique solution ¢ € C' b [0,1] which is
given by (10).

We now define a mapping @2 : C'[0,1] — CJ0, 1] by

(Q2h)(t) / / [ G12(t,v)Ga2(v, 8)Gaa(s,7)h(T)drdsdv, te[0,1]. (11)
Similarly, from the first equation of (3), we obtain
" d2 d’E d2
—u® + alu(‘” L b +eju= (_dtz + A1) (= € + Az1)(— a2 + Az )u = ha(t) (12)

where hi(t) = p(t)u(t) + f(t, u(t), ¢(t)), and the solution of boundary value problem (12) can be expressed
by

1 p1 pl
u[t):./‘o j; ./.0 Gia(t,v)Ga, (v, 8)Ga (s, T)hy (T)drdsdv, t€[0,1]. (13)

Similarly, we define a mapping @1 : C[0,1] — C[0, 1] by

(Q1h)(t) / / [ G1,1(t,v)G2,1(v,8)Ga,1 (s, 7)h(T)drdsdv, te[0,1]. (14)
It is useful to introduce the following notations:
1
(Qih)(t) = / Gij(t,s)h(s)ds, (i=1,2,3), (j=1,2), (15)
Jo
and
N 1 el gl
Qih = j [ j CLpG (v, 0)Go g (v, 8)Ga g (s, 7)h(T)dTdsdv, (k=1,2). (16)
o Jo Jo

It is easy to see that

(Qih)(t) = Q1,;Q2,;Qs,;h(1), (1 =1,2),

and
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(Q;h)(t) < Qsh, (j=1,2).

Lemma 4. Q; : Y — (X, ””M Vk) is linear and completely continuous where xp = A x + Aax, v =
ApeAse and ||Qg|l £ Do g, where gy, is defined by (8). Moreover, (1 4 x5 + yk)_ln-”xk,% <l = [-lseg s -

Proof. The proof of completely continuous is similar to the proof of Lemma 6 in [15], so we omit it. Next
we will show that ||Qx|| < D2 r. Assume that h € Y and w = Qrh is the solution the boundary value problem
(4). It is clear that the operator Qx maps Y into X. Now for all Yh € Y, w = Qxh € X, w(0) = w(1) = w"(0) =
w” (1) = w® (0) = w™® (1) = 0. Using (9) it is easy to see that

1opl
—w"” + Aipw = / [ Gt 0)Gm (v, 7)h(T)drdo, t€[0,1]. (17)
o Jo

and

1
w® = (k4 Aj)w” + Aighjrw = / Gi(t, v)h(v)do, e [0,1]. (18)
0

where 7,7, m =1,2,3 and i £ j £ m.

We will now show HQkh”Xk,Vk < Doy ||k, Yh € Y, where xp = Ay g + Az = 0,0 = Ay gAsy = 0. For
this, Vh € Y., let w = Qih, and by Lemma 3, w € X NY,. The equality (17) with the assumption A3, < 0
implies that w” < 0. Similarly, the equality (18) with the assumptions Ay x + Az x < 0 and Ay A5, < 0 implies
that w™® > 0.

From (18) with xx = Ak + sk = 0, vp = A pdse = 0and w > 0, w” <0, w® >0 we immediately have

1
‘w(‘”(t)‘ +xe |w” ()] + ve fw(t)] = 0 — g+ Aap)w” + Argdapw = /; Gox(t,v)h(v)dv, € [0,1). (19)

Forany h € Y, let h = hy — ha, w1 = Qrh1, w2 = Qrha, where hy, ho are the positive part and negative part
of h, respectively. Let w = Qh, then w = w;, — ws. From the above, we have w; > 0,w!’ < O,w?} >0,i=1,2,
and the following equality holds:

1
W]+ (e + Ao k) [ (O] + Avedas wi(t)] = f Gt 0)i(v)dv = Qa i, t€[0,1], i=1,2. (20)
1]
So, from (20), we have
|0 (1) + A+ Ao [ (D] + Asida [w(t)] = [ (1) — w (1)

+(A1k + Aak) [w) (£) — w3 (B)] 4+ A1k Aa e [wi (F) — wa(t)]
< (| 0] + i+ 20) [w] (O] + XA [wn (0)])
+ (}w(‘”(t)} (A +A 4 Mg g |w
2 16+ Aar) [wa (f)‘ + ApeAa g |wa(t)]
= Qouh1 + Qoiha = Qa | < Do |||lllg = Do bl -
Thus ||@xh|| < Dz |||, , and hence ||Qx|| < D2x. W

XNk Ve —

We consider the existence of a positive solution of the second equation of (3) (the function v € C%(0,1) N
C*[0,1] is a positive solution of the second equation of (3), if @(t) > 0, t € [0.1], and ¢ # 0). It is easy to see
that the second equation of (3) is equivalent to the following boundary value problem:

"% + a0V + boy” + 2o = — (Aa(t) — a2) ¢ — (Ba(t) — b2) " — (Calt) —c2)
+pg(t,u,u’ u®). (21)
For any ¢ € X, let

(Gap)(t) = — (Aa(t) — az) @ — (Ba(t) — ba) " — (Cat) — c2) .
The operator G : X —+ Y is linear. By Lemma 4 and Corollary 9, V¢ € X, ¢ € [0,1], we have
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|(Gop) ()] < [~Aa(t) + Ba(t) — Ca(t) — (—a2 — b2 — e2)] ¢l
< Ksllefs < Kal#llxa.vn
where K> = max,cg 1) [~A2(t) + Ba(t) — Ca(t) — (—a2 + b2 — c2)], X2 = As2 +Aa2 = 0, v2 = Aapla = 0.
Hence [|G2¢||; < K2 [|¢ll,, ., » and so |G| < Ka. Also p € C*[0,1] N C®(0,1) is a solution of (21) iff ¢ € X
satisfies o = Qo (Gap + k), where h(t) = pg(t,u,u”, u')(t) ie.
peEX, (I—Q2G2)p=Q2h (22)

The operator I — Q2G> maps X into X. From ||@Qa| < Dss together with ||G2|| < K2 and condition
D3 2K5 < 1, and applying the operator spectra theorem, we find that (I — QQGQ}_l exists and bounded. Let
Lg = Dg__gK 2.

Let Ha = (I — Q2G2)" Q2. Then (22) is equivalent to ¢ = Hzh. By the Neumann expansion formula, Ha
can be expressed by

Hy = (I +Q2Ga+ ... + (@Q2G2)" +...) Q2 =
= Q2+ (Q2G2)Q2 + ... +(Q2G2)" Q2+ ... = Q2(I + (G2Q2) + ... + (G2Q2)" +....) (23)

The complete continuity of Q2 with the continuity of (I — QQGQ}_I suarantees that the operator Ha Y — X
is completely continuous.

Now Wh € Y., let ¢ = Hah, then ¢ € X NY,, and it is easy to see that ¢” () <0, ™ (t) >0, t€0,1]
Indeed, using by Lemma 4, and from (23), we have

@ (1) = QY(I + (G2Q2) + .. + (G2Q2)" + ... )h(t) =
= (A22Q2 — Q11Qa1)(I + (G2Q2) + ... + (G2Q2)" + ... )R(1) <0, t€[0,1],

and

(1) = (A2t + A2.1)Q5 — Aeada1Q1 + Qia) (I + (G2@a) + ... + (G2Q2)" + ...)R(t) = 0, t €[0,1].
Thus, we have
(Ga)(t) = — (A2(t) — az) 'V — (Ba(t) — ba) ¢ — (Ca(t) —e2) 9 > 0, t€[0,1].

Hence
VhEY., (G2Qz2h)(t) >0, te(0,1] (24)
and so (Q2G2) (Q2h) (1) = Q2 (G2Q2h) (t) = 0, t€[0,1].
It is easy to see [15] that the following inequalities hold: Vh € Y.,

1
1—1L»

(Q2h) (t) = (Hz2h) (t) = (Q2h) (), te[0,1], (25)

moreover,

| (Hah)||, < 1—#,52 (@2R) ], - (26)

For any u € X, it is easy to see that ¢ € C* [0,1]nC® (0, 1) being a positive solution of the second equation
of (3) is equivalent to ¢ € Y, being a nonzero solution of

p(t) = pHag(s, u(s),u"(s),u™ (s))(2). (27)
Obviously, Hs : Y — Y. is completely continuous.

Thus inserting (27) into the first equation of (3), we have

—u'® + Ay ()u™® + Bi(t)u” + C1(t)u =
= #H{t)Hgg(s, U"(S}? 'u"(s}f u® (S)){t) + f{ta u (t)? #HQQ{S? u{s): uﬂ(s): "U.H}{S)}(t)},
u(0) = u(1) = u"(0) = u"(1) = " (0) = «' (1) = 0. (28)

Now we consider the existence of a positive solution of (28). The function u € C%(0, 1)NC*[0, 1] is a positive
solution of (28), if u(t) = 0, ¢t € [0,1], and u # 0.
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Then, similarly as the solution of (21), the solution of (28) can be expressed as

u(t) = Hi(u(s)uHag(v, u(v), u” (v),u™ (v))(s) + f(s, u(s), pHag(v, u(v), u" (v),u'™ (s))(s)). (29)
Similarly, as (23) and (25), we obtain

(th-]ft] = Ql(f =+ (GlQl] + ...+ (GlQl)n + ....)fl(t), (30}
and
@B (O = (Hh) (0> @) (1), te1] (31)
where  (Gyu)(t) = — (A1(t) — as) u™® (t) — (By(t) — by ) u”(t) — (Co(t) — ) u(t) = 0, Ly = Do K;, and

K1 = max; (o] [~ A1(t) + Ba(t) — Ci(t) — (a1 + b1 — c1)]
We recall that X = {u € C*[0,1] : u(0) = u(1) = u”(0) = u”(1) = 0} is complete with the norm |ul|, =

max 4 ||w||,, |[u”|l,, lu and using Lemma & and Corollary 9, we have |[ul|, = |lu . Throughout this
o lu® || d using L 8 and Corollary 9, we h |«®]| . Throughout thi
0 0 llo 4 I llo

paper, we use the Banach space (X, ”-u(‘”H ) to solve the problem (28).
0
Set N N
P={uc X, u(t) > kGua(t,t)|lully, —u"(t)>kGri(t,t)|[u"],.
- | |
u®(t) > kG (t, 1) huf‘” hof t€[0,1]}
T (1=L1)8y,

where k = C-‘11,1 LL

Note, P is a cone in X. For R > 0, write Bg = {u € C*[0,1] : |[u||, < R}.
It is easy to see that if u € P than

-um(t) >0 !!HH}H te [l E] N (32)

where o = E‘minte[%__%] Gialt,t).

We now define a mapping 7' : P — C[0,1] by
Tu(t) = Hi(u(s)pHag(v, u(v), u” (v),u' (v)) () + (s, u(s), pHag (v, u(v),u” (v),u'™ (v))(s)). (33)
Let us introduce the notation:

Q(T) = #'H(T}HQQ('U'- 'U.('U), u"(-v)., u® ('U)}(T) + f(Tf H'(T)'- rU'HZg(t'- u, u”'- HH})(T))-.
and rewrite (33) in the following form:

(Tw)(t) = Hi(q(7)) =
=i+ (G1Q1) +... +(G1Q1)" .. )(a(T)). (34)

Using by (34), it is easy to see that

(Tu)"(t) = QT + (G1Q1) + ...+ (G1@1)™ .. ) (a(T)) =
(A21Q1 — Q1.1Qs1)(I + (G1Q1) + ...+ (G1Q1)" .. )(g(T)) <0, te[0,1], (35)

and similarly, we have

(Tw)® (1) = QI (I +(G1Q1) + ... + (G1Q1)" .. ) (a(7)) =
= ((A214+A2.1)(A2,1Q1—Q1.1Q3.1)—A2.1A3,1Q1+ Q11 ) ([+H(G1Q1)+. . . +(G1Q1)" .. )(g(T)) = 0, t e [0,1]. (36)

Lemma 5. Let u € P. Then the following relations hold:
(a) (Tu)(t) = kG1a(t,t) [[Tully, fort e [0,1],
(b) —(Tw)"(t) > kG1a(t,0) [|(Tw)" o, for te€ [0,1],
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(€) (Tu)®(t) > kGra(t,1) ”(Tu)f””D, for t € [0, 1].

where k = 7‘51-1&:"‘“
Proof.
By using (14) an (31), we have
1
Tu(t) = Hi(a(r)) < T=1-Q1 (a(r)

1,1 pl
— ﬁ / / / Gi1(t,v)G2 1 (v, 8)Ga 1 (s, 7)gq(T)dTdsdv
o Jo Jo
where we recall that
Q(T) = #E(T)HQQ(":"? ‘U"(‘U)f u”("‘-")f 'u(4} (U))(T) + f(Ts u’(T)'. #Hg(ts u, U'”'. u(4) }(T))

For simplicity we denote

1

funy

1,1 el
:/ / / G11(v,v)Ga1(v, 8)Ga1(s, T, )g(T)drdsdv
o Jo Jo
101
IQ=|)\2,1|11+/ / G1.1(s,8)Ga1(s,7)g(T)drds,
o Jo

1
Is = |Azq + Azl + | Az A [ +/ Gia(r.7)g(r)dr.
0
From Lemma 3 it is easy to see that

Cia

51__181__1{Lt)f1 = Tu{t) = 1-1 1 te [0.. 1] . {3?}
— L1
" Cl,l
011Gt ) < —(Tu)"(t) < T 1 I3, t€[0,1] (38)
— L1
511Gt 1) < (Tw)P (1) < %IL t€0,1] (39)
— L1
Using (37-39), we have
Cia " Chia (4) Cra
< — < g < —[a,
ITuly < 720, =@y < 72512, and |w®|. < s,
hence
ru)) > 288 LD 6, (1,0) 7l for e 0,1,
1.1
—(Tu)"(t) > %_LI)GM(L t)||(Tw)"||, for t € [0,1] and
1.1

(T > 2t = L) gy H(Tu)“?ll for t € [0,1].
Cra o
This finishes the proof. W

Throughout this paper, we assume additionaly that the continuous function f(t,u,p) : (0,1) x [0, +ec) x
[0+ 00) — (0, +00) satisfies

(H2)

f(tf'uf'vj Efl(f)fz(m»'}s te (Of]-)! u1UER+,

where f1:(0,1) — (0, +0c) and fa : [0, 4+0c) — (0, +00) is continuous, R* = [0, +o¢0), R~ = (—oc,0].

Moreover the function g(f,u, v, w) : [0,1] x (0, +o00) x (—o0,0) x (0,400) — [0, +00) satisfies

(H3) There exists an a > 0 such that g(¢,u,v,w) is nonincreasing in u,w < a and |v| < a for each fixed
te0,1]ie if —a<wvs <vy < 0,0 < uy <us and 0 < wy < ws then g(t, uy, v, wi) = g(t, ua, vo, wa).
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(H4) There exists an function g1 (t, w) : [0,1] x (0, 400) — [0,40c) such that gi(t,w) is nonincreasing in
u < a for each fixed t € [0,1], i.e. if 0 < w1 < wa then g(t,w1) = g(t, wa)
and each fixed 0 < r < a

1 -
0< / g1(s,7kG11(s, 8)ds < .
i

So, we assume additionaly that the function g(t,u,v), w satisfies

glt,u,v,w) < gi1(t,u+ v +w), tel0,1], u,we(0d +c), veE/(—oc,0).

Let us introduce the following notations:

D, = /1 [lfl Gia(z,z) Gaa(z, 7) Gaa (T, 8)ds drdz,
o Jo Jo
1,1 gl
Dy :f / f Gra(v,v) Gaa(v,8) Ga (s, 7)f1(7) drdsdu,
o Jo Jo
11 1
Dy = Cia(2,2) Gar(z,7)drds, De= [ Giils, ds,
4 /0 fo 11z, z) Ga 1 (z,7) drdz 6 /0 1.1(s, 8) f1(s) ds

1 1 t
Dy = / f Gia(s,8) Gaa(s,7) fo(7) drds, Ds = f G1.(z, z)dz,
L1} 0 0
3 3 3
EY EY EY
ey

3 3 3 3 a 3
I 0T T[T ofrTofI 1
Ds :/ / / f / f G11(5,¥)G2.1(y. T)G3.1(T, 8)-
1 1 J1 1 J1 1 2
T J1 41 Jr Jr Jg

G12(8,0)G2.2(v, 2)Ga 2(z, ) )drdzdv dsdrdy.

Lemma 6. Let (H1),(H2),(H3) and (H4) hold. Then for all w € P Br/B, where r < a < R the
following hold

pC1C1 2 Cia P
Tu)(t) < DsM,. B D s u(T)Hag(v, u(v), u”, .
(Tw)t) = T=rya = gy 2sM- lvle + 7=, stgoyl}fz(#u{T} 29(v, u(v), u”, u™)(7)),

" rU'Cl.lCl.Z
- < e A e R YT A
(T (6) < (1+ Do ) [P T2 Do [l +

C "
19N Dy cup foluu(r) Hag(v,u(v) u”, u®)(r))],
1-Li g
and
() puC1.1C1 2 oL
(Tu) ™ (1) < (1+ A2+ Aza|(1+ [Aza]) + |)\2‘1)-3..1|}[—(1 T Lz}DsMr [lully +
C "
+—21 Dg sup fo(pu(r)Hag(v, u(v), v, u™®)(r))],
1-Li g
where

1ol gl R
M, = / / / Gia(w, w)Gas(w, z)G32(z,v)g1 (v, rkG 1 1 (v, v) )dvdzdw+
o Jo Jo

1 pl 1
+ / / sup  sup  sup f G (w, w)Ga,2(w, 2)Ga.2(2,v)g (v, y, e, p) dvdzdu.
0 Jo ye(0.R] ec(0,R] p=[r.R] Jo

Proof. It is easy to see that Dy < D3 < Ds, and Do < Dy < Dg. Let u e P HER;’B,,., then by Lemma 8§,
ullg < [l < ”-u{‘”” and by Corollary 9, |ju||, = Hu(4) H . Thus r < ”-umH < R. Also, since u € P, we have
i 0 i
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u(t) > kGra(t,t) ully, —u"(t) > kGra(t,t) [u”]ly, u® () > kGra(t, 1) Hu(‘*JHOf and u(t)+[u” (t)]+u® (t) >
rkGua(t,t), forall ¢ € [0,1].
Let us introduce the following notation:
a(v) = u(v) + [u”(v) +u (v).
By Lemma 1. and (H3) — (H5) we have

Tu(t) = Hi(u(s)pHag(v, u(v),u” (v),u™® (v))(s) + f(s, u(s), pHag(v, u(v), u" (v), u® (v))(s))

1

<
—1-I4

Q1 (u(s)uHzg(v,u(v),u” (v),u™ (v))(s) + f(s,u(s), pHzg(v, u(v), u” (v),u™ (v))(s))

1 1 1
-1 ruL / f / G11(t,v)Ga.1 (v, 8)Gaa (s, 7)u(T) Hag(v, u,u” , u'™) (r)dr dsdv+
— L1 Jo (1] ]

11 pl
+1—1L1/ / / G11(t,v)Ga,1(v,8)Ga1(s,7) f(T,u(r), pHag(v, u,u",u™®)(7))drdsdv
o Jo Jo
1 1 op1
g%/ / / G11(t,0)Ga1 (v, 8)Gai (s, T)u(T)Qag(v, u, u”, u™) (T)drdsdv+
o Jo Jo

11 gl
+ 1 _lLl / / / Gt v)Ca,1 (v, 8)Ga1(s,7) f(s,u(s), pHaog(v, u, u”, u™)(7))drdsdv
o Jo Jo

< m‘/‘ol/01/DLGJ,L(?:J)GZ__J(SU-.T)Ga,L(Ts3}”(3)/DL /01 / :

d(v)<a

-G1,2(8, w)G2,2(w, 2)G32(z, v)g(v, u(v), u” (v), v (v)) dvdzdw ds drdz+

i fI—Lliu(l T /Olfolfoj Gralt, z)Gaa(z, T)G3(7, s)u(s) /Olf; / '

d(v)za

Gra(s,w)Gaolw, 2)Gaa(z, v)g(v, u(v), u” (v), u'™ (v)) dvdzdw ds drdz+

4 1
1—1

< m[ﬂl [01 /01 G1.1(5,T)Gz.L(il’-.T}Gz.L(T-.3)”“”0[; /01 / .

d(v)<a

»/0 /0 L Gl-l(ts U}GQ,I (Ua S)GB.I. (Se T}f]_{T}fz{#H(T}HQQ(T, u, u”? 'u(:‘}){T})deSdU

C1.2G 12 (w, w)Ga2(w, 2)Ga2(z,v)g1 (v, TkG1,1 (v, v)) dvdzdw ds drdz+

1 p1 pl 1 pl
)/, ), /) /
+—_ Gt 2)Gaq(z, T)G3 1 (T, 8)||u su su s
1-L)(1—L2) Sy Jo Jo 14(t2)G2.( )G3(m, )l[ullo o Jo gecor_.):z] ce(UPR] pE[fﬁi]A

(v)za

Giols,w)Ge2(w,2)G32(z,v)g(v,y, e, p) dvdzdw ds drdz+

1 1 1 1
+—1_LLfD fo fD Gl..i(tf'v)gz..i('v-.S)Gz,i(S:T)fi(T)Tg&l?lJfz(uU(T)Hzg(T,-u,-u”,u“h(*r))drdsdz;

,U. 1 1 1 . . 1 1 1
< / [ / 1G4z, 2)Go 1 (2, 7)Cs.1(7, 8)fullo / / f -

(1 2G o (w, w)Ga2(w, 2)Ga2(z,v)g1 (v, kG 1 (v,v)) dvdzdw ds drdz+
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1
C11G (2, 2)Go (2, T)Ga 1 (T, S}||U||of / sup sup  sup f .
1 - Ll} 1—Ls) / j[; f 0 yE(D.R] e€(0,R] pelr,R]

-Ch2G 2(w, w)Ga2(w, 2)G32(z,v)g(v, y, e, p) dvdzdw ds drdz+

1_,:1/ f / C11G11(0,0)Ga1 (0, )Gaa(T(r)_sup folpu(r) Hag(ryusu”,ul®)(r))drdsdo

pCp1C 2

S AL = fay M el + 7= D2 sup falpu(m) Hag(v,u(v), o, u®)(m))
C C" u
- %Dﬂf“ llullo T L D bl(lopl)fz(#UfT)Hzng u(v), v’ u) (1)),

,U.C;l:lc-'l:z . C I (4)
T DM, D Haa(v, u(v). o ‘
- (l—Lj}(l—LQ) ||u||0+ ] b}-‘:]pl)fz(#u( } QQ(U.H(U).H S U }(T})

and similarly we also have

pC110 2

—(Tw)"(t) < (1+ |Az, ID[W

DsM, [lull, +

+- 9 Do sup fio(uu(r) Hag (v, u(v), u”, u®)(r))],
1- L TE(0,1)

C11C
Tu)® (8) < (14 [Aa1 + Aaa|(1+ |A Ao ida |)[—EELEL2 oy s
(Tw)™ (1) < (14 Az + Az (14 |A21]) + Az 3=1|}[(1—L1}(1—L2} llello +
C' "
1= e sup fo(pu(r)Hag (v, u(v),u )T,
re(0,1)

This finishes the proof. W

Lemma 7. T(P)C P and T : PN (Bgr/B:) — P is completely continuous.

Proof. First, we prove that T(F) C P. To do this, let v € P, then we define mapping T : P — c? [0,1]
by (33). Then for any u € P, it is clear that

—(Tw)"(t) =0, (Tuw)™*(t) >0, fort €[0,1].
By Lemma 5,
S14(1—Ly)
11

d1.1(1—Lq)
Cia

G112 Ly) oy H{Tu}“’” for t €[0,1].

(Tu)(t‘) = Gl:l(f"-f'} HTU'”[} fort € [D! 1]-.

—(Tuw)"(t) = Gia(t,t) || (Tw)"||, for t € [0,1] and

@)
(Tu)™(t) = o

Hence T'(P) C P.
We recall that

R 11 gl
th:/o A /0 C12G1,2(v,v)G22(v, 8)Ga 2(s, T)h(T)dTdsdy, (40)

and it is easy to see that

1
(H2h)(t) < 1——L2(Q2h}(t} < I

! Qsh, Vte [0,1].
— Ls
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Let us introduce the following notation:

~ 11t ~
N, = Qagi(T,rkG1 1 (T, 7)) = / [ / Ch2G1 2(v,v)Ga2(v,8)Gs2(8,7)g1 (T, 7kG1 1 (T, T) ) drdsdu. (41)
o Jo Jo
Let V. C PN (Bgr/B.,) be a bounded set. Then there exists a d > 0, such that sup{|[ul|, : u € V} = d.
First we prove T'(V) is bounded. Since |jul|, = max{”u”o , ”H””miiﬂH}H } - Hu(4)H , we have u(t) +
0 0

0 () P (e) < fullyHla” o+ | < 3, and fuu(e)Hrag (v, u(e), w” (), u )] < i ulo@ag1 (v, EG 1 (0,0)) =

5 dN- for all £ € [0,1]. Let My = sup{fo(w) : w € [0, ;£ dN-]}. Now, from Lemma 3 and Lemma 6. we
have for any u € V" and t € [0, 1] that

Tu(t)] = [Hi(u(s)nHag(v, u(v), u” (v),u™ (v))(s) + f(s,u(s), pHag(v, u(v),u” (v), ™ (v))(s))|

= _lLlQl('u(S)#Hzg{'v-. u(v), u” (v),u® (v))(s) + f(s,u(s), kHag(v, u(v),u” (v),u® (v))(s))

puCi1C 2 w4
< " M. Dy s H. ulv),u, \
SA—Lya-Ia) lully + D4 .-2?&)1) fo(pu(r)Hag(v, u(v),u, u™) (7)),

pC11C 2

< ngﬂ-’Ld + Dy .—:?DF,,I} fa(pu(T)Hag(v, u(v),u”, UH})(TD..

=0 —Lo)(—1Ia)
We have a similar type inequality for |(Tu)”(t)| and |(Tu)™ (t)|. Therefore T(V') is bounded.

Next, we prove that T(V') is equicontinuous. Now, from Lemma 3 and Lemma 6, we have for any uw € V
and any t1,t> € [0,1] that

+ MaDs. (42)

[(Tu)(t) — (Tu)(t2)| =
= +(G1Q1) + ... +(G1Q1)™ . )(a(T)) (k1) — QI + (G1@Q1) + ...+ (G1Q1)™ .. )(g(T))(2)]
11 g1
=| /D /0 /0 Gt 8)G2a(s,v)Gaa(v, 7)1 + (G1Q1) + ... + (G1Q1)" .. ) (q(7))drdvds—

_ /1 /1 /1 G1,1(t2,8)Ga1(5,0)Gaa (v, T) (I + (G1Q1) + ... + (G1Q1)"™ .. ) (q(7))drdvds |

1 1 gl
= / / / | Gia(ty, 8) — Gral(te, 8) | Gaa(s,v)Ga (v, 7)) (I + (G1@Q1) + ... + (G1@Q1)" .. ) (g(7))drdvds
o Jo Jo

1 1 1 1
< f / f | Gra(ts, 8) — Gra(ta, ) | Gaa(s,0)Gs.(v,7)q(r)drduds
1_L1 i 0 0
-~ uCi1Cy 0 Cia
<1 — = D M,d+ DgM) [t — ta]
sl mya-m ™ T Ly DeMa) It =l

where [y ; is a constant.

We have a similar type inequality for |(Tu)”(t1) — (Tu)” (t2)| and |(Tw)™ () — (Tu) ™ (t2)].
Therefore T(V') is equicontinuous.

Next, we prove that T" is continuous. Suppose u,,u € PN (Br/B,) and |lu, — u|, — 0 which implies that
Un(t) = u(t), ul(t) — w’(t) and ul’ () — v™®(¢) uniformly on [0,1]. Similarly for f(t, w,v) < fi(t) fa(|u| +

[l + [w]), fa(|un ()] + |us ()] + us? ()]) = f2(lu(®)] + [u” (@] + [u® (¢)]) uniformly on [0,1] and g1 (t,un(t)) —
g1(t, u(t)) uniformly on [0,1]. We recall that

q(7) = pu(T)Hag(v, u(v), u” (v),u™ (v))(7) + £ (r, u(r), pHag(t, u,u”, u')(7))
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so, we have

Gn(7) = pn (T)Hag (v, un (v), url (v), ul? (0))(7) + f(7, u(7), pHag(t, un, urt, ul)(7)).

The assertion follows from the estimate

[Tun(t) — Tu(t)| =
=@ +(G1@1) +... + (G1@1)" .. )(gn(T))(t) = Q1(T + (G1@1) + ... + (G1Q1)™ .. ) (q(7))(?)]

=| /01 /01 /: G11(t,8)G2,1(s,v)Ga 1 (v, T)( + (G1Q1) + ... + (G1Q1)" .. ) (gn(T))dTdvds—
1 1 1
_/ f / Gr1(t,8)G2,1(8,v)Ga (v, 7)1 + (G1Q1) + ... +(G1Q1)" ...)(g(7))drdvds |
] 0

1 1 g1
= /0 fu fo Gia(t,8)Ga1(5,v)Ga (v, 7) | (I + (G1Q1) + ...+ (G1Q1)™ .. Mg (7))

—(I+(G1@Q1) + ...+ (G1@1)" ... ) (a(7)) | drdvds,

and the similar estimate for |(Tu,)"”(t) — (Tw)"(t)| and ‘(Tun}(“]{t} - (T-u}(‘*]{t}‘ by an application of the
standard theorem on the convergence of integrals.

The Ascoli-Arzela theorem guarantees that T : P — P is completely continuous.
This finishes the proof. W

Lemma 8. If u(0) = u(1) = 0 and u € €?[0,1], then [Jul|, < [Ju”|,, and so, [[ul, = [[u"],-

Proof. Since u(0) = u(1), there is a a € (0, 1) such that u'(a) = 0, and so u'( fn s)ds, t € [0,1].
Hence |u'(t)| < f‘ |u(s)|ds < f01|u"(3 )ds < |u"||g, t € [0,1]. Thus |[u'[|, < ||U..”||0 Since u((]) = 0, we
have u(t) = 0 u'(s )ds t € [0,1], and so |u(t | < fo [u'(s)|ds < ||Ju'|,. Thus |ul, < [[v'[l, < |[u"||,. Since

l[ully = max {[[ully, "]y} and JJully < [|u”[ly, we obtain that ||ull, = [ju"||,
This finishes the proof. W

Corollary 9. Vu € X, [[ullo < [[u”[lo < [[u™|lo, so we have |[u], = H-umH .
0

Corollary 10. Let r > 0 and let u € 8B, N P. Then |ul, = ”-umH =7
0

3. Main results

Theorem 1. Let (H1),(H2),(H3) and (H4) hold. Assume that the following condition holds

(H5)
limsupM <ec
w—0+ w
liminf min inf it we) > ea,
w20 te[d 2] ugl04o0) P
and
liminf min  inf R CLICT) S
w— oo 16[%‘%]“’6 [0,400) [v|e[0,+oa) w

where ¢; and co is positive real number.
Then there exists p° > 0, such that if g € (0, "], then problem (3) has at least one positive solution.
Proof.

We divide the rather long proof into three steps.
(I) Firstly, we will prove that the first part of assumptions (i) of Lemma 1 is satisfied.
To do this, by (H5), there exist 0 < r < a such that

folw) < cyw, Yw € [0,7]. (43)
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Let uw € 8B, N P, by Lemma 8, |Ju|l, < |[u”|, < ii-umH and by Corollary 9, ||ul|, = Hu(“) H , then we have
0
u(t) < Hu“)!! =r, —u'(t) < |u'l|; <randu(t) < |ull, <r, Vte[0,1]. Also, since u € P, we have
0
u® () > kGra(t,t) [u®| , —w () 2 RGuat.t) [y, u(t) > RGra(t,) [ully, and u(t)+u” (6)+ul® () >
0

- -~ -~ _L 1—Ly)(1—L
rkGy1(t, 1), t € [0,1]. We recall that N, = Q201 (v, rkG1.1(t, 1)) O R o ey ey ey e B
We now show that

0 < pu(t) Hag(v, u(v),u” (v),u™ () (t) < v, Vte[0,1].

To see this, since p < 1;,“'_"? and by (25), we have

"

pu(s) Hag (v, u(v),u” (v),u™ (v))(s) < pllullog

_leng(“b‘, u(©), u” (v), u™ (v)(#))(s)

N,
Qggl(v rkG11(t 1)) = *” <
2

SHry ngl('v-. rkG1a(t,t)) <
So, using by (43), we ha\c

Fal(n u(s)Hag(v, u(v), " (), u (0)(1) < 1 (pu(s) Hag (v, u(v), " (0),u® (0)(0) i < T3

We recall that @(v) = u(v) + |u”(v)| + u™ (v).
Thus, by Lemma 3, (H1),(H2),(H3) and (H4), we have

Tu(t) = Hi(u(s)pHag(v, u(v), u” (v), u'™ (v))(s) + £(s, u(s), pHa20(v, u(v), u” (v), u™ (v))(s))

<7 —1L1 Qi (u(s)uHag(v, u(v), u"(v),u' (v))(s) + f(s, u(s), pHag(v, u(v), u”(v),u® (v))(s))

“1-I, flfl fl G1.1(t,v)G2.1(v, 8)Ga1 (s, T)u(T)Hag(v, u, u”, u™) (T)drdsdv+

1 —L1/ / f G1.1(t,v)G2.1(v, 8)Ga1(s,7) f(7,u(T), pHag(v, u, u”, u®)(7))drdsdv

H . ’ , no (4] .
=< (l—Lj}(l—Lg}f / f Gra(t,v)Gaa(v, 8)Gaa (s, TIu(T)Q2g(v, u, u”, u'™)(7)drdsdv+

1—L1f f f Gi,1(t,v)Ga1 (v, 8)Ga (3,7) £ (s, u(s), pHag (v, u, u”,u™) (7)) drdsdv

(1_ l}l_Lgf[fgjlthglerglrs f/ /

d(v)<a

-G1,2(s, w)Ga.2(w, 2)Ga2(z,v)g(v, u(v), u” (v), ™ (v)) dvdzdw ds dr da+

} a —Lliu(l = /01/:/: Ga(t,2)Ga1(z, T)Ga (T, 8)u(s) /:/: f

d{v)<a

Gha(s, w)Gaa(w, 2)Gaa(z,v)glv, ulv), u” (v), Y (v)) dvdzdw ds dr dz+

1 el pl
+ ££/c;G]_]_(t,t.'}GQ_]_(U{.S)Gg_]_[S,T}f]_{T}fg(ﬂu(T)Hgg(T,'u.l't,t.”,_.'u{a“){?'})d‘l'dsdt!

1—1Ly

*Corresponding Author: B. Kovacs 64 | Page



Positive solution to singular sixth—order differential system with variable parameters

< Mfol /Dl /01 Gl,Lft,i‘-]Gz,lfﬂ-‘:T}Ga,L(ﬂS}HUHO/Dj /01 /

d(v)<a

O 2G a(w, w)Gaa(w, 2)Ga a(z,v)g1 (v, TEGM (v,v)) dvdzdw ds drdz+

Gralt, )Gz, 7)Ga1(T, 8)||u f/ su su /
(1—51 )(1—La) /// LAt 2)G2.1(z, T)Ca.1(7, 8) [ullo 0 yE[OR] cE(OPR] pE[r‘l:}E]

d(v)=a

G a8, w)Gaa(w, 2)Ga 2(z,v)g(v, v, e, p) dvdzdw ds drdz+

1—-14

ﬁﬁﬁ%jgffﬂhmﬁ&MM&mwmfﬂlﬁ

-C12G1 2(w, w)Gao(w, 2)Ga2(z,v) g1 (v, TEEGM (v, v)) dvdzdw ds dr dz—+

1
Gri(t,z)Ga1(x, T)Ga 1 (T, 8)||u / f S1L s / .
(1 - 1}(1 - Lz}f / f 1 21(2,7)Ca(7; ) [ullo 0 yé{ﬂ R] ce(op;;] :pE[rl:TQ]

-CY oG 2 (w, w)Ga o(w, 2)Gs 2(2,v)g(v, y, e, p) dvdzdw ds drdz+

1 1 1
/ f / G (t,0)Ga,1 (v, 8)Gaa(s,7) fr(T)erpu(r) Hag(r, u, 0", u™) (1) drdsdv
1] o 0

v [ [ Gt Gano, 96a s D Aeml il Qea(o.u(w),a” (0,0 0)(O) rasao

< mf;fol/:Gl..l{tex)Gzrl(f:T)Ga.L{TsS}HHHDfOI/DL/DI'

-C1,2G1 2(w, w)Gaa(w, 2)Ga 2(z,v)g1 (v, r};GU (v,v)) dvdzdw ds drdz+

1 1 1 1 1 1
# / / f ‘
o Gt z)Go1(z, 7)Ga (T, 8)|[ullo sup  sup  sup .
(1 - Ll}(l =Lz} Jo Jo Jo o Jo ye(0.R] ec(0,R] pe[rR] Jo

-Ch2G1 2(w, w)Ga2(w, 2)Ga.2(2,v)g(v, y, e, p) dvdzdw ds drdz+

1 —LL/ / [ Gra(t,v)G21(v,8)Ga1(s,7) fi(T)eip ||ul, —— . Qggl(b rkGl 1(t, t))drdsdv

<ttt [ [fnonsemeinanca ] [

O 2G1 2(w, w)Gaa(w, z)Ga2(z,v)g1 (v, rEGl_l (v,v)) dvdzdw ds drdz+

1
44— %0 ;_z||u||0 / f / Ci11G11(z,2)Ga 1 (2, T)Ga,1(T, 8 f / sup  sup  sup f :
{1 - Lﬁ} 0 ve(0.R] eg(0,R] pc[r,R]

:C1,2G o(w, w)Gaa(w, z)Gaa(z,v)g(v, y, e, p) dvdzdw ds drdz+

: § _(},T ”T”E I2) / f f C1.1G1.1(v,v)G2.1 (v, 8)G3.1(s,7) f1(T) Qg1 (v, PkG1 1 (8, ) drdsdy
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< ,U.['chl 1C1 2 M, -‘r(_’]_DgC]_ 1N } ” ”
(1—L1)(1—La) v

< ,U.(Dscl 1C 2 M., +E,‘1D5C1 1N )
(1—L1)(1—Ls)

lullg < llully, YuedB.nP, tel[0,1].
Consequently,

1Tully < llully < [lu”[l,, Vu € dB.NP. (44)

We have a similar type inequality for ||(Tu)”||o and [|(Tu)™||o:

I(Tw)"llo < [|u”l,» W@l < |u®] . vuesB.nP (45)

This proves one of assumptions appearing Lemma 1.

(I1) Secondly, we will prove that the second part of assumptions (i) of Lemma 1 is satisfied.
To do this, by condition (/4) there exists R > 0 such that

flt,u,w) > cow, Yu€ R, w> Ra, t€ B %} .

Let us choose ¢3 > Then by condition (H5), there exists Ry > Féﬁzfm > 0 such that,

o T Ds

13
g(t,u,v,w) > caw, Yu,e R*, Ywe R™, w> Ry, t€ [3 ﬂ .
Let R > max{t—l, a}. Let u € 9Br N P, ie. Hu(“) H = R. Thus, using by (32) we have
0

rmn u(t) > H mH =oR > Ry, Yuec BN P.
te[ -4
It is easy to verify that

pH2g(v,u(v),u” (v),u'™ (v))(s) > pQag(v,u(v), u” (v),u (v))(s)

k]

2#/1 /'4’ G1 2(8,1)Ga2(v, 2)Ga.2(2, ) g(z, u(z), v’ (z), u™ (z))drdzdy
73

1

Toriori
> U / G12(8,0)G22(v, 2)Ga2(z, x)es Ridedzdu

1 1 1
i
2 3 3
R

> peaR61G 2 (s, s)ﬁ /1 ﬂ G12(v,v)G22(v, 2)Ga2(z, z)dzdzdy

e S

> pesRidy min Gi(s,s)D7 = pesR161KoD7 > Ry, s € [~ll ‘ﬂ
el [I.j]

where Ko = minae[%_%] (10(s, 8).

Then, by Lemma 3, (H1) and (H5), we have
T-u{%) = (Hi(u(s)uHag(v, u(v),u” (v),u™ (v))(s) + f (s, u(s), pHag (v, u(v), u" (v), u' (v))(s)) |,—4

> (Qu(u(s)nHzg(v, u(v), u” (v),u™ (v))(s) + f(s,uls), pHag(v, u(v),u” (v),u™ (v))(5))) =4

11 p1
= f [ / Gl_lfé, v)Ga.1(v, 8)Ga.1 (s, T)u(T)Hag(v, u, u”, u'™)(7)drdsdv+
o Jo Jo
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1 p1 gl
1 "
+/ f / G11(5,0)G2,1 (v, 8)Ga.1 (8, 7) (7, u(T), pHag (v, u, ', ') (7)) drdsdy
o Jo Jo
3 2 3
1 ES F 1 " (4)
=p Gl,l(E,v}Gg,l(U,S}Gg‘l(s,T)-u{T}Hgg{v,u,u yut ) (T)drdsdu+
72 /%
3 3 3
T E) T 1 o (4)
+ Gl:l{EaIU)GQ,L{'U'. S)G;;__]{S.IT}f{T? E(T},#HQQ(U,U,U s U }(T))de‘gdU
RS S
3 3 3
T 7 f1 1 oo (4)
= Cajh GL](g,U}GQJ(U, S}Gll(sf T)Hgg(i:g-u,-u s U )(T}}d’?’dﬁd‘b‘
T /1 /3
3 3 2
E) 1 ) 1 o (4)
= Capl ] G1,_1(§-.'U}G2,1{t:.,3}G3,.1(8,T)Qgg{-v.,u.,u Lutt ) (7)) drdsdy
7 Y1 Y1

i rtri 1
= 02#/; [ /; Gl,l(ﬁay}Gﬁ,l(yaT}GE__l{Ta s)-
S S

f G1,2(8,v)Ga22(v, 2)Ga2(z, 2)g(z, u(x), u” (x), u'™) (z)dzdzdv dsdrdy
1

T
3 3 3
T 1[I 1
> t’-zcwﬂ ﬁ ﬂ Gl_.l{gf'y)az.l{'yﬁ}GSJ(Tf s)-
1 1 1

]
E)

3 2
A
. f / G1.2(8,v)C22(v, 2)Ga oz, 2)u'® (z)dzdzdv dsdrdy
1 1
1 Y1

1
T

Bl

qt-"‘";
P

H?:-.-"
FA%

3 a 3
1 Ky 1 1
20203#0||u‘4)||oﬁ /1 ﬁ Gri(5 ¥)G21(y, T)Gaa(7, 8)-
T T T

3 3 3
T 1 1
/ / / G1,2(8,v)G22(v,2)G32(2, v))dedzdv dsdrdy
1 1 1
7 71 71

> eaespo Ds[[u' (o = [[u® o,
s0 X
(Tu)(3) 2 [« lo, Yu € BN P.
Consequently,
I |
||“{4}||0 < || Tull, = ||(T'U](4) ho" Yu € OB N P. (46)

(IIT) Finally, we will prove that T : PN (Br\B,) — P is a completely continuous operator. By Lemma 7,
the Ascoli-Arzela theorem guarantees that T : P (ER\BP) — P is a completely continuous.

Then due to Lemma 1, by (45) and (46) inequality we see that the problem (3) has at least one positive
solution.

This finishes the proof. M

4. Conclusions

This paper investigates the existence of positive solutions for a nonlinear sixth-order differential system
using a fixed point theorem of cone expansion and compression type of norm type. The nonlinear terms may be
singular with respect to the time and space variables. The problem comes from the deformation analysis of an
elastic circular ring segment in the equilibrium state. The results obtained herein generalize and improve some
known results including singular and non-singular cases.
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