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ABSTRACT: When the basic assumption of independence and identical distribution of the observations is 

violated the performance of the traditional control charts are seriously affected.  Many alternative monitoring 

schemes are suggested in the literature for accommodating serial correlation.  Traditional control charts with 

modified control limits and time series based monitoring schemes are the most popular monitoring schemes.  

This article discuss about various monitoring schemes that exist in the literature for monitoring correlated data.  
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I. INTRODUCTION 

The essential tool in SPC is the Control chart.   A basic assumption in traditional control charts is that 

the observations from the manufacturing process are independent and identically distributed.  However, in 

practice this assumption is frequently violated [1].  With improvements in measurements and data collection 

technology, processes can be sampled at higher rates and the high frequency of sampling leads to data 

correlation.  Also, in continuous flow processes like chemical processes, the data are correlated [2].  Many 

authors discussed about the properties of standard control charts when applied to correlated observations. The 

assumptions made about the time series model, occurrence of a special cause, knowledge of process parameters 

etc. varies from study to study. The exact nature of the effect of autocorrelation also varies in these studies 

depending on the assumptions made.  A basic conclusion that can be drawn from their studies is that correlation 

has a significant effect on the properties of the control charts that were investigated. When correlation is present 

in the data there are serious problems of not detecting the special causes that truly exist and giving false signals 

when there is no special cause. 

 

II. TRADITIONAL CHARTS IN PRESENCE OF CORRELATION 

Alwan [3] studies the performance of standard Shewhart control chart for individual observations with 

fixed control limits. He considers an ARMA(p,q) model and derives the probability of false positive (not 

detecting an assignable cause that truly exist) and false negative (detecting an assignable cause that does not 

exist) signals.  Their results indicate that even milder levels of autocorrelation, which are often difficult to notice 

without formal time-series machinery can deteriorate the ability of the standard control charts to identify the 

special causes. 

Alwan, Champ and Maragah [4] studies the effect of autocorrelation on individuals chart with 

supplementary runs rule.  They assume an AR(1) model and their study shows that for an individuals chart with 

no supplementary runs rule the in-control ARL's tend to increase as the autoregressive parameter φ₁ moves 

away from 0.  That is, for both positive and negative correlation, the in-control ARL tend to increase. But with 

the addition of supplementary runs rule the ARLs decreases monotonically as φ₁ approaches 1.   i.e. For the 

case of a positively auto correlated AR(1) process, a chart supplemented with runs rule has a significantly lower 

in-control ARL than when the process is iid and the in-control ARL's of negatively correlated process are 

significantly larger than the iid case. 

VanBrackle and Reynolds [5] consider EWMA and CUSUM control chart when the observation are 

from an AR(1) process with an additional random error. They consider only positive values of φ₁ and it is 

shown that the presence of positive correlation significantly reduces the in-control ARL of the EWMA and 

CUSUM charts. The reduction in the in-control ARL is more severe for large values of φ₁.  As φ₁ increases the 

correlation between successive values of the EWMA, and CUSUM statistic also increases and the in-control 

ARL of the charts decreases rapidly.  In the out-of-control situation, the correlation shortens the time required to 

detect small to moderate shifts and lengthens the detection time of large shifts. The shortened detection time for 
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a small to moderate shifts is desirable but there is a very high probability of false alarm. Suggestions for 

choosing the design parameters of EWMA and CUSUM charts when the observations are correlated are also 

given in their paper. Schmid and Schone [6] studies the properties of EWMA control chart in the presence of 

correlation and prove theoretically that the tail probabilities of the run length in the in-control state for the 

correlated process are larger than in the case of independent observations if all the autocovariances are greater 

than or equal to zero. 

 In view of the lowered performance characteristics of the various control charts in the presence of 

correlation several remedial process monitoring schemes have been proposed in the literature. Traditional 

control charts with modified control limits and time series based monitoring schemes are the most popular 

methods.  

 

III. CHARTS WITH MODIFIED CONTROL LIMITS 

The first approach and the simplest method among the procedures developed for monitoring autocorrelated data 

is adjusting the control limits of the conventional charts to accommodate the systematic non random behaviour 

of the autocorrelated process. 

 Vasilopoulos and Stamboulis [7] modifies the control limits of a shewhart X  chart when the observations 

follow an AR(2) process.  For an X  chart, when the process is an iid sequence the 3σ limits are given by X  ± 

3 σx/√n.  When the process observations are not independent and normally distributed, the standard deviation of  

X   is not  σx/√n but it is to be obtained in terms of the process parameters and the process variance. The true 

variance of X  is used to compute the control limits of the chart. 

 

    Using such an approach English, Krishnamurthi and Sastri [2] modifies the control limits of an individuals 

chart for the AR(p) process: 

Yt=φ₁Yt-1+φ₂Yt-2+...+φpYt-p+εt 

 

 where φi s are the autoregressive parameters and εt follows N(0,σε²).  The control limits suggested are 

μ±3√var(Yt) where μ is the process mean .  For an AR(1) process 

Var (Yt)  = σε²/(1-φ₁)² 

 and for an AR(2) process 

Var (Yt)   =   ))-1/(
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Wardell, Moskowitz and Plante [8] studies an EWMA chart with modified limit and their study reveals 

that an EWMA chart with properly adjusted limits performs at least as good as and often better than the special 

cause chart.  Lu and Reynolds (1999) also studies the EWMA chart applied to observation from an AR(1) 

process with an additional random error and they conclude that if the control limits of the charts are adjusted to 

account for the correlation, it is preferable to plot EWMA of the observations rather than the forecast residuals. 

For low to moderate levels of autocorrelation, EWMA chart performs equally good as residuals chart and only 

for high levels of autocorrelation and large shifts the EWMA for residuals is marginally quicker in detecting 

lack of control. 

Yaschin [9] propose a method to assess the run length distribution of a CUSUM chart when the data 

show moderate autocorrelation. He shows that the actual observations can be replaced by an iid sequence for 

which the run length distribution is approximately the same. When the serial correlation is not too large the 

approximation is good. He also proposes a method to modify the control limits of a CUSUM chart by using the 

autocorrelation structure of the process. 

 

IV. RESIDUAL- BASED CONTROL SCHEMES 

The most commonly used methods of SPC for autocorrelated data are the time-series modelling 

approach proposed by Alwan and Roberts[1].  The idea is to fit an appropriate time-series model for the process 

observations and obtain the one-step-ahead forecast. The typical time series model used for modelling 

autocorrelated data is the Auto Regressive Integrated Moving Average (ARIMA) model of Box and Jenkins 

[10].  If the fitted model is exact, the forecast residuals are uncorrelated and follow N(0, σε²) distribution so that 

any conventional chart can be employed to monitor the sequence of the residuals.. If a shift in the process 

occurs, the identified model will no longer be correct and this model misspecification will be reflected as signals 

on a control chart applied to the residuals. 

It is proposed to use two charts simultaneously : a common cause chart and a special cause chart. The 

common cause chart is a run chart of the forecasted values based on the fitted ARIMA model.  This chart is 
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without any control limit and it helps to view the level of the process and evolution of that level through time. 

Thus, it provides a better understanding of the process and helps in achieving real-time process control. The 

control decisions of this chart can be made on some economic calculations to balance the expected loss of bad 

product over some specified period of the time against the cost of re-centering.  The special cause chart is a 

standard control chart for the forecast residuals.  Since the residuals are assumed to be independent and 

normally distributed any traditional chart can be applied to the sequence of residuals.  The latter ensures that the 

original process is under quality surveillance. 

 For example, if the process is identified to follow an AR(1) model, then the actual observation Y t is given by, 

Yt=φ₁Yt-1+εt  where  εt~N(0,σε²) and the forecast residual at time t is, 

et = Yt- 1̂ Yt-1 

where 
1̂  is the estimate of φ₁. It is assumed that 

1̂ =φ₁ and therefore et follows normal distribution with 

mean 0 and variance σε².  Any standard control chart can be applied to the sequence et. 

 

V. FORECASTING USING EWMA 

In situations where time-series modeling approach becomes impractical, Montgomery and Mastrangelo 

[11] suggest using the EWMA to get a suitable one-step ahead forecast of the process.  The EWMA statistic 

which is equivalent to an ARIMA (0,1,1) model in its correlation structure provides an excellent one-step ahead 

predictor for the model. The optional value of the EWMA parameter λ in terms of the mean square error of 

prediction is shown to be (1-θ₁).  Cox [12] has derived the expression of the optimal value of λ for predicting 

the ARIMA(1,0,0) model. (AR(1) model). The value of λ which minimizes the m.s.e is derived as 

  λ  = (3φ-1)/(2φ)                    1/3≤φ<1 

    = 1                                 φ<1/3 

 In general if the observations from the process are positively autocorrelated and the process mean does not drift 

too quickly, the EWMA with an appropriate value for λ is suggested as a suitable one-step ahead predictor. 

 It is suggested to maintain two charts simultaneously. The forecast errors from EWMA can be plotted on any 

traditional chart. This chart is accompanied by a run chart of the original observations on which the EWMA 

forecast is superimposed. This allows visualization of the process dynamics. They also propose a chart which 

combines the information about the state of statistical control and process dynamics. The control limits for this 

chart is obtained as follows. 

The prediction errors from the EWMA, ttt YYe ˆ  are assumed to be iid N(0, σε²) . The control limits can be 

obtained using the probability statement 

     12/2/ UeUP t  

    where uα/2 is the upper α/2  percentage point of the unit normal distribution. 

     1ˆˆ
2/2/ UYYUYP ttt  

 Thus the actual observations Yt can be plotted on a chart with the upper and lower control limits  

 2/
ˆ UYt   and central line tŶ . 

Hunter [13] also discuss about the use of EWMA as a forecasting tool. 

 

VI. FORECASTING USING KALMAN FILTER 

Monitoring forecast residuals from Kalman Filter is a similar approach [2]. The Kalman Filter is commonly 

used by the control engineers and other physical scientists in diverse areas such as the processing of signals in 

aerospace tracking and underwater sonar and statistical process control [14]. 

Let  Yt, Yt-1, ...Y₁ denote the observed values of a variable of interest at times t, t-1, ...1.  Yt is assumed to be 

dependent on an unobservable quantity μt known as the state of nature. The Kalman Filter is a recursive 

procedure for inference about the state of nature μt given data upto time t.   A general K. F model can be 

described by the matrix equations: 

   Yt = Ftμt+εt     (1) 

   μt  = Gt μt-1+υt  (2) 

 

where Ft and Gt are known quantities. The first equation known as the observation equation describes the 

relationship between Yt and the state of nature μt.  The observation error εt is assumed to follow N(0, Wt).  The 

state of nature μt is assumed to change over time according to the second equation known as the system 

equation. The system equation error υt is assumed to follow N(0, Vt).  Both the variances Vt and Wt are assumed 

to be known and  εt and υt are assumed to be independent.  The recursive equations of K. F can be derived in 
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many ways. The K.F recursive equations are derived using a Bayesian approach.  The posterior distribution of μt 

given the data Y
t
 = (Y₁, ..., Yt) has been derived as   L(μt / Y

t
)   ̴   N( t̂ ,Qt)  where 

    t̂  = Gt 1
ˆ
t +RtFt′(Wt+FtRtFt′)⁻¹et 

    Qt =Rt - RtFt′(Wt+FtRtFt′)⁻¹Ft Rt      (3) 

    et =Yt - Ft Gt 1
ˆ
t  

    Rt= Gt Qt-1 Gt′+ Vt , is the variance of μt prior to observing Yt.   Equation (3) is known as the recursive 

equations of the Kalman Filter. It is begun at time zero by choosing μ₀ and Q₀ to be best guesses about the 

mean and variance of μ₀ respectively. 

 

A special case of the KF model is proposed [2] for recursively estimating the autoregressive parameters of an 

AR(p) model and to monitor the forecast residuals from the KF model.   Let Gt =I and υ_t=0 equations (1) and 

(2) reduces to 

     Yt = Ft μt +εt                                      (4) 

     μt = μt-1 

where Ft = ( Yt-1 Yt-2 ... Yt-p ) , μt = (φ₁, φ₂,  ....,φp)t′ and εt  ̴  N(0, σε²).  The recursive equations in this case 

reduces to 

    Kt= Qt-1 Ft′(σε²+Ft Qt-1 FtFt′)⁻¹      (5) 

    et = Yt - Ft 1
ˆ
t        (6) 

    t̂  = 1
ˆ
t  +Kt et       (7) 

    Qt = Qt-1 -KtFt Qt-1      (8) 

where Kt is called the Kalman gain.  The recursive procedure is 

o step(1) Initialize the Kalman Algorithm with initial estimates of (φ₁, φ₂,  ....,φp) , σε² and Qt 

o step(2) Increment the time index one unit and compute the Kalman gain vector given by equation(5) 

o step(3) After observing Yt compute the prediction error using equation (6)  

    and revise the autoregressive vector using equation (7) 

o step(4) Revise the associated parameter error covariance matrix using equation (8) 

o step(5)  Repeat steps 1 to 4 as long as the process is in control 

Kalman Filter recursive algorithm is recommended for the accurate estimation of the process mean and to apply 

traditional control charts to the residuals which are expected to be Gaussian white noise [2]. 

 

VII. OTHER MONITORING SCHEMES FOR CORRELATED DATA 

Runger and Willemain [15] propose unweighted batch mean (UBM) chart as an alternative to time-

series modelling. Since it requires no time series modeling, he calls it as a model free approach.  The UBM chart 

plots arithmetic average of successive observations and exploits the large number of observations available in a 

data rich environment. The averaging of the observations dilutes the autocorrelation. 

    The j th unweighted batch mean is given by 

b

Y

V

b

i
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j



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 1

)1(

          j=1,2,..... 

     Procedures for determining the appropriate batch size b is given in Law and Carson [16].    Runger et. al. [17]  

provide a detailed analysis of batch size for an AR(1) model. 

Weighted batch means (WBM) chart is also proposed [15] when the process is modelled as a ARMA model. 

This chart plots weighted averages of consecutive data values.  Given an ARMA model, one can compute 

weights that make the batch means uncorrelated .  The jth batch mean is calculated as 

 

    ibj
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        j=1,2,..... 

 

The batch size b is selected to tune performance against a specified shift s. If , 1
1




b

i

iw , then Xj is an 

unbiased estimate of the process mean.   For an AR(1) model, the optimal weights are 
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The EWMAST chart is proposed by Zhang [18].    It is an EWMA chart for stationary process data. The control 

limits of the chart are calculated considering the correlation structure of the data. The variance of the EWMA 

statistic Zt is calculated as 
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     Where ρ(k) is the autocorrelation function of Yt at lag k.  ‘m’ is a large integer (m is recommended as 

25) and λ is the EWMA smoothing constant.  The control limits for the chart are μ± Lσz.  It is shown that this 

chart performs better than the residuals chart when the process autocorrelation is not very positively strong and 

mean shifts are small to medium. 

 

The Auto Regressive Moving Average (ARMA) chart proposed by Jiang , Tsui and Woodall [19] plots 

ARMA statistic of the original observations. It is an extension of the EWMAST chart proposed by Zhang. The 

ARMA chart performs better than EWMAST chart when the process has strong positive correlation. 

The Autoregressive T² chart is proposed by Apley and Tsung [20].    Here  Hotelling's T² statistic is used 

for monitoring univariate autocorrelated process.  It is shown that T² statistic can be decomposed into sum of the 

squares of the residual errors for various order autoregressive time series models fitted to the process. The 

performance of the chart is compared with CUSUM and Shewhart charts applied to residuals.  It is shown that in 

certain ranges of the paramater values of the ARMA model, the T² chart performs better than either CUSUM or 

Shewhart chart applied to residuals. An additional advantage of the chart is that it provides some robustness 

with respect to model uncertainty. 

Certain non parametric approaches are also in practice.  Peihua Qiu et. Al [21] and Li & Qiu [22] discuss about 

a non parametric approach for monitoring serially correlated data. 

 

 

VIII. CONCLUSION 

All the charts discussed in this article provide methods for accommodating serial correlation in the data.  

Every procedure has its own advantages and limitations.  Among the schemes the most commonly used one is 

the residual based control scheme.  But studies shows that the run length properties of the traditional charts 

applied to residuals are different from the run length properties of those charts applied to iid observations.  

Therefore new monitoring schemes have to be designed for monitoring serially correlated data.   
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