
Quest Journals
Journal of Research in Applied Mathematics
Volume 7 ~ Issue 6 (2021) pp: 52-54
ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735
www.questjournals.org

*Corresponding Author: Parimal Mridha 52 | Page

Research Paper

An Algorithm for Analysis the Time Complexity for Iterated

Local Search (ILS).

Parimal Mridha
1
, Binoy Kumar Datta

2
.

1(Lecturer in Mathematics, Military Collegiate School Khulna (MCSK), Bangladesh)
2(Associate Professor in Mathematics, Military Collegiate School Khulna (MCSK), Bangladesh)

ABSTRACT: For the presence of combinatorial nature, the number of possible Latin Hypercube Design is very
high - (N!)k (where N is number of design points and k is number of factors). Consequently, when number of

factors and/ or number of design points are large then it requires hundreds of hours by the brute-force

approach to find out the optimal design. So when numbers of factors as well as number of experimental points
are large, the algorithm requires a couple of hours or even more to find out a simulated optimal design. So time

complexity is an important issue for a good algorithm, especially when we need a real time solution. In this

paper, we will introduce an algorithm for analysis the time complexity for iterated local search.

KEYWORDS: Latin Hypercube Design, Experimental points, iterated local search, time complexity.

Received 15 June, 2021; Revised: 28 June, 2021; Accepted 30 June, 2021 © The author(s) 2021.

Published with open access at www.questjournals.org

I. TIME COMPLEXITY
Time Complexity comparisons are more interesting than space complexity. The programming language

chosen to implement the algorithm should not affect in time complexity analysis. There are some other factors

that should not affect in time complexity are-: the quality of the compiler, the speed of the computer on which

the algorithm is to be executed.

The objectives of the time complexity analysis are to determine the feasibility of an algorithm by

estimating an upper bound on the amount of work performed. Objectives of the time complexity analysis are

also to compare different algorithms before deciding on which one to implement.
Time complexity analysis is based on the amount of work done by the algorithm. It expresses the

relationship between the size of the input and the run time for the algorithm. Time complexity is usually

expressed as proportionality, rather than an exact function.

To simplify analysis, we sometimes ignore work that takes a constant amount of time, independent of

the problem input size. When comparing two algorithms that perform the same task, we often just concentrate

on the differences between algorithms.

For time Complexity, simplified analysis can be based on:

(i) Number of arithmetic operations performed

(ii) Number of comparisons made

(iii) Number of times through a critical loop

(iv) Number of array elements accessed, etc.

II. TYPES OF TIME COMPLEXITY
There are many different types of complexity involved in actual examples of scientific modelling. Conflation of

these into a single “complexity” of scientifically modelling a certain system will generally result in confusion.

There might be:

 • The complexity of the data: the difficulty of encoding of a data model compactly given a coding

language;

 • The complexity of the informal (mental) model: the difficulty in making an informal prediction from the

model given hypothetical conditions;

 • The complexity of using the formal model to predict aspects of the system under study given some
conditions;

 • The complexity of using the formal model to explain aspects of the system under study given some

conditions.

http://www.questjournals.org/

An Algorithm for Analysis The Time Complexity For Iterated Local Search (ILS).

*Corresponding Author: Parimal Mridha 53 | Page

Each of these will be relative to the framework it is being considered in (although this and the type of difficulty

may be implicit).

III. MEASURING TIME COMPLEXITY:
The worst-case time complexity of an algorithm is expressed as a function

 T : N → N

Where T(n) is the maximum number of “steps” in any execution of the algorithm on inputs of “size” n.

Intuitively, the amount of time an algorithm takes depends on how large is the input on which the algorithm

must operate: Sorting large lists takes longer than sorting short lists; multiplying huge matrices takes longer than

multiplying small ones. The dependence of the time needed to the size of the input is not necessarily linear:

sorting twice the number of elements takes quite a bit more than just twice as much time; searching (using

binary search) through a sorted list twice as long, takes a lot less than twice as much time. The time complexity

function expresses that dependence. Note that an algorithm might take different amounts of time on inputs of the

same size. We have defined the worst-case time complexity, which means that we count the maximum number

of steps that any input of a particular size could take. For example, if the time complexity of an algorithm is 3n2,

it means that on inputs of size n the algorithm requires up to 3n2 steps. To make this precise, we must clarify
what we mean by “input size” and “step”.

 (i) Input Size: We can define the size of an input in a general way as the number of bits required to store the

input. This definition is general but it is sometimes inconvenient because it is too low-level. More usefully we

define the size of the input in a way that is problem-dependent. For example, when we are dealing with sorting

algorithms, it may be more convenient to use the number of elements we want to sort as the measure of the input

size. This measure ignores the size of the individual elements that are to be sorted.

Sometimes there may be several reasonable choices for the size of input. For instance, if we are dealing with

algorithms for multiplying square matrices, we may express the input size as the dimension of the matrix (i.e.,

the number of columns or rows), or we may express the input size as the number of entries in the matrix. In this

case the two measures are related to each other (the latter is the square of the former). One conclusion from this
discussion is that in order to properly interpret the function that describes the time complexity of an algorithm

we must be clear about how exactly we measure the size of inputs[Nicolas, (2007)].

(ii) Step: A step of the algorithm can be defined precisely if we fix a particular machine on which the algorithm

is to be run. For instance, if we are using a machine with a Pentium processor, we might define a step to be one

Pentium instruction. This is not the only reasonable choice: different instructions take different amounts of time,

so a more refined definition might be that a step is one cycle of the processor’s clock. In general, however, we

want to analyze the time complexity of an algorithm without restricting ourselves to some particular machine.

We can do this by adopting a more flexible notion of what constitutes a step. In general, we will consider a step

to be anything that we can reasonably expect a computer to do in a fixed amount of time. Typical examples are

performing an arithmetic operation, comparing two numbers, or assigning a value to a variable.

Finally, the analysis of time complexity for ILS is given in a tabular form along with the pseudo code of the
algorithm. Table 1 represents the analysis of the time complexity for the ILS.

An Algorithm for Analysis The Time Complexity For Iterated Local Search (ILS).

*Corresponding Author: Parimal Mridha 54 | Page

Table 1: Analysis of time complexity for ILS.

 cord.) swappedonly (comp.

)1(Compute)(
)1(

,
Odi

Operations

ui
 





) assoon as stop compu. since(

)(case)(in worst 3 Step)(

1

)1(

,
Dd

NOii

s

ui

Operation



 





move) local BI(in

)(loop formost Inner)(

kOiii
Operation

 

) swapally experiment(but

) ally theoreticcase (in worse

)(loops for outer two)(

2

O(N)

)O(N

NOiv
Operation

 

computedally experiment), 10(

)(search) local(in WL)(



 

c

NkOv
cOperation

Total cost of a single LS

)(1
qrc

NkO)k).O(N).O(N).O(N).O(kO(

) 42(&) 21(:  qr

Cost of a single ILS (Φ)

Perturbation (for fixed MIN))

 O (log(N))

Total Cost:

) 42(&) 21(:

))log(())(log().(





qr

NNkONONkO
qrqr

While do

 Set NonImpIteration = 0

 Whiledo
 for i = 1,……, N do

 for j = i + 1,….., N do
 Step 1= D1 = D1

(S), k/ = 0

 for l = 1,…., k do

 Step 2: Swap (Xil, Xjl)

 Step 3: Compute d
i

X

u

)1(

,
/



 until d
i

X

u

)1(

,
/



 1D 

 i
/

 = i .j:

 u = 0………N-1;

 u i
/



 else break

 Step 4 :Set k/= k

 and
1

D  = min d
X

JI

)1(

 end for

 Step 5: Upload best LHD if any

 else continue
 end for

 end for

 Step 6: Repeat the three loops if

 there has been at least an
 improvement

 Otherwise STOP

 Return X/

 Step 7: if X/ is better then set X= X/ and

NonimpIteration = 0

 Otherwise increase NonimpIteration by one

 Step 8: if MaxNonImp > NonimpIteration

 PM : X/ =  (X) and Repeat the loops

Otherwise STOP

Return X

REFERENCES
[1]. Grosso A., Jamali A. R. J. U. and Locatelli M., 2009, “ Finding Maximin Latin Hypercube Designs by Iterated Local Search

Heuristics”, European Journal of Operations Research, Elsevier, Vol. 197, pp. 541-547.

[2]. Nicolas S., 2006-2007(Nov), “Algorithms & Complexity-Introduction”, nstropa@computing.dcu.ie, CA313@Dubai City

University.

[3]. Oliveto P. S., He J., Yao X., 2007, “Time Complexity of Evolutionary algorithms for Combanatories Optimization: A Decade of

Results”, International Journal of Automation and Computing, Dol: 10.1007/s11633-007-0281-3, Vol. 04(1), pp. 281-293.

[4]. Owen, A. B., 1994, “ Controlling correlations in Latin hypercube samples”, Journal of the American Statistical Association,Vol. 89,

pp. 1571–1522.

[5]. Park J. S., 1994, “Optimal Latin hypercube designs for computer experiments”, Journal of Statistical Planning and Inference, Vol.

39, pp. 95-111.

[6]. Santner T. J., Williams B. J., and Notz W. I., 2003, “The design and analysis of computer experiments”, Springer Series in

Statistics, Springer-Verlag, New York.

[7]. Steinberg G. D. M, and K. J. N. Dennis, 2006, “ A construction method for orthogonal Latin hypercube designs”, Biometrika, Vol.

93 (2), pp. 279-288.

[8]. Husslage B., E. R. van Dam, and D. den Hertog, 2005, “Nested maximin latin hypercube designs in two dimensions”, CentER

Discussion Paper No. 200579.

mailto:nstropa@computing.dcu.ie

