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Abstract 

The major problem in constructing consistent estimator frequently arise because of observed data characterized 

by measurement errors. In this study, we discussed the branch of statistics known as order statistics in which the 

sorting of random sample is important. The study suggested denoised L-estimator (DL) which is fundamentally 

defined and conceptualized as denoised linear combination of order statistic. Applying three different denoising 

or smoothing (Logistic kernel, Gaussian Kernel and Wavelet) techniques to denoise simulated data of sample 

size 256, which subjected to noise or measurement errors. The performance and comparisons of the denoised 

linear combination of order statistics under different smoothers was considered using mean squared error 

criterion. The result of the study showed that the denoised linear combination of order statistics performed 

better under Wavelet smoother. 
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I. Introduction 
A branch of statistics known as order statistics plays a prominent role in L-moment theory. The study of order 

statistics is the study of the statistics of ordered (sorted) random variables and samples. A comprehensive 

exposition on order statistics is provided by David (1981), and an R-oriented approach is described in various 

contexts by Baclawski (2008). 

The random variable 𝑋 for a sample of size 𝑛 when sorted creates the order statistics of 𝑋: 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤. . . ≤
𝑋𝑛:𝑛 . The sample order statisticsfrom a random sample are created by sorting the sample into ascending 

order:𝑥1:𝑛 ≤ 𝑥2:𝑛 ≤. . . ≤ 𝑥𝑛:𝑛 . As will be seen, the concept and use of order statistics consider both the value 

(magnitude)and the relative relation (order) to other observations.  

Asquith (2011) show that the L-moments, which are based on linear combinationsof order statistics do in fact 

provide effective and efficient estimators of distributional geometry. In general, order statistics are already a part 

of the basic summary statistic repertoire possessed by most individuals, including non-scientists and non-

statisticians. The minimum and maximum are examples of extreme value order statistics and are defined by the 

following notation: 

    𝑚𝑖𝑛{𝑋𝑛} = 𝑋1:𝑛      (1) 

    𝑚𝑎𝑥{𝑋𝑛 } = 𝑋𝑛:𝑛      (2) 

The familiar median 𝑋0.50 by convention is 

    𝑋0.50 =  
(𝑋[𝑛/2]:𝑛 + 𝑋[(𝑛/2)+1]:𝑛)/2    if 𝑛𝑖𝑠 even

𝑋[(𝑛+1)/2]:𝑛                           if 𝑛𝑖𝑠 odd
  (3) 

and thus, clearly is defined in terms of one order statistic in the case of odd sample size or 

a linear combination of two order statistics in the case of even sample sizes. Other order statistics exist and 

several important interpretations towards the purpose of the study can be made. Hosking (1990) and Hosking 

and Wallis (1997) provide an ―intuitive‖ justification for L-moments and by association the probability 

weighted moments Asquith 2011). The justification is founded on order statistics: 

• The order statistic 𝑋11  (a single observation) contains information about the location of the distribution on the 

real-number line ℜ; 
• For a sample of𝑛 = 2, the order statistics are  𝑋1:2 (smallest) and  𝑋2:2 (largest). For a    highly dispersed 

distribution, the expected difference between 𝑋1:2 −  𝑋2:2  would be large,whereas for a tightly dispersed 
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distribution, the difference would be small. The expected differences between order statistics of an𝑛 = 2sample 

hence can be   used to express the variability or scale of a distribution; and 

• For a sample of𝑛 = 3, the order statistics are  𝑋1:3 (smallest),  𝑋2:3 (median), and    𝑋3:3  (largest). For a 

negatively skewed distribution, the difference  𝑋2:3 −  𝑋1:3would be larger(more data to the left) than 𝑋3:3 −
 𝑋2:3 The opposite (more data to the right) would occur if a distribution were positively skewed. 

These interpretations hint towards expression of distribution geometry by select use of intra-sample differences. 

In fact, various intra-sample differences can be formulated to express fundamental and interpretable measures of 

distribution geometrically. Intra-sample differences are important link to L-moments, and the link justifies 

exposition of order statistics. Kaigh and Driscoll (1987) defined 𝒪-statistics as ―smoothed generalizations of 

order statistics‖ and provide hints Kaigh and Driscoll (1987) towards L-moments by suggesting that linear 

combinations of the order statistics provide location, scale, and ―scale-invariant‖ skewness and kurtosis 

estimation. 

L-moments are summary statistics for probability distributions and data samples. They are analogous to ordinary 

moments, they provide measures of location, dispersion, skewness, kurtosis, and other aspects of the shape of 

probability distributions or data samples but are computed from linear combinations of the ordered statistics. 

Standardised L-moments are called L-moment ratios and are analogous to standardized moments just as for 

conventional moments; a theoretical distribution has a set of population L-moments. Sample L-moments can be 

defined for a sample from the population and can be used as estimators of the population of L-moments 

A concept regarding order statistics, which will be critically important in the computation of L-moments, is the 

expectation of order statistic. The expectation is defined in terms of the QDF. The expectation of an order 

statistic for the i
th

 largest of r values is defined David (1981) in terms of the QDF𝑥(𝐹) as 

  𝐸[𝑋𝑖:𝑛 ] =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
 𝑥(𝐹) × 𝐹𝑖−1 × (1 − 𝐹)𝑛−𝑖𝑑𝐹

1

0
 (4) 

where the quantity to the left of the integral is
𝑛!

(𝑖−1)!(𝑛−𝑖)!
= 𝑛  

𝑛 − 1
𝑖 − 1

 . Jurecková and Picek (2006) summarize 

linear statistical estimators known asL-estimatorsand Serfling (1980) considers the asymptotic (very large 

sample)properties of L-estimators. L-estimators Tn for sample of size n are based on the order statistics and are 

expressed in a general form as 

𝑇𝑛 =  𝐶𝑖:𝑛𝑕 (𝑋𝑖:𝑛) +  𝑎𝑗𝑕
∗(𝑋[𝑛𝑝𝑗 +1]:𝑛)    (5)  

Where 𝑋1:𝑛are the order statistics,𝐶1:𝑛 , … , 𝐶𝑛:𝑛and𝑑1 , … , 𝑑𝑛are given coefficients of weight factors,0 < 𝑃1 <
⋯ < 𝑃𝑘 < 1 𝑎𝑛𝑑 𝑕 𝑎  𝑎𝑛𝑑 𝑕∗(𝑎)are given functions for argument 𝑎. The coefficients Ci:nfor 1 ≤ 𝑛 are 

generated by a bounded weight function J (a) with a domain [0,1] with a range of the real-number line R by 

either𝐶1:𝑛 =  𝐽(𝑆)𝑑𝑠
𝑖/𝑛

(𝑖−1)/𝑛
 or approximately 𝐶1:𝑛 =

𝐽 (𝑖/[𝑛+1])

𝑛
.Two interesting L-estimators that have immediate 

connection to the L-moments are sen weighted mean and Gini mean difference statistics, and they would be 

considered in this study. 

It is obvious that the estimators are usually failed to be consistent because of noise measurement errors. 

Therefore, different smoothers have been introduced in literature to denoise or smoothing data to capture 

important patterns in the data, while leaving out noise or other fine scale structure or rapid phenomena. These 

include Epanechnikov kernel, Gaussian, kernel, Polynomial spline, wavelet, etc. See Cai et al., (2000), Cui et 

al., (2002), You and Zhou, (2007), You et al., (2009), Zhou and Liang (2009), Cui et al., (2010), Fasoranbaku 

and Soyombo (2015), Fasoranbaku et al., (2016) for details on denoising smoothing approaches.Smoothing 

extract more information from the data as long as the assumption of smoothing is reasonable and provides 

flexible and robust analysis. In the direction of the studies, this study considered three different smoothing 

methods, namely, Logistic kernel, Gaussian kernel, and Wavelet to denoise develop denoised Linear 

combination of order statistics, termed denoised L-estimator (DL). 

 

II. Linear Combination of Order statistics (L-Estimator) 
One popular class of estimator is the class of linear combinations of order statistics called L-

estimators.Suppose𝑋(1) ≤. . . ≤ 𝑋(𝑛) be order statistics of a sample and g be a function mapping the open (0, 1) 

into the set of real numbers, ℛ, such that 𝑔(𝑡) = 𝑔(1 − 𝑡)   and   𝑔(𝑡) = 1
1

0
,  Friedrich-Wilhelm (1965) gave 

estimator correspond to (g) function mapping into set of real numbers, ℛ, as 

    𝐿𝑛 = 𝐿𝑛(𝑔) =
1

𝑛
 𝑔  

𝑖

𝑛+1
 𝑋𝑖

𝑛
𝑖=1    (6) 

Weighted mean (Sen, 1964) statistics is a special L-estimator based on order statistic that has connection to L-

moment and it is express as follow. 

i. Sen Weighted mean𝑆𝑛:𝑘 :  

This is a robust estimator (Jurecková and Picek, 2006, p. 69) of the mean of a distribution and is defined as 
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  𝑆𝑛:𝑘 =  
𝑛
2𝑘 + 1

 
−1

  
𝑖 − 1
𝑘

 𝑛
𝑖=1  

𝑛 − 𝑖
𝑘

 𝑋𝑖:𝑛     (7) 

where 𝑋𝑖:𝑛are the order statistics and k is a weighting or trimming parameter.A sample version 𝑆 𝑛:𝑘  results when 

𝑋1:𝑛are replaced by their sample counterpart𝑥1:𝑛 . 

Note that 𝑆𝑛,0 = 𝜇 = 𝑋 𝑛or the arithmetic mean, and 𝑆𝑛,𝑘 is the median if either𝑛 is even and 𝐾 = (𝑛/2) − 1 or n 

is odd and 𝐾 = (𝑛 − 1)/2. 

 

ii. Sample L-moments Estimator by Direct Sample Estimator 
Sample L-moments can be computed as the population L-moments of the sample summing over r-element 

subset of the sample 𝑥1 < .. . < 𝑥𝑖 <  . . . < 𝑥𝑟 , hence averaging by the binomial coefficient. 

 𝐿𝑛 =
1

𝑛
 
𝑛
𝑟
 
−1
  −1 𝑟−𝑖  

𝑟 − 1
𝑖

 𝑛
𝑥1<...<𝑥𝑖<...<𝑥𝑟 𝑥𝑖:𝑛    (8) 

Grouping these by order statistic counts the number of ways an element of an n-element sample can be the i
th

 

element of an r-element subset and yields formulas of the form below. Direct estimators for the first four L-

moments in a finite sample of n observations are :(Wang, 1996) 

 𝜆1 =  
𝑛
1
 
−1
 𝑥(𝑖)
𝑛
𝑖=1  

 𝜆2 =
1

2
 
𝑛
2
 
−1
   

𝑖 − 1
1

 −  
𝑛 − 𝑖

1
  𝑥(𝑖)

𝑛
𝑖=1        

𝜆3 =
1

3
 
𝑛
3
 
−1
   

𝑖 − 1
2

 − 2  
𝑖 − 1

1
  
𝑛 − 1

1
 +  

𝑛 − 1
2

  𝑥(𝑖)
𝑛
𝑖=1    (9) 

 𝜆4 =
1

4
 
𝑛
4
 
−1
   

𝑖 − 1
3

 − 3  
𝑖 − 1

2
  
𝑛 − 1

1
 + 3  

𝑖 − 1
1

  
𝑛 − 1

2
 −  

𝑛 − 𝑖
3

  𝑥(𝑖)
𝑛
𝑖=1  

 

where 𝑥(𝑖)is order statistics and a binomial coefficient, 𝜆1is L-mean, 𝜆2 is L-scale. 

L-moments ratios are derived from (7) such that𝜏 = 𝜆2/𝜆1,𝜏3 = 𝜆3/𝜆2,𝜏4 = 𝜆4/𝜆2are called coefficient of L-

variation, L-kurtosis and L-skewness respectively. 

  

III. Denoising Procedures 
The basic idea behind smoothing a data set is the creation of an approximating function that attempts to capture 

important patterns in the data while leaving out the noise and is also referred to as ―denoising‖. There are 

various methods to help restore a data set from measurement noise. In this study, the following smoothing 

method are used  

 

I. Kernel smoothing 

Given a random sample 𝑋1. . . 𝑋𝑛  with a continuous, univariate density function 𝑓(. ),The kernel density 

estimator is: 

  𝑓 (𝑥, 𝑕 ) =
1

𝑛𝑕
 𝑘  

𝑥−𝑋𝑖

𝑕
 𝑛

𝑖=1       (10) 

To this end, let 𝐾 .  ≥ 0 be a symmetric kernel supported on [-1,1] with  𝐾 𝑥 𝑑𝑥 = 1
1

−1
 for some smoothing 

parameter 𝑕. Where 𝑥 is the value of the scalar variable for which one seeks an estimate while Xi  are the values 

of that variable in the data.Kis a function of a single variable called the kernel. The kernel determines the shape 

of the function. The parameter h is called the bandwidth or smoothing constant. It controls the degree of 

smoothing and adjusts the size and form of the function.  

𝑢 =  
𝑥−𝑋𝑖

𝑕
          (11) 

For the purpose of this study, the two most used Kernels function are utilized: 

a) Logistic Kernel smoothing: 

𝐾(𝑢) =
1

𝑒𝑢+2+𝑒−𝑢
         (12) 

b) Gaussian Kernel smoothing: 

𝑘(𝑢) =
1

 2𝜋
𝑒𝑥𝑝  −

𝑢2

2
         (13) 

 

The Choice of Smoothing Parameter 𝒉 

The problem of selecting the smoothing parameter for kernel estimation has been explored by many 

authors and no procedure yet been considered the best in every situation. Automatic bandwidth selection 

methods can be divided into two categories: classical and plug in method.  

The accuracy of kernel smoothers is a function of the kernel 𝐾 and the bandwidth𝑕; the accuracy 

depends mainly on the smoothing parameter 𝑕. One of the most frequently used methods of bandwidth selection 

was introduced. The choice of bandwidth is crucial and is also a challenge. There are various methods for 
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selecting bandwidth but there is no single best method. A common choice is the ―Silverman’s rule of thumb‖ for 

an optimal bandwidth: 

 The ideal value of bandwidth h, from the point of view of minimizing the approximate mean integrated 

square error. From the properties of kernel density estimator, we sum the bias square and the variance to give 

mean square error as. 

 𝑀𝑆𝐸(𝑓 (𝑥)) =
𝑅(𝐾)

𝑛𝑕
𝑓(𝑥) +

𝑕 4

4
𝑓 ′

′2
2
2
 

1

𝑛𝑕
  𝑕 4 

    (14) 

 Integrate the mean square error (14)) over the entire line we find (Parzen(1962))  

𝑀𝐼𝑆𝐸(𝑓 ) =
𝑅(𝐾)

𝑛𝑕
+

𝑕 4

4
𝜇2

2(𝐾)𝑅(𝑓″)    (15) 

and the bandwidth h that minimizes MISE is then 

 𝑕 𝑀𝐼𝑆𝐸 =  
𝑅(𝐾)

𝜇2
2(𝐾)𝑅(𝑓″)

 

1

5
𝑛−

1

5    (16) 

Using this optimal bandwidth, we have 

 𝑖𝑛𝑓
𝑕 >0

𝑀𝐼𝑆𝐸(𝑓 ) ≈
5

4
 𝜇2

2(𝐾)𝑅4(𝐾)𝑅(𝑓″) 
1

5𝑛−
4

5     (17) 

 The problem with using the optimal bandwidth is that it depends on the unknown 

quantity 𝑓′′, which measures the speed of fluctuations in the density𝑓, i.e., the roughness of 

𝑓. Many methods have been proposed to select a bandwidth that leads to good performance 

in the estimation, by using an estimate of𝜎, one has a data-base estimate of the optimal bandwidth. To have an 

estimator that is more robust against outliers, the interquartile range R can be used as a measure of spread. This 

modified version can be written as 

 𝑕 𝑜𝑝𝑡 = 0.9 𝑚𝑖𝑛( 𝑠, 𝑙𝑄𝑅) /1.34𝑛−
1

5      (18) 

where s is the sample standard deviation and IQR is the interquartile range (0.75quartile minus 0.25 quartile).  

 Plug-in-method makes use of the rule of thumb through the underlying principle: if there is an expression 

involving an unknown parameter, replace the unknown parameter with an estimate. To apply the plug-in-

method in practice, a kernel function will be chosen: In this case, the Logistic and Gaussian Kernel were chosen 

and the unknown parameter h will be estimated by the optimal bandwidth hopt  

 

IV. Wavelet Smoothing 
Wavelets are orthonormal sets of functions whose shape, as the name suggests, is like a little wave. 

They have compact local support but decay quickly to zero elsewhere. Wavelets can provide approximations of 

both stationary and non-stationary time series. They are particularly effective for time series characterized by 

abrupt changes, spikes and periodic cycles. Consumer and business sentiment indexes are characterized by such 

features. These important properties have inspired several applications of discrete wavelet transforms in 

economics (see, Crowley 2007). The wavelet approximation of an observed time series is similar to the Fourier 

transform and has the following form  

𝑋 =  𝑐𝑗0 ,𝑘𝜑𝑗0 ,𝑘(𝑡) +   𝑔𝑗 ,𝑘𝜓𝑗 ,𝑘(𝑡)𝑘∈𝑧𝑗∈𝑧𝑘∈𝑧   (19) 

where Z is the set of integers. This is an orthogonal decomposition that involves J timescales (where, j = 1. . . J) 

with 𝑘 ∈ 𝑍coefficients at each scale. The set of father𝜑and mother 𝜓wavelets that form an orthonormal basis 

are defined as  

𝜑𝑗0 ,𝑘(𝑡) = 2−𝑗0/2𝜑(2−𝑗0𝑡 − 𝑘   and   𝜓𝑗 ,𝑘(𝑡) = 2−𝑗 /2𝜓(2−𝑗 𝑡 − 𝑘)  (20) 

and their respective scaling and wavelet coefficients are  

𝑐𝑗0 ,𝑘 =  𝑋𝑡𝜑𝑗0 ,𝑘(𝑡)𝑑𝑡    and    𝑔𝑗 ,𝑘 =  𝑋𝑗 ,𝑘(𝑡)𝑑𝑡
𝑅𝑅

  (21) 

For a discrete timeseries, the discrete wavelet transform is used. In order to obtain the vector of wavelet 

coefficients𝑤, the 1 × 𝑇 vector of noisy data 𝑋 is multiplied by an appropriate 𝑇 × 𝑇wavelet matrix W (whose 

elements depend on a specific wavelet family)  

𝑤 = 𝑊𝑋      (22) 

The vector of wavelet coefficients consists of different sub-vectors, each of length2𝑗 , (𝑗 = 1, . . . 𝐽) which 

represent different resolution levels of the data. For a dyadic length time series with monthly sampling 

frequency the first resolution level captures frequency variation with duration of 2–4 months. Analogously, the 

second resolution level captures variation of 4–8 months; the level 3 resolutions capture variation of 8–16 

months and so on, up to level J.  

Since the data contain measurement errors (noise) this will also be transferred to specific wavelet coefficients. 

Donoho and Johnston (1994, 1995) proposed a soft thresholding rule to remove the noisy wavelet coefficients 

associated with the highest frequencies (short-term cyclical fluctuations) and construct noise free estimates of 

the original data vector𝑋. In the first stage, the following thresholding rule is applied to the data  
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𝑤 =  
𝑠𝑔𝑛(𝑤)( 𝑤 − 𝜏)𝑖𝑓 𝑤 ≥ 𝜏

0𝑖𝑓 𝑤 < 𝜏
      where     𝑠𝑔𝑛 = 

+1𝑖𝑓𝑤 > 0
0𝑖𝑓𝑤 = 0

−1𝑖𝑓𝑤 < 0

   (23) 

This rule pushes all coefficients towards zero, but when their magnitude is smaller than the threshold𝜏, which 

defines the level of noise in the data, they are set to zero. The resulting wavelet coefficients are free from noise. 

In the second stage, an inverse wavelet transform is applied to the vector to obtain noise free estimates of the 

original data vector 𝑋 as follows:  

𝑋 = 𝑊−1𝑤      (24) 

Obviously, the choice of the threshold is critical, and this subject is extensively researched in the statistics 

literature. In the empirical applications of this article,we use the universal threshold, 𝜏 = 𝜎 𝜏 2 𝑙𝑜𝑔𝑁, proposed 

by Donoho and Johnston (1994), where 𝜎 𝜏  is the standard deviation of the wavelet coefficients at the finest level 

of detail.  

Applying the smoothing or denoising techniques discussed above to the variable of interest, we have denoised 

version of the estimators in section 2 for different techniques of smoothing considered. 

 

V. Simulation Study 
Here, the performance of the linear combination of order statistics known as L- estimator are 

considered based on different smoothing techniques i.e logistic kernel, Guassian kernel and wavelet. Our 

interest is to draw a sample integrated with error from pseudo-population. The true variable 𝑓0 and error 𝜀0 are 

generated from sample size 𝑛 = 256as 𝑔 = 𝑓0 + 𝜀0to provide noisy data,where 𝑓𝑜~𝑁(𝑛,𝑚𝑒𝑎𝑛 = 10, 𝑠𝑑 = 2) 

and 𝜀0~𝑁(𝑛,𝑚𝑒𝑎𝑛 = 0, 𝑠𝑑 = 0.25) is independent variate of normal distribution.. Thus, the process is repeated 

for 1000 times. The choiceof the smoothing parameters for the kernel and wavelet smoothing techniques are 

selected by plug-in (𝑕
𝑜𝑝𝑡

= 0.9 𝑚𝑖𝑛( 𝑠, 𝑙𝑄𝑅) /1.34𝑛−
1

5) and universal threshold (𝜏 = 𝜎 𝜏 2 𝑙𝑜𝑔𝑁) methods 

respectively, we have 𝑕 = 0.7690 𝑎𝑛𝑑 𝜏 = 6.1271. Further, we applied the smoothers to denoise the noisy 

data 𝑔.Using lmomcolibrary from 𝑅package,we compute the Sen Weighted mean, its bias variance, standard 

deviation and mean squared error (MSE). and presented in Table 1. The L-moment and L-ratio are as well 

computed and presented in Table 2. 

 

Table 1:Sen Weighted under Logistic, Gaussian and Wavelet Smoothing Methods 
L-estimator Undenoised Logistic 

Kernel 

Gaussian 

Kernel 

Wavelet 

𝑆𝑛:𝑘  10.0331 9.8978 9.9661 10.0331 

Bias 0.0331 -0.1022 -0.0339 0.0331 

MSE 3.6951 3.7050 3.6785 0.1282 

RMSE 1.9222 1.9248 1.9179 0.3580 
SD 1.9220 1.9221 1.9176 0.3565 

 

Table2: L-moments and L-ratios 
L-estimators Undenoised Logistic 

Kernel 

Gaussian 

Lernel 

Wavelet 

𝜆1= First L-moment (L-mean) 10.0331 9.8978 9.9661 10.0331 

𝜆2= Second L-moment (L-scale) 1.0882 1.0877 1.0854 0.2046 

𝜆2/𝜆1= L-Coefficient of variation (L-CV) 0.1085 0.1099 0.1089 0.0204 

3 = Third L-moment 
-0.0005 0.0204 0.0001 -0.0053 

4 = Fourth L-moment 
0.1480 0.1488 0.1484 0.0123 

𝜆3/𝜆2= L-Skweness (𝜏3) -0.0004 0.0187  0.0001 -0.0258 

𝜆4/𝜆2= L-Kurtosis (𝜏4) 0.1360 0.1368 0.1368 0.0601 

 

From the results in Table 1 and two, it is clear that there is a special connection between the sen 

weighted mean and the L-moment estimate i.e; 𝑆𝑛:𝑘 =  𝜆1. The relationship between L-scale and pie 𝜋 provides 

the SD of the data distribution. i.e𝜆2 ×  𝜋 = 𝑆𝐷. For fair comparisons of the effectiveness of the smoothing 

methods (denoised L-estimators) considered, we use the MSE computed in Table 1. Examine the MSEs, it can 

be observed that the denoised L-estimator under wavelet smoothing has the smallest MSE, follow by denoised 

L-estimator under Gaussian Kernel, Undenoised L-estimator and lastly the denoised L-estimator under Logistic 

Kernel. Also, it can be seen in Table 2 that the L-skewness under the different smoothers considered are closer 

to zero, which show that the data is almost symmetric, and the L-kurtosis shows that the probability density 

function of the data distribution for the different smoothers has no flatter tail. 
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VI. Conclusion 
This study estimating parameters which are based on denoised linear combination of order statistics. 

The Logistic Kernel, Gaussian Kernel and Wavelet smoothers are used to denoise the variable of interest. the 

bandwidth of the smoothers was selected by plug-in and universal threshold methods for kernel and wavelet 

smoothers respectively. The performance of the denoised linear combination of order statistics is compared 

based on mean squared error (MSE) criterion to determine the effectiveness of the smoothing methods 

considered. The simulation study carried out for sample size 256 with 1000 Monte Carlo samples, show that 

denoised linear combination of order statistic under wavelet smoother which has the smallest MSE is the most 

efficient smoother and suitable for smoothing. 
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