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The Formula of Rodrigues states that in a direction of extremal curvature on a smooth enough surface,

X, +kX'=0

where Xsis the surface unit normal vector and Xis the position vector of a “principal” curve with extremal
normal curvature, k. This formula has implications for analyzing developable surfaces, that is, surfaces with 0

gaussian curvature. [1][2]

We present an easy proof of the formula using the Weingarten Equations. In what follows, indices
have the values 1 and 2; gjdenotes the entries of the fundamental metric tensor; g'are the entries of its inverse;
L;are the coefficients of the second fundamental form, and X;andXjare the first and second partial derivatives
with respect to the surface principal parameters, u; and u;. Since the parameter curves are in the directions of

extremal curvature, we have:
Lio=Lla=0=0gx=9¢"=¢"=0
. . . . ii 1 .
Since the fundamental metric tensor is diagonal, we have g~ =— . We follow the convention that a

repeated index in a subscript and superscript implies summation.

The Weingarten Equations are | X, = —L;; g%,

Since we are employing principal curve parameters, we have

Xsi = —Lig"X; = —i Xi = Xai = —i i 1)

L.
The extremal normal curvatures satisfy ki =—L , in which (1) becomes

Xy kX, =O|a
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