Quest Journals Journal of Research in Applied Mathematics Volume 8 ~ Issue 11 (2022) pp: 71-72 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Making a Non-Singular Matrix Singular

Liana Zhu

1 (Computer Science Department, California State University, Los Angeles, United States) Corresponding Author: Liana Zhu

ABSTRACT: Given any non-singular square matrix and its inverse, the matrix can be made singular by replacing any single element, column, or all elements.

KEYWORDS: matrix, singular, nonsingular, non-singular, inverse, square, algorithm, fast, time complexity, efficient

Received 12 Nov., 2022; Revised 24 Nov., 2022; Accepted 26 Nov., 2022 © The author(s) 2022. Published with open access at www.questjournals.org

I. INTRODUCTION

Let *A* be a non-singular $n \times n$ matrix and *B* be its inverse. An element in matrix *A* can be referred to by a_{ij} , where *i* and *j* are *i*-th row and *j*-th column number of *A*, respectively. An element in matrix *B* can be similarly referred to by $b_{\rm rc}$, where *r* and *c* are *r*-th row and *c*-th column number of *B*, respectively.

II. FORMULATION

Method 1 to make *A* singular is by replacing any single element, a_{ij} , with $a_{ij} - \frac{1}{b_{ij}}$. *A* becomes

singular using this simple method. If b_{ji} is 0, another element a_{ij} must be chosen.

Method 2 to make *A* singular is by replacing every element in column *j* of array *A*, with the reciprocal of the sum of all elements in row *j* of array *B*. This can be written as

$$
a_{ij} - \frac{1}{\sum_{c \in C} b_{jc}}
$$

Where $C = \{1, ..., n\}$, $i = \{1, ..., n\}$, and *J* remains constant. This method requires more replacement than Method 1, but nonetheless changes *A* from non-singular to singular. If $\sum_{c \in C} b_{jc}$ is 0, another column a_{ij} must be chosen.

Method 3 requires the most calculation. *A* can be made singular by adding the reciprocal sum of every element in *B* to every element in *A*. This can be accomplished using the following formula:

$$
a_{ij} - \frac{1}{\sum_{r=1}^n \sum_{c=1}^n b_{rc}}
$$

Where $i = \{1, ..., n\}$, $j = \{1, ..., n\}$, and -1 $c=1$ *n n rc r c b* $\sum_{r=1}\sum_{c=1}b_{rc}\neq 0.$

*Corresponding Author: Liana Zhu 71 | Page

Further information about the derivation and proof of the formula $-\frac{1}{b_{ji}}$ introduced in Method 1 can be found in [1].

III. TYPICAL EXAMPLES

Let $A = \begin{bmatrix} 4 & 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0.8 & 1.8 \\ 3 & -0.8 & 2.8 \end{bmatrix}$, and $A^{-1} = B$. Assume A is non-singular. The following matrices are

all *A*, made singular using the methods described above.

Using Method 1

$$
\begin{bmatrix} 2+\frac{1}{2} & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 3-\frac{1}{3} & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 4+1 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 4 \\ 4-\frac{1}{0.8} & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 4 \\ 4-\frac{1}{0.8} & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3+\frac{1}{0.8} & 1 \\ 1 & 2 & 4 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2-\frac{1}{2.8} & 4 \end{bmatrix}
$$

Using Method 2

$$
\begin{bmatrix} 2 & -\frac{1}{0.6} & 3 & 4 \ 4 & -\frac{1}{0.6} & 3 & 1 \ 1 & -\frac{1}{0.6} & 2 & 4 \ \end{bmatrix}, \begin{bmatrix} 2 & 3 & -\frac{1}{5} & 4 \ 4 & 3 & -\frac{1}{5} & 1 \ 1 & 2 & -\frac{1}{5} & 4 \ \end{bmatrix}, \begin{bmatrix} 2 & 3 & 4 - \frac{1}{0.4} \ 4 & 3 & 1 - \frac{1}{0.4} \ 1 & 2 & 4 - \frac{1}{0.4} \ \end{bmatrix}
$$

Using Method 3

IV. CONCLUSION

Given any non-singular square matrix and its inverse, using the method 1, 2 or 3 above, the matrix can be made singular by replacing any single element, column, or all elements.

REFERENCES

[1]. F. C. Chang, "Inversion of a perturbed matrix," Appl.Math.Letters, vol.19, pp.163-173, 2006.