Quest Journals Journal of Research in Applied Mathematics Volume 8 ~ Issue 12 (2022) pp: 44-49 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

New Forms of Continuous Maps in Topological Spaces

Kantappa. M. Bhavikatti

Department of Mathematics, Govt. First Grade College for Women, Jamakhandi -587301. Karnataka, India *Corresponding Author: Kantappa. M. Bhavikatti

ABSTRACT: In this Article, we introduced a new forms of functions called pre- β wg-continuous functions using β wg - closed sets in topological spaces and obtain some of their properties. Further also, we defined and studied the new notions of pre- β wg-open maps and pre β wg closed maps. **Mathematics Subject Classification (2010): 54C05, 54C08.**

KEYWORDS: βwg-closed sets, βwg-continuous maps, pre-βwg-open maps, βwg-closed maps and contra βwgirresolute maps.

Received 04 Dec., 2022; Revised 14 Dec., 2022; Accepted 16 Dec., 2022 © *The author(s) 2022. Published with open access at www.questjournals.org*

I. INTRODUCTION

In 1970, Levine [9], introduced the concept of g-closed sets and a new class of spaces called $T_{1/2}$ – spaces in topology. Thereafter, many topologists have obtained several interesting results on these g-closed sets. In 1994, Maki et al.,[10] have defined and studied the α -generalised closed sets and α -generalised open sets making use of α -interior and α -closure due to A.S. Mashhour et al.,[12]. Caldas [6] and Balachandran et al.,[3] defined and studied the notion of g-continuous maps by using g-closed sets and discussed some of their properties.Further they have investigated and studied the new concept of gc-irresolute, perfectly g-continuous, strongly g-continuous maps. Recently, Govindappa. Navalagi and Kantappa. M. Bhavikatti [14] introduced and studied new concept of closed sets called β wg-closed sets and in [4, 15 & 16], contra β wg-continuous maps, β wg-continuous maps & β wg-irresolute and strongly β wg-continuous maps were studied. In this paper, we define and study the new concept of pre- β wg-continuous maps and their properties. Further, we also introduce pre β wg-open maps in topological spaces.

II. PRELIMINARIES

Throughout this paper, S, R, and P always denote topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset $A \subseteq S$, closure and interior of A is denoted as Cl(A) and Int(A) respectively.

We have the following known definitions and results which are useful in the sequel.

Definition 2.1: A subset A of a space S is known as

- (i) Preopen[12] if $A \subseteq Int(Cl(A))$
- (ii) α -open[18] if A \subseteq Int(Cl(Int(A)))

(iii) semipreopen[2] (= β -open[1]) if A \subseteq Cl(Int(A))).

The compliments of above open sets are their closed sets.

Definition 2.2: A subset A of S said to be

- (i) generalized closed[9] (in brief, g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in S.
- (ii) αg -closed[10] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U \& U$ is open in S.
- (iii) gsp-closed [7] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ moreover U is open in S.
- (iv) β wg-closed set[14] if β cl(A) \subseteq U whenever A \subseteq U & U is α g-open in S.

Definition 2.3: A function $h:S \rightarrow R$ is called a

- β -continuous [1] if for each closed V of R, f⁻¹(V) is β -closed in S. (i)
- gc-irresolute[19] if for each g-closed set V of R, f⁻¹(V) is g-closed in S (ii)
- β wg-continuous [15] if for each closed set V of R, f⁻¹(A) is β wg-closed in S (iii)
- Strongly β wg-continuous [4] if for each β wg-closed V of R, $f^{-1}(V)$ is closed in S. (iv)
- (v)
- contra continuous [8] if $f^{-1}(V)$ is closed set in S for each open set V of R. contra β wg-continuous [16] if $f^{-1}(V)$ is β wg-closed set in S for every open set V of R. (vi)
- Pre gsp-continuous [17] if for each sp-closed set V of R, $f^{-1}(V)$ is gsp-closed in S. (vii)
- β -irresolute [11] if for each β -closed set V of R,f⁻¹(V) is β -closed in S. (viii)
- β wg-irresolute [15] if for each β wg –closed set V of R, f⁻¹(V) is β wg-closed in S. (ix)
- (x) quasi sgp-closed[5] if the image of each sgp-closed set of S being closed in R.
- (xi) sgp*-closed[5] if the image of sgp-closed subset of S is sgp-closed in R.

Definition 2.4: A space B of S called

- a T_{1/2}-space[8] if every g-closed set in it is closed. (i)
- a $_{\beta wb}T_b$ space[14] if every β wg-closed subset in S is closed. (ii)

Properties of Pre βwg – Continuous Maps III.

In this present section, we define and obtain the followings

DEFINITION 3.1.

Enable a map h: $(S, \tau) \rightarrow (R, \sigma)$ & is called pre- β wg-continuous (Shortly written, pre β wgcontinuous) functions if for each β -closed in set C of S, h(C) is β wg-closed in set R.

THEOREM 3.2.

If h: $S \rightarrow R$ be pre- β wg-continuous thereupon, it is β wg-continuous.

PROOF:

Allow D is any closed subset of R. So D be β -closed in R. Since h be pre- β wg-continuous map, h 1 (D) is β wg – closed set in S. Therefore, h be β wg-continuous.

THEOREM 3.3.

Allow h:S \rightarrow R be a map, it is Strongly β wg-continuity iff the image of each β wg-closed set of S being β wg-closed in S.

PROOF: Obvious.

PROPOSITION 3.4.

Allow h: S \rightarrow R be pre- β wg-continuity iff the image of each β wg – closed set in S being β – closed set in R.

PROOF:

Suppose h be pre - β wg-continuity. Allow set Q be β -open in R. Then Q^c is β -closed in R. As h be pre- β wg-continuous, h⁻¹(Q^c) is β wg- closed set in S. Hence h⁻¹(Q) is β wg-open in S.

Conversely, Let D be β – open set in R. Thereupon D^c is β -closed in R. But $h^{-1}(D^c) = S - h^{-1}(D)$ by assumption. Therefore $h^{-1}(D)$ is β wg-closed in S. h is pre- β wg-continuous.

PROPOSITION 3.5.

Allow a map h: $S \rightarrow R$ be pre- β wg- continuity then h be β -irresolute map.

PROOF: Obvious

THEOREM 3.6.

If **a** function h: $S \rightarrow R$ be pre- β wg - continuity then h be β wg- irresolute map. **PROOF:** Follows by Theorem 3.4.

THEOREM 3.7.

Every is pre- β wg-continuous map being pre – gsp continuity.

PROOF:

Allow set D be β -closed in R. As h be pre- β wg-continuous, h⁻¹(D) is β wg –closed set in S. Then h⁻¹ ¹(D) be gsp –closed set of S. As every β wg-closed is gsp-closed. Hence h is pre-gsp-continuity map.

EXAMPLE 3.8.

Take $R = P = \{c_1, c_2, c_3\}, \sigma = \{R, \{c_1\}, \phi\}, \eta = \{P, \{c_1, c_3\}, \phi\}$. Define a function k: $R \rightarrow P$ is identity function. Now k be pre-gsp – continuity yet never pre- β wg- continuity. As β -closed subset {c₁, c₂} of P, k ${}^{1}({c_1, c_2}) = {c_1, c_2}$ is gsp-closed but β wg-closed in R.

REMARK 3.9.

The composition of two pre-Bwg-continuous functions is not pre-Bwg- continuous.

EXAMPLE 3.10.

Allowing $S = R = \{e, j, t\} = P$, $\tau = \{\phi, \{j\}, \{t\}, \{j, t\}\}$, $\sigma = \{\phi, \{e\}, R\}$ and $\eta = \{P, \{t\}, \{e, t\}, \phi\}$. Now define $h: S \rightarrow R$ as h(e) = t, h(j) = e, h(t) = j & k: $R \rightarrow P$ as k(e) = e, k(j) = t, k(t) = j. Thereupon, both h and k are pre- β wg – continuous maps. Yet their composition koh: $S \rightarrow P$ be never pre- β wg – continuous function. As β – closed subset $\{e, j\}$ in P, but $(koh)^{-1}(\{e, j\}) = h^{-1}(k^{-1}\{j, t\})) = \{j, t\}$ be never β wg closed in S.

PROPOSITION 3.11.

If a function h: $S \to R$ be pre- βwg - continuous & k: $R \to P$ be strongly βwg - continuous map, thereupon the composition koh: $S \to P$ be βwg -irresolute.

PROOF:

Let F be β wg-closed set in P. Since k is strongly β wg-continuous, then $k^{-1}(F)$ is closed set and so $k^{-1}(F)$ is β -closed in R. Again since h is pre- β wg-continuous, $k^{-1}(h^{-1}(F)) = (koh)^{-1}(F)$ is β wg-closed in S. Hence koh: S \rightarrow R is β wg-irresolute.

THEOREM 3.12:

If a function h: $S \rightarrow R$ is β wg-continuous and k: $R \rightarrow P$ is strongly β wg-continuous. Thereupon the composition hok: $S \rightarrow P$ is β wg-irresolute.

PROOF:

Let F be β wg-closed set in P. Since k is strongly β wg-continuous, then $k^{-1}(F)$ is closed in R. Again since h is pre- β wg-continuous, $h^{-1}(k^{-1}(F)) = (koh)^{-1}(F)$ is β wg-closed in S. Hence koh: S \rightarrow P is β wg-irresolute.

PROPOSITION 3.13.

Allow a function h:S \rightarrow R being β wg-irresolute & k: R \rightarrow P be pre- β wg-continuous map, their composition koh: S \rightarrow P be pre - β wg – conti. map. Easy Proofs & follows by Theorem 3.11.

THEOREM 3.14.

If h: $S \rightarrow R$ and k: $R \rightarrow P$ are pre- β wg-continuous functions and R is $_{\beta wg}T_b$ –space. Then the composition koh : $S \rightarrow P$ is pre- β wg-continuous.

PROOF:

Let F be β -closed set in P. Then $k^{-1}(F)$ is β wg-closed in R as k is pre- β wg-continuous. Since, R is ${}_{\beta wg}T_b$ -space, $h^{-1}(F)$ is closed set and so β -closed in R. Again since h is pre- β wg-continuous, $h^{-1}(k^{-1}(F)) = (koh)^{-1}(F)$ is β wg-closed in S.

THEOREM 3.15.

Allowing both functions h: $S \rightarrow R$ be βwg – continuous, k: $R \rightarrow P$ be pre- βwg continuous functions & R be $_{\beta wg}T_b$ –space. Thereupon their composition koh: $S \rightarrow P$ being is pre- βwg -continuous. **PROOF:**

PROOF:

Let F be β -closed set in P. Then $k^{-1}(F)$ is β wg-closed in R as k is pre- β wg-continuous. Since, R is β wgT_b - space, $h^{-1}(F)$ is closed set in R. Again since h is β wg-continuous, $h^{-1}(k^{-1}(F)) = (koh)^{-1}(F)$ is pre- β wg-closed in S.

DEFINITION 3.16.

A function $h:S \rightarrow R$ is said to be contra strongly β wg-continuous if the inverse image of each β wg-open set of R is closed in S.

Clearly it is easy to see that a map h: $S \rightarrow R$ is contra strongly β wg-continuous if and only if inverse image of each wg-closed set of R is open in S.

PROPOSITION 3.17.

If a function h:S \rightarrow R is contra strongly β wg-continuous & k:R \rightarrow P is β wg-continuous function then koh :S \rightarrow P is contra continuous.

PROOF:

Let Q be an open set in P. Since k is β wg-continuous, k⁻¹(Q) is β wg-open in R. Therefore, h⁻¹(k⁻¹(Q)) is closed in S. Since, as h is contra strongly β wg-continuous. So, (koh)⁻¹(Q) = h⁻¹(k⁻¹(Q)) is closed in S. Hence koh is contra continuous.

$IV.Pre\mbox{-}\beta wg\mbox{-}closed$ Functions and $Pre\mbox{-}\beta wg\mbox{-}open$ Functions

In this section, we define the followings

DEFINITION 4.1.

A map h: $(S, \tau) \rightarrow (R, \sigma)$ is termed as **Pre-Bwg-closed** (resp. Pre-Bwg-open) if for each β -closed(resp. β -open) subset N of S, h(N) is Bwg-closed set(resp. Bwg- open set) of R.

DEFINITION 4.2.

A map $h: S \to R$ being said to be strongly β wg-open if for each β wg-open set D of S,then h(D) is open in R.

THEOREM 4.3.

If function h: $(S,\tau) \rightarrow (R, \sigma)$ being said to be Pre- β wg-open then it is β wg-open.

PROOF:

Let V is open set of S. Thereupon, V is β - open set in S. As h is pre- β wg - open, h(V) is β wg - open set of R. So it shows that f is β wg-open map.

THEOREM 4.4.

If a function h: $(S, \tau) \rightarrow (R, \sigma)$ being Pre β wg-open iff for each β -closed subset of S is β wg-closed in

PROOF:

R.

Suppose h be pre β wg – closed. As Q is β – open set of S. Thereupon, Q^c is β – open subset of S. Again h be pre β wg – open, h(Q^c) = S- h(Q) being β wg – open set of R. Hence h(Q) is β wg-close in R.

Conversely, allow D is β -closed in S. Thereupon, D^c be β – open subset of X. But h(R-D) = R-h(D) being β wg – closed set of R by assumption. Therefore h(D) be pre- β wg-open subset of R. So h being Pre- β wg-open.

DEFINITION 4.5.

If a function $k:(R,\sigma) \rightarrow (P,\eta)$ is known as always βwg – closed map if for each βwg – closed set D of R, k(D) being βwg -closed in P.

DEFINITION 4.6.

Allowing k: $(R,\sigma) \rightarrow (P, \eta)$ is known as completely βwg – closed map if for each βwg – closed set M of R, k(M) be regular closed set of P..

Now We prove the followings

PROPOSITION 4.7.

Allow a function h: $(S,\tau) \rightarrow (R, \sigma)$ being completely β wg-open and k: $(R, \sigma) \rightarrow (P,\eta)$ being pre- β wg-open. Then their composition koh: $S \rightarrow R$ is always β wg – open function.

PROOF:

Take set V is any βwg – open subset of S. Since h be completely βwg – open set, h (V) be βwg –regular open set of R. Hence k(h(V)) = koh(V) being βwg – open in P, as h be pre βwg -open function. Therefore koh: S \rightarrow P is always βwg -open function.

REMARK 4.8.

Clearly, note that composition of two pre- β wg - closed functions, again not being pre- β wg - closed functions true as seen from below example.

EXAMPLE 4.9.

Allowing $S = \{1,3,5\} = R$, $\tau = \{\varphi,\{1\},\{1,5\}, S\}$, $\sigma = \{\varphi,\{1\},R\}$, $P = \{\varphi,\{1\},\{1,3\},P\}$. Now a function k:R \rightarrow P be defined as by k(1) = 5, k3) = 1, k(5) = 3 & let h:S \rightarrow R be identity map, both h, k are pre- β wg-closed maps. Yet koh being never pre- β wg - closed map. As β - closed set {3, 5} of S.

Now koh $(\{3,5\}) = k (h (\{3,5\})) = k(\{3,5\}) = \{1,3\}$ be never βwg – closed set of P.

PROPOSITON 4.10.

If function h:S \rightarrow R being always β wg open, k: R \rightarrow P being completely β wg-open. Thereupon, their composition hof: S \rightarrow P is completely β wg-open.

PROOF:

Follows by Theorem 4.7.

Easy proofs of the following results omitted

PROPOSITION 4.11.

 $Authorize \ the \ functions \ h:S \to R \ be \ \beta wg-open \ and \ k:R \to P \ being \ pre-\beta wg-open, \ koh: \ S \to P \ be \ \beta wg-open.$

PROPOSITION 4.12.

Allow a function h: S \to R be always β -open and k: R \to P be pre- βwg -open, thereupon koh being pre- βwg -open.

THEOREM 4.13.

Allow a function h: $S \rightarrow R$ be sgp*-closed & k: $R \rightarrow P$ be strongly β wg-closed, thereupon koh: $S \rightarrow P$ being quasi sgp-closed.

PROPOSITION 4.14.

Allowing a function h:S \rightarrow R be completely β wg-open and k: R \rightarrow P being pre- β wg-open, koh: S \rightarrow P be always β wg-open.

THEOREM 4.15.

If a function h: $S \rightarrow R$ is β wg-closed and R is $_{\beta wg}T_b$ -space. Then f is closed map.

We define the following

DEFINITION 4.16.

A map h: $S \rightarrow R$ is called contra strongly β wg-open if the image of each β wg-open set of S is closed in

R.

Clearly, it is easy to see that a map $h:S \rightarrow R$ is contra strongly β wg-open if and only if image of each β wg-closed set of S is open in R.

THEOREM 4.17.

If h: S \rightarrow R is contra strongly β wg-open & k: R \rightarrow P is contra-closed map then koh:S \rightarrow P is contra strongly β wg-open map.

PROOF: Obvious.

DEFINITION 4.18.

A map h:S \rightarrow R is said to be contra β wg-open if the image of every open set of S is β wg -closed in R.

THEOREM 4.19: If h: $S \rightarrow R \& k: R \rightarrow P$ be two maps, then the following statements holds:

- (i) If h is pre- β wg-open & k is strongly β wg-open, then koh is β -open.
- (ii) If koh is always β wg-open and h is β wg-irresolute surjection, then k is always β wg-open.
- (iii) If koh is pre- β wg-open and h is completely β wg-continuous, then k is always β wg-open.

(iv) If koh is strongly β wg-open and h is β wg-continuous surjection, then k is an open.

- (v) If koh is always β wg-open and k is β wg-irresolute injection, then h is always β wg-open.
- (vi)If koh is contra β wg-open & k is β wg- irresolute injection, then h is β wg-open.
- (vii) If koh is β wg-open & k is strongly β wg-continuous, then h is open.

V. CONCLUSION

In this article, We introduced and studied a new class of maps termed as pre- β wg-continuous maps using β wg-closed sets in topological spaces and obtain some of their properties. Further also, we defined and studied the new notions of pre- β wg-open maps and pre β wg closed maps.

REFERENCES

- M. E. Abd El-Monsef, S.N. El-Deeb and R.A.Mahmoud, β-open sets and β-Continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2]. D. Andrijevic, Semi-pre-open sets, Mat. Vesnik, 38(1) (1986), 24-32.
- [3]. K. Balahandran, P. Sundaram and H.Maki, On generalized continuous maps in Topological Spaces, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 12(1991), 5-13.
- [4]. Kantappa.M.Bhavikatti and Govindappa.Navalagi, Some Stronger Forms of βwg-Continuous Functions in Topological Spaces, IJETIR, Vol. 5(5), (May 2018), 807-812.
- [5]. K.M.Bhavikatti, On Quasi sgp-open Maps in Topological Spaces, Journal of Computer and Mathematical Sciences, Vol. 8(7),

(July 2017), 349-354.

- [6]. M. Caldas, On g-closed sets and g-continuous mappings, Kyungpook Math. J., 33 (2), (1993), 205-209.
- [7]. J. Dontchev, On generalizing semipre-open sets, Mem. Fac. Sci. Kochi Univ.Ser.A. Math., 16(1995), 35-48.
- [8]. J.Dontchev, Contra continuous functions and strongly S-closed spaces, Int. Math. Math.Sci., 19(2), 1996, 303-310.
- [9]. N.Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2) (1970), 89-96.
- [10]. H.Maki, R. Devi and K. Balachandran, Associated topologies of Generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 51-63.
- [11]. R. A. Mahmoud and M.E.Abd El-Monsef, β-irresolute and topological β-invariant, Proc. Pakistan Acad.Sci. 27 (1990), 285-296.
- [12]. A. S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre continuous and Weak pre continuous mapping, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [13]. A. S. Mashhour, I.A. Hasanein and S. N. El-Deeb, α -continuous and α -open mapping, Acta Math. Hungar. 41, (1983), 213-218.
- [14]. Govinappa.Navalagi and Kantappa.M.Bhavikatti, Beta Weakly GeneralizedClosed sets in Topology, Jl. of Computer and Mathematical Sci., Vol.9, Issue 5, (May 2018), 435-446.
- [15]. Govinappa. Navalagi and Kantappa.M.Bhavikatti, On βwg-Continuous and βwg irresolute Functions in Topological Spaces, IJMTT, vol. 57, Issue 1 (2018), Pp 9-20.
- [16]. Govinappa. Navalagi and Kantappa. M. Bhavikatti. (2018), On contra βwg continuous Functions in Topological Spaces, Intern national Journal of Statistics and Applied Mathematics, 3(3), 139-145
- [17]. G.B.Navalagi, C.S. Nagarajapp, R.G.Charantimath and Meenaksi.I.N, Some More Properties of gsp-open sets in Topology, American Jr. Maths. and Mathematical Sci., Vol.2,No.1(Jan-2013), Pp163-169.
- [18]. O.Njåstad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [19]. P. Sundaram, Studies on generalizations of closed sets and continuous maps in Topological spaces, *Ph.D., Thesis, Bharathiar University*, Coimbatore (1991).