Quest Journals Journal of Research in Applied Mathematics Volume 8 ~ Issue 3 (2022) pp: 07-09 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

On the Fermat Quartic Equation $544x^4 + y^4 = z^4$

S. Sriram¹, P. Veeramallan²

¹Assistant Professor, National College (Affiliated to Bharathidasan University), Tiruchirappalli-620 001, Tamilnadu,

²P.G Assistant in Mathematics, GHSS, Yethapur, Salem-636 117, Tamilnadu,

(Part-time Research Scholar, National College (Affiliated to Bharathidasan University), Tiruchirappalli),

Abstract:In this paper, we show that the only primitive non-zero integer solutions to the Fermat quartic equation $544x^4 + y^4 = z^4$ are $(x, y, z) = (\pm 1, \pm 3, \pm 5)$.

Keywords: Diophantine equations, Fermat quartics, Primitive non-zero solutions. 2010 hematics Subject Classification: 11D41

Received 01 Mar, 2022; Revised 10 Mar, 2022; Accepted 13 Mar, 2022 © *The author(s) 2022. Published with open access at www.questjournals.org*

I. Introduction

A Diophantine equation of the form $ax^4 + by^4 = cz^4$, where a, b and c are fixed non-zero fourth power free integers, is also known as Fermat quartic equation. We define a nonzero integer solution to this equation as a solution (x_0, y_0, z_0) where ax_0, by_0 and cz_0 are pairwise relatively prime with $x_0y_0z_0 \neq 0$. Darmon and Gravillen gave the theorem to conclude that a Fermat quartic equation has only a finite number of primitive non-zero solutions [2]. When a = b = c = 1 and n = 4, we recognize Fermat's last theorem.

II. Main Results

Theorem 1. The only Primitive non-zero integer solutions to the Fermat quartic equation $544x^4 + y^4 = z^4 \operatorname{are}(x, y, z) = (\pm 1, \pm 3, \pm 5).$

Proof. We have $544x^4 + y^4 = z^4 \implies (z^2 + y^2).(z + y).(z - y)$

After the congruence considerations, we recognize that, x, y and z are odd.

Furthermore, 544 x, y and z are pairwise relatively prime. Let z = p + q and y = p - q where $p \neq q \pmod{2}$ and (p,q) = 1 since (y,z) = 1

Finite we get,

$$544x^4 = 2.(p^2 + q^2).2p.2q$$

 $68x^4 = (p^2 + q^2).p.q$

Case Lp is even and q is odd. Hence $p = 2^2 \cdot t$ since x is even and we get $17x^4 = (p^2 + q^2) \cdot t \cdot q$ (1) Since $p^2 + q^2$, t and q are pairwise relatively prime, we can distinguish three different cases. Subcase 1.17 $|q \Rightarrow q = 17d$ and from (1), we have $x^4 = (p^2 + q^2) \cdot t \cdot d$ Hence, $p^2 + q^2 = e^4$ (2)

^{*}Corresponding Author: S. Sriram

Since p and q are squared in equation (2), we may assume that p and q are positive. Hence, we have p = 4tand $t = f^4 \Rightarrow p = 4f^4$ Thus from (2), we have $(4f^4)^2 + q^2 = e^4 \Rightarrow q^2 = e^4 - (2f^2)^4$ which has no non-zero solution according to [6]. Subcase 2.17 $|t \Rightarrow t = 17g$ and insert this t value in equation (1), we have $x^4 = (p^2 + q^2) \cdot g \cdot q$ We have, $p^2 + q^2 = h^4$ (3) Since p and q are squared in equation (2), we may assume that p and q are positive. Hence, we have $q = j^4$

since p and q are squared in equation (2), we may assume that p and q are positive. Hence, we have q = jand from (3), we get $p^2 = h^4 - (j^2)^4$, which has no non-zero solution according to [6]. Subcase 3.17 $|p^2 + q^2$. Thus, we have $p^2 + q^2 = 17k^4$ (4)

From (1), we get $x^4 = k^4$. t. q and since the left-hand side is positive, we must have $t = l^4$ and $q = m^4$ or $t = -l^4$ and $q = -m^4$. If these substitutions are inserted in (4), we get since p = 4t $(\pm l^4)^2 + (\pm m^4)^2 = 17k^4$ $(2l^2)^4 + (m^2)^4 = 17k^4$ (5)

Moreover, the equation $x^4 + y^4 = 17z^4$ has according to [3] has only primitive non-zero solutions $(x, y, z) = (\pm 1, \pm 2, \pm 1)$ and $(x, y, z) = (\pm 2, \pm 1, \pm 1)$. Hence $(2l^2, m^2, k) = (\pm 1, \pm 2, \pm 1)$ and $(2l^2, m^2, k) = (\pm 2, \pm 1, \pm 1)$. Since $2l^2 \neq \pm 1$ and $m^2 \neq \pm 2$, so that only the second alternative must be applicable on (5). Hence $2l^2 = 2 \Rightarrow l = \pm 1$ and $m^2 = 1 \Rightarrow m = \pm 1$. Thus, by the previous expressions of t, p and q we have $t = (\pm 1)^4 = 1$ and $q = (\pm 1)^4 = 1$ or $t = -(\pm 1)^4 = -1$ and $q = -(\pm 1)^4 = -1$. Since p = 4t, we get p = 4 and q = 1 or p = -4 and q = -1. Since z = p + q and y = p - q, we get z = 5 and y = 3 or z = -5 and y = -3. Thus, we have (z, y) = (5,3) and (z, y) = (-5, -3).

<u>Case II.</u>p is odd and q is even.

Hence $q = 2^2 \cdot t$ since x is even and we get

$$17x^4 = (p^2 + q^2).t.p \tag{6}$$

Since $p^2 + q^2$, t and p are pairwise relatively prime, we can classify three different cases.

Subcase 4. 17 $|t \Rightarrow t = 17A$ and from (6), we have

$$x^{4} = (p^{2} + q^{2}).A.p$$

Hence,
 $p^{2} + q^{2} = B^{4}$
(7)
Since p and q are squared in equation (2), we may assume that p and q are positive. Hence we have $q = 4t$
and $t = C^{4} \Rightarrow q = 4C^{4}$

Thus from (7), we have $p^2 + (4C^4)^2 = B^4 \Rightarrow p^2 = B^4 - (2C^2)^4$ which has no non-zero solution according to [4]. Subcase 5.17 | $p \Rightarrow p = 17D$ and from (6), we have $x^4 = (p^2 + q^2).D.t$ We have, $p^2 + q^2 = E^4$

(8)

^{*}Corresponding Author: S. Sriram

As in subcase 4, we may assume that p is positive. Hence, we have $p = F^4$ and from (8), we get $q^2 = E^4 - (F^2)^4$, which has no non-zero solution according to [4]. Subcase 6.17 $|p^2 + q^2$. Thus we have $p^2 + q^2 = 17G^4$ (9) From (6), we get $x^4 = G^4$. p. t and since the left hand side is positive, we must have $t = H^4$ and $p = I^4$

or $t = -H^4$ and $p = -J^4$. If these substitutions are inserted in (9), we get since q = 4t $(+I^4)^2 + (+4H^4)^2 = 17G^4$ $(I^2)^4 + (2H^2)^4 = 17G^4$ (10)

Moreover, the equation $x^4 + y^4 = 17z^4$ has according to [3] has only primitive non-zero solutions $(x, y, z) = (\pm 1, \pm 2, \pm 1)$ and $(x, y, z) = (\pm 2, \pm 1, \pm 1)$. Hence $(J^2, 2H^2, G) = (\pm 1, \pm 2, \pm 1)$ and $(J^2, 2H^2, G) = (\pm 2, \pm 1, \pm 1)$. Since $2H^2 \neq \pm 1$ and $J^2 \neq \pm 2$, so that only the first alternative must be applicable on (10). Hence $2H^2 = 2 \Rightarrow H = \pm 1$ and $J^2 = 1 \Rightarrow J = \pm 1$. Thus, by the previous expressions of t, p and q we have $t = (\pm 1)^4 = 1$ and $p = (\pm 1)^4 = 1$ or $t = -(\pm 1)^4 = -1$ and $p = -(\pm 1)^4 = -1$. Since q = 4t, we get q = 4 and p = 1 or q = -4 and p = -1. Since z = p + q and y = p - q, we get z = 1 + 4 = 5 and y = 1 - 4 = -3 or z = -1 - 4 = -5 and y = -1 - (-4) = 3. Thus, we have (z, y) = (5, -3) and (z, y) = (-5, 3).

Finally, from the cases I and II, we see that $544x^4 = z^4 - y^4 = (\pm 5)^4 - (\pm 3)^4 \Rightarrow x = \pm 1$ and this completes the proof of Theorem 1.

III. Conclusion

The primitive non-zero integer solutions to the Diophantine equation $ax^m + by^n = cz^p$ is a matter of great concern. By using elementary number theory methods, we solved the primitive non-zero integer solution on the Diophantine equation when a = 544, b = c = 1, m = n = p = 4 has the only solution $(x, y, z) = (\pm 1, \pm 3, \pm 5).$

References

- [1].
- Cohen, H. (2007), Number Theory Volume I: Tools and Diophantine Equations, Springer, pp. 397-410 and pp. 462-463. Darmon, H., & Granville, A. (1995). On the equation $z^m = F(x, y)$ and $Ax^p + By^q = Cz^r$, B Bull. London [2]. Math. Soc., 27(6), 513-543.
- Flynn, E.V., & Wetherell, J.L. (2001). Covering collections and a challenge of Serre, Acta Arithmetica, 98, 197-205. [3].
- Sally J. D., & Sally, P.J. (2007). Roots to research: A Vertical Development of Mathematical Problems, American Mathematical [4]. Society.
- Soderlund, G. (2017). The Primitive solutions to the Diophantine equation $2x^4 + y^4 = z^3$, Notes on Number Theory and [5]. Discrete mathematics, 23, No. 2, 36-44.
- Soderlund, G. (2020). A note on the Fermat quartic $34x^4 + y^4 = z^4$, Notes on Number Theory and Discrete mathematics, [6]. 26, No. 4, 103-105.