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ABSTRACT

Mostofthe answersso far have beenalongthe general linesof "Why hard problems areimportant’, rather than "Why
theCollatzconjectureisimportant’; I will try to address the latter.

The Collatz conjecture is the simplest open problem in mathematics. You can

explain it to all your non-mathematical friends, and even to small children who have just learned to divide
by 2. It doesn't require understanding divisibility, just evenness.

The lack of connections between this conjecture and existing mathematical theories (as complained of in
some other answers) is not an inadequacy of this conjecture, but of our theories.

This problem has led directly to theoretical work by Conway showing that very similar questions are formally
undecidable, certainly a surprising result.
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I.  Introduction :

[13] Mathematical “experiments”: computer visualisations are the best known example. Although in several respects
unreliable, asitofteninvolvesthe reductionofthe(infinite)continuumtoafinite, discreteset,theydoproduce “clues” thatserve asa
guide fora proof.

[14] Probabilistic considerations: although proofs in the genuine sense of the word, what they establish is not that a
mathematical object (say, a natural number) has a certain property (say, being a prime), but has that property with a certain
probability.

[15] Computer proofs: to be distinguished from computer visualisations, these proofs involve the checking of a finite,
though huge amount of separate cases such thathuman checking is either impossible ortoo prone to errors and hence acomputer
programperformsthetask. Theresultisnotaproofintheclassical sense,since unavoidablyahumancannotcheck theproof,one ofthe
basic standardsto callaproofaproof.

[16] Metamathematical considerations: although one has a proof sat- isfying the required standards, the result is seen as
paradoxical,counter-intuitive, in conflict with expectations, and hence it is questioned. It canalso involve formal metamathematical
results, e.g., in showing that a partic- ular problem is unsolvable.

Usually givenaspecific case, i.e., a particular theorem and its proof history, one willseethatoneitemorafewoftheabove list
willactuallybeusedintheproof search.Itisratherexceptionaltohaveacasewhere(nearly)alltheseelements arepresent. Thetopicof
thispaperisquitesimplythepresentation(toa certaindepth) ofonesuchcasestudy. Allelements,save [11],0f thelistare presentin
oneway oranother. ltcanthusbe consideredanexemplar (inthe Kuhniansense),and, perhapsmoreimportantly,asfaraslknow,
anew exemplar. Asisso oftenthe case, in many philosophical discussions, the same typical example keeps coming back, wrongly
suggesting that no other examples areavailable®. Inaddition, the problemis fairly easy tostate, althoughthe mathematicsthatareused
insearch of a proofreach formidable heights. And, finally, it is also a problem that many mathematicians consider absolutely not
interesting.Aswillbeshownhere,theproblemdefinitelyisinteresting,but then the question is

'Think, e.g., about thought experiments. A tiny set of examples keeps coming back over and over again: Galileo’s thought experiment
about heavy and light masses, Newton’s bucket experiment concerning absolute properties such as acceleration, and Einstein’s
thought experiment about travellingonalightwave. Ithasledsomephilosopherstomistakenly claimthatthereisnoreal problem
aboutthoughtexperimentsastheyareexceptionaland, hence, notimportant.

The Collatz Conjecture 9 why so many think otherwise. In Section 3, I will provide some suggestions, relating to this matter.
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This paper is primarily based on the overview article of Jeffrey Lagarias [2004]° thatprovidesanextremelydetailedpresentationof
theproblemandthe attemptstodealwithit. Additionalsourcesare usedtohighlightdetailsofthe mainstory. The contrastbetween
Lagarias’ presentationand mineisthat| focusonthephilosophically interesting features, notnecessarily the “pure” mathematical
aspects. However, as should be clear, this paper is heavily indebted to the excellentwork done by him.

Il.  Theproblem

Consider a function from Nqto No, defined as follows: T

®
n/2 if nis even

(3n+1)/2 if n is odd Next define the iterate of T as usual:

®
TO(n) = n T9(n) = T(T'(n))

Thequestionisnowtoshowthatforeveryne No,thereisafinitek,suchthat
M) =1.

Astraightforward example:taken=7,thenwehavethefollowingsequence 7—11—17—26—13—20—10—5—8—4—
2—101234567891011
therefore T™(7) = 1 and k = 11.

2. Theorigin of the problem

Itiseasy tounderstand why, ifone has only the above informationand isasked whetherornotthisisaninteresting problem,the
answerwillmostlikelybe negative. Why?

“This paper available on the Internet is an update of a previous webpaper from 1996, see Lagarias [1996], and itself a further
elaboration of Lagarias [1985]. The most recent paper is an annotated bibliography whereas Lagarias [1996] retraces the history of the
problem, proofs included.

10 Jean Paul VVan Bendegem

Firstly,itisquiteeasyto“invent”similarproblems,sowhyshouldthis particular case attract our attention? As a matter of fact, this
type of argument has been used on several occasions by mathematicians, the most famous case no doubt Gauss’ commenton the
problem thatwas to become Fermat’s Last Theorem. In 1816 he wrote to Heinrich Olbers (known as the originator ofthe Olbers’
paradox) that “he could easily lay down a multitude of such propositions,whichonecouldneitherprovenordisposeof”(see
Ribenboim [1979], p.3).

Secondly, suppose we do manage to show the theorem to be correct, what have we gained? Arethere otherproblemsaroundthat
wouldgetsolvedinthe processaswell? Atfirstsight not.

Thirdly,onthelevelofproofmethods, itisnotguaranteedatallthatinteresting thingswillcomeoutofit.lsitlikelythatsomeingenious
newproofmethod couldsolvethisproblem, butisittobeexpected? Theseareallverygood reasonstoconsider the problem not
interesting (astheauthor ofthispaper believedforaverylongtime,uptothepointthatheactuallywrotethatbecause theproblemhas
no connections with other problems, it was perfectly acceptable to consider it uninteresting; so this paper is at the same time a
correction on one of my former views).

In fact, notwithstanding the observation that not that many mathemati- cians are actually involved with this problem, it is definitely an
interesting problem. Letme say afewwords aboutits origin. When one is dealing with number- theoretic functions, say functions f
from Nqto Ny, then one of the particular problems one has to deal with is notation and representation. What | mean is the
following.
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SupposethatthefunctionffromN,toNgisapermutation. Thenthereare several ways to represent this function:

(@) Oneofthe classical formsisintabular form:
® ®
12345... f(1) f(2) f(3) f(4) f(5) . . .

Note that this representation supposes to have the necessary knowledge on how to continue the table.

(b) Obviously,asforanyfunction,wecanhaveanexplicitform:f(n)=some symbolic expression involvingn.
(c) Avariationon(b)isafunctiondefinedimplicitlybysomerecurrence relations:

fin) =g(f(n - 1), fin - 2),. .., f3), f(2), f(1)),
The Collatz Conjecture 11
wherenotalloff(i),n—1®i®1needoccurandwheregissomespecified function.

(d) Anotherformthatdiffersradicallyfromthethreeabove,butjustlike(a) supposesthatonehassufficientknowledgeonhow
tocontinuethefigure,isa graphical representation.

1525345556 7-... -

whereanarrow representsanapplication ofthe function f (inthis case, the simple function f(n), defined by f(3n+1) = 3n+2, f(3n+2) =
3(n+1) and f(3(n + 1)) =3n+ 1)). Although this example is rather trivial, the importance of awell- chosen representation must be
obvious. The graphical representation shows immediately thatfis composed ofan infinite number of 3-cycles. One could very well
imagine thatif fbecomes more complex, the graph can tell more thingsthananalgebraic ofanalyticalexpression. (Noteatthe same
time the connection with visualisations; although there is no computer involvement here, it does show the importance of an
image).

Note also that different graph representations are possible. Instead of simply listing the natural numbers and drawing the appropriate
arrows, we can start with 1and listthe iterates of 1.

1 - (1) - (1) - (1) - ...

Allofthisshowsthatifwewanttounderstandwhatpermutationsareallabout, whattheirpropertiesare, thenitisausefulapproachto
examine the graphs of such functions. In addition, it allows to rephrase some questions into graph- theoretical questions. This is
actually the area that the “creator” of the problem, Lothar Collatz, was working on. Although his examples are different from what is
now known as the Collatz Conjecture (CC), they raise the same problems. His original question was whether, for a particular function f,
the trajectory starting with8andthe iteratesof8, contains Lornot. (luse heretheterm “trajectory” becauseitneednotbeacycle).One
nowseestherelationtotheCC.Rephrased interms of trajectories, the CCclaims:

For any natural number n, the trajectory starting with n, contains the number 1.

Of course, nomathematician doubts the importance of permutation theory. It is sodeeplyentrenchedinnumbertheoryandbeyond,
thatismustbecon- sideredoneofthecorepartsofmathematics. Althoughonemightperhaps

12 Jean Paul VVan Bendegem

consider the CC as a “spin-off”, it is clear that the general question that is raised by itisan interesting one. What seems to have been at
play is that there are several gaps inthe researchofthe CC. The problem disappears for some years only to reappear at some other
moment in the hands of another mathematician. Thefactthatitwasnoteasytolocatethe“true”originsoftheproblemsis supported
bytheobservationthattheverysameproblemisknownunder different names: Hasse’salgorithm, the Syracuse problem, Kakutani’s
problem, Ulam’s problem, and sometimes it is even referred to as the Hailstone problem. Thelastnameisareferencetothebehaviourof
thesequenceofT'(n). Ittends tomoveupwardsanddownwardsmuchinthewaythathailstoneshitthe ground and bounce back up
again.

3. Mathematicalinduction,numbercrunchingandpictures
Animportantfeaturetonoticeinthesearch foraproofofthe CCisthat, atfirst sight, itseems notvery useful to invoke mathematical
induction as a proof method. One of the obvious problems is that it does not help to start from the assumptionthatthe CC hasbeen
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proven forall cases uptoanumberninorder toprovethe caseforn+1,asthe iterates forn+1cangowellbeyondn+1. Inthe above
exampleforn=7,thehighestvalueonereachesis26.Thiswouldshift the problemto the questionwhether one canshowthat:

For all n, there is a finite number N(n), such that for all i, T%(n) ® N(n).

Inaddition,onewouldneedsomeconnectionbetweenN(n)andN(n+1)tobe abletogettheinductionprocessworking. However, itis
clearthatthisnew tasklookseverybitasdifficultastheoriginaltask.Ofcourse,onemighttryan inductiononsomeotherparameterof
theproblem,butitbecomessoonclear thateitheronekeepscomingbacktotheoriginalproblemitselforoneendsup worseoff.E.g.,one
mighttryaninductiononk,suchthat T®(n)=1,ifatall.

However,oneneedsawaytoenumeratethensuchthatkformsasequencel,

2,3,...(withorwithoutgaps?).Butthatseemsanevenharderquestionto answer:
Given a natural number k, what are the numbers n such that T%(n) = 1?

Ifwehadananswertothisquestionand, foreveryk,wecouldlistthenumbers n,thenofcourseifwecould provethatsomenumbern
ismissing

The Collatz Conjecture 13

forallk,thenwewouldhaveadisproofoftheCC.Clearly, thisisnotan interesting strategy and so, in short, one does well (initially) to
forget about mathematical induction.

As one might expect with this kind of problem, it is very tempting to collect numerical evidence, corresponding to a mixture of
careerinduction [12]and computerproof(amixof[13]and[15]). TheCChasbeencheckeduptoa staggering 3.24x10"". One might
wonderwhatthe relevance of suchevidence could possiblybe.

One argument is rather trivial: one might come up with a counterexam- ple, thereby settling the problem by producing a disproof.
However, oddly enough, in many cases where such evidence is collected, the mathematicians tend to believe that there are no
counterexamples. Sowhydotheydoit?

Apossibleanswer isthat mathematicians sometimesdo whatscientistsin general do: you collect evidence hoping that some pattern
appears that tells yousomethingaboutthe problemyourstudying. Asithappensinthiscase, the onlythingthatappearsiscomplexity
andmorecomplexity. Table1showsthe maximum value reachedofthenumbern, (indicated by thevariable N)asn ranges from 1to
100.000. Note, e.g., that between 1.819 and 4.254, the highest value remains 1.276.936 but at 4.255 it jumps straight away to 6.810.136.
Even inthiscase, however, itis clearthatthe numerical evidence isinteresting forit is shows that we are most likely dealing with a
problemthatisintrinsically complexandthereforeweshouldnotbesurprisedthattheproblemsresists attempts to prove it.

Astothecomputeraspectofthisnumerical search, itisclearthatweare dealingherenotwithamereenumerationofcases;thesizeof
thesetof checkedcasesissimplytoo large tobe checked one by one. Henceawhole range of mathematical techniques and computer
engineering is involved and, therefore, it becomes interesting. Note that for the computer checking a dis- tributed network hadtobe
createdtohavesufficientcomputationalpower.

4, Enterprobabilitiesandstatistics5.1. Aprobabilisticargument
What is more interesting is the fact that there exists a probabilistic heuristic argument, a perfect illustration of [14], that (at least some)
mathematicians seemtofindconvincingenoughtobelievetheCCtobeprovable. Thisisthe argument:

14 Jean Paul Van Bendegem

N Path length Maximum value

017

16

17

1

1237 111

s 21652 160 9,232 13,120 39,364 41,524 250,504 1,276,9
15 97 8,153,62027,114,42450,143,264106,358,020121,012,8

131 593,279,152 1,570,824,736
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170
272554476397031,8194,255 161
4,5919,66320,89526,62331,911 201
60,975 77,671 170
184
255
307
160
334
231

Table 1. Sequence of peak values up to N = 100,000 (© Scientific American, see Hayes [1984])

(@) You do not have to worry about even numbers 2n, because in the nextstep, you will have n, so you go “down”, i.e., the
numbersarebecomingsmaller.

(b) Thereforelookatwhathappenswhenyoustartwithanoddnumber2n+1. Eitherinthenextstepyouwillhaveanoddnumber
oranevennumber.Assume that the probability is 1/2in both cases.

(c) Repeatthe process. This producesthe following picture:
nn/2
(3n + 1)/2

3(Bn+1)/2+1)/2(Bn+1)/4
(eacharrowhasaprobability 1/2andnotethat3(3n+1)/2+1)/2 isaneven number, since by construction (3n+1)/2isodd).

(d) Considernowatrajectoryfromoneoddnumbertoanotheroddnumber. SupposethatinbetweenthereareN—21odd
numbers. Intotal

The Collatz Conjecture 15

thisproducesNtransitionsfromanoddnumbertothenext. Whatweexpectis thatN/2 ofthesetransitionswillhappeninonestep, N/4in
twosteps,andso on. This leads to a growth factor:

(3/2)V% (3/4)V"* (3/8)"®... So the average growth factor per transition is: (3/2)2(3/4)"* (3/8)"%..

(e) Asimplecalculationshowsthatthenumeratorisnothingbut3tothepower

1/2+1/4+1/8+- - - =1, therefore 3; and the denominator is 2% 4** 8¥%. ..

=2%=4.(Hereasimpleinductivereasoningwil ldothetrick).Hencethe averagegrowthfactorpertransitionis3/4whichissmallerthan1,
soon averagethenumbers*“shrink”, thereforethe CCshouldbecorrect.

Ofcourse,thisbeautifulargumentstandsorfallswiththeassumptionmadein

(b)(initalics). Isthere reasontoassumethatthereis justasmuchchanceto haveanoddoranevennumberinthenextstep? Actually not
and,inaddition, therearemanyinterestingproblemsinnumbertheorywhereoneexpects certain probabilities but amazingly enough,
the mathe- matical “facts” show otherwise. A famous example to illustrate this point concerns a conjecture put forward by Georg
Polya. Think about the prime decomposition of natural numbers. Countthe number of primes, that need not be distinct. Call r(n) =
numberofprimesinn. Theneitherr(n)isevenorodd. Doesitnotseemlikely thatifwepickanarbitrary numbertheprobabilitythatr(n)
isevenoroddis 1/2? Asithappensthisisnotthecase,andthebehaviourofthefunctionr(n) turnsouttobequitecomplex.Inthatsense, it
isquiteunderstandablethatfor some mathematicians these probabilistic considerations carry little weight.

5.2. Gathering statistical evidence
Related tothe above are whatone mightcall statistical analyses ofthe prob- lem. Here the objective is to explore and hopefully to
understand and explain particularfeaturesthatappearinthenumericaltables,notnecessarilyto

16 Jean Paul Van Bendegem

findarguments for or against the correctness of the conjecture. 8k+4 4k +2 2k + 1

Consider, e.g., the fact that consecutive numbers have trajectories of the same length(andotherproperties). Insomecasesthis
phenomenoncanbeeasily explained. Thediagramshowswhynumbersofthe8k+4end8k+5musthave the same trajectory length.
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Although,assaid,itisnotclearinwhatway suchresultscould contributetoa finalanswer,i.e.,aproofsatisfying the usual standards,
thereseemstobea veryclearanalogytobedrawnwithscientificpractice. Ifitismeaningfulto speakofaCollatz-universe,meaning
therebyallthenumericalmaterialrelated tothe conjecture, thenthese probabilistic and statistical analyses correspond to anexploration
ofthatuniverse.Oneisnotreallyexpectingtofindlawsorthe like,butratherindicationsthatsuggestwhatpossiblelawsonecouldlook
or aimfor.Inasensethemathematicianistryingtogeta“grip”ontheproblemby wandering through the territory.

) Digression: generatingconceptstotacklethe problem

Theheadingofthissectionseemstosuggestthatitstopicisofminorim- portance.Suchisdefinitelynotthecase,butthere
aretworeasonswhy lwant totreatitseparately:firstly, becauseitisacommonfeatureofthewhole mathematicalenterpriseandin
thatsenseitoccursin[I1]uptoandincluding [16],and,secondly, because thetopicandits related literature istoovastto treathereina
thoroughway. Whatisthis feature? Forwantofabetternotion, | propose to call it generating concepts (GC). Let me first of all
illustratewhat | mean usingCC.

Takealookattheoriginalproblem.Whatconceptsoccurintheproblem formulation? We talkabout functions, natural numbers,
about elementary arithmetical operations (addition, multiplication, division) and about iter- ation. Those are roughly the
“ingredients” of the problem. The striking feature whenonegoesthroughthehistoryof CCisthattheconceptsas

3k+2

8k+512k+86k+4

The Collatz Conjecture 17

formulatedintheoriginal problemstatementplayhardlyanyroleatall. Instead, and techniques such as listed in [11]-[16] promote

this process, a whole range of derived conceptsis introduced and in some theorems none of the originalconceptsactuallyoccur.For
CC,whatfollowsaresomeofthederived concepts:

1 (a) Thenotionofiterationleadsrathernaturallytotheideaofa trajectory, i.e., the sequence of numbers, starting with n,
andending with the first1to occur.

2 (b) Anobviouscorrelateof (a)isthelength of the trajectory.

3 (c) Givenatrajectory, letkbetheleastpositivenumbersuchthat T

M) <

n, then k is called the stopping time of n, or, o(n) = k.

4 (d) Derivedfrom(c)iso.,(n), thisisthe total stopping time, i.e.,thatk suchthat T¥(n)=1, (thisrelatesof course to
(b))

5 (e) Theexpansion factors(n)isdefinedasthedivisionofthelargest

value

(k)
reached in a trajectory by n, i.e., s(n) = ak®0 T (n). n

b (f) Theparity vectorvy(n),basicallycorrespondingtothetrajectory, where all the numbers are reduced modulo2.
Asanillustration, consider once more the example n= 7, thenthe properties are:

(@)Trajectoryofn=7:( 7,11,17,26,13,20,10,5,8,4,2,1) ,(b)Lengthofthe trajectory =12,

(©) o(7)=7,(d) 0.(7) = 11,

(e) s(n) = 26/7=3.7
(fvu(?)=( 1,1,1,0,1,00,1,0,00,1)

Ontheonehand, itseemsobviousthatthesenewconceptsshouldemerge,asit iseasytoseehowtheyarerelatedtotheoriginalproblem
and, hence,howthey canbe helpful in the search foraproof. However, this is only part of the story. Besides the concepts mentioned
above, many others could have been proposed, butapparently have notbeenproposed. Asanexample, takethispersonally thought-
up concept:
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M;=thesetofalltrajectoriessuchthatthelengthofthetrajectoryisamultiple of 7

and related to that:

N; = those numbers that belong to a trajectory in My.

18 Jean Paul VVan Bendegem

ItismyestimatedguessthatnomathematicianwillfindthenotionsofM-and N-theleastbitinteresting.Butthenthequestionmustbe:

why?Nodoubtthe answerwillbe:themathematicians’practice,butthatdoesnothelptofillinthe details. Whatisitinthatpracticethat
allowsmathematicianstomakesucha selection?Letmereformulatethatquestioninslightlymoreabstractterms.

Suppose that:

(@) weare givenaset X, and

(b) aproperty corresponds toasubset of X, then,
(©) we haveatotal of 2%!possible properties.

If X is of infinite size, so is 2% . Hence we are faced with a double question:
(Q1)Howisafinitesubsetoftheinterestingpropertieschosen?(Q2)Howare uninteresting propertiesavoided?

Notetheimportanceof(Q1). ComputerprogramssuchasAutomatic Mathe- matician, developed in the eighties by Douglas Lenat,
were indeed capable of generating interesting concepts, but, as time went on, they tended to drown in them. Somehow, real-life
mathematicians seem to avoid this pitfall. Apart from general considerations aboutconceptgeneration and selection asstud- ied in
cognitive psychology® (involving the study of metaphors, analogies, conceptual blending,andthelike),mathematicsisinthissensea
specialcaseinthat conceptgenerationandproofaretiedtogether.E.g.,inthe caseof CC,o(n)is moreinterestingthano.,(n)because
thefirsttheoremsonecouldproveabout CC involved the stopping time function and not the total stopping time function. Therebythe
conceptisreinforcedandallcon-ceptsthatcanbeeasilylinkedto it. Ifaderived conceptdoesnotturnupsomewhere inaproof, then it
willmost likelydisappear. Astheproductionofproofsisaratherdifficultandoftenslow process, it explains why so few derived
concepts survive.

Asafurthersupportofthis thesis—the link between concept generationand proofproduction—itisworthwhileto lookatso-called
“seminal”papersinthe history of mathematics, i.e., those contributions that either set in motion a new branch of the mathematical tree
or relaunched a research that had arrived ata standstill. OnesuchfamousexampleisBernhardRiemann’spaper“Uberdie Anzahl der
Primzahlenuntereinergegebenen

3Theliteratureinthisfieldistooextensiveandtoovariedtobereportedhere, but,obviously, for mathematics a fine example (although
many, such as myself, tend to disagree with the authors) is the recent work of Lakoff and Nunez [2000].

The Collatz Conjecture 19

Grosse”[1859],(“OntheNumberofPrimeNumbersLessthanaGiven Quantity”).Iwillnotgointodetailshere,butone,ifnotthe
moststriking featureofthepaperisthattherearehardlyanyproofsandifso,theytendtobe “over-summarized”, making it atough job to
reconstruct what the author might havemeant‘.Ontheotherhand,whatthepaperdoesistointroducearangeof new functions that get
connected to existing and well- studied functions, thereby offering a new range to explore. As the paper is generally
acknowledged as a fundamental contribution, it is reasonable to conclude that such concept generation attempts are considered as
important as proofs themselves.

However, letmenowreturntothemainstoryofthispaperandlookintoitem [16] onthe list.

1 Metalevel considerations

In1972JohnConwaypublishedashortpaperwithacuriousandimportant result:ageneralizationofCCisundecidable. Inthatsense, it
isabeautiful illustrationofatype[l6]kindofargument.Itimpliesthatperhaps CCitselfis undecidable,althoughatpresentnosuch
resulthasbeenfound®.

The generalization is the following:

Consider a function g fromintegers to integers (note that this is notan essential extensionastheintegerscanalwaysbemappedone-to-
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oneontothenatural numbers®), suchthat

g(n) = ain + b; for n =1 (mod p),
andwherea;andbiarerationalnumberssuchthatg(n)isalwaysaninteger.

‘OneofthebestsourcesaboutRiemann’s paperis Edwards [1974]. Thestatementonthe low proofqualityofthepaperisbasedonthis
quoteofEdwards: “TherealcontributionofRiemann’s 1859paperlaynotinitsresultsbutinitsmethods. Theprincipal resultwas
aformulal...] However, Riemann’s proofof this formulawas inadequate[...]”. (p. 4)

°If CC would turn out to be undecidable, then it would most certainly replace the “busy beaver” as thesimplestundecidable problem.
The“busybeaver” concerns Turingmachinesproducinga stringof < 1°-sonanemptytape. SeeBoolosetal.[2002],pp.41-44, for
aclearandconcise exposition of the “busy beaver” problem.

5The reason for the extension from natural numbers to integers has to do with the problem of encoding a problem known to be
undecidable intothis generalization of CC. Inthatsense the construction can be reformulated restricted to natural numbers, however
the result would be definitely ‘ugly’.

20JeanPaul VanBendegem CCthencorrespondstothespecial case,where: g(n)=(1/2)n+0forn=0(mod2),andg(n)=(3/2)n+1/2
forn=1(mod2).

Soay=1/2,by=0,a,=3/2andb, =1/2.
The undecidability comes down to the fact that, given a function g, and

givenanumbern, thereisnoalgorithmthatdecideswhetherthereisanumber ksuchthatg®(n)=1. Actually, Conway provedaneven
strongerresult,viz.all rational numbers b;may be equal to 0.

Obviously,whatthisresultimpliesis,atleast,thatoneshouldnotbeamazedby thecomplexity oftheoriginal problem,the CC. The fact
that the statement resisted and continues to resist proof for quite some time now, is perhaps something to be expected, given
Conway’sresult.Inthatsense,itdoeshavean influenceonmathematicians’expectations. However,thestorydoesnotend there. There
are links between CC and ergodic theory (see Lagarias [1985], Section 2.8), thus introducing considerations about
stochasticity and randomness into the proof search. These considerations are clearly not purely mathematical, witness this quote
fromtheconclusionoflLagarias[1985]:

Isthe 3x+1problemintractably hard? Thedifficulty of settlingthe 3x + 1 problem seems connected to the fact that it is a deterministic
process that simulates “random” behaviour. Wefacethisdilemma: Ontheonehand, totheextentthattheproblemhas structure,wecan
analyseit—yetitispreciselythisstructurethatseemstopreventus fromprovingthatitbehaves“randomly.” Onthe otherhand, tothe
extent that the problem is structureless and “random,” we have nothing to analyse and consequently cannot rigorously prove
anything. Of course there remains the possibility that someonewillfindsomehiddenregularity inthe 3x+1problemthatallows
some of the conjec- tures about it to be settled. The existing general methods in number theory andergodic theorydonotseemtotouch
the3x +1problem;inthissenseitseems intractable at present. Indeed all the conjectures made inthis paper seem currently to

beoutofreachiftheyaretrue;Ithinkthereismorechanceofdisprovingthosethatare false.

It seems obvious, at least to me, that such statements do not only go beyond mathematics proper, but at the same time contain (a)
philosophical ideas about thestructure ofthe mathematical universe, (b) the expectationsone might reasonablyhave concerningthe
likelihoodofprovingatheorem,and(c)the connection(s)betweenthesetwoelements. Inasensethiscould

The Collatz Conjecture 21

be considered a form of philosophy emerging out of mathematical practice itself, and hence, produced by mathematicians
themselves. This explains to a certainextentthe contrastwith philosophical explanationshy philosophers about mathematics, that
tendtofocus on “end-products”, i.e., “finished” proofs. Letmeexplorethisideaabitfurtherintheconclusionofthispaper.

I1l.  Conclusion
Afirstminorremarktomakeisthatthe readersurely willhave noticedthatan illustrationof[11]ismissing. Thereareindeed,asfaras|
know, noexamples of “sketchy proofs” that could possibly be translated or trans- formed into an acceptable proof. On the whole,
occurrencesof[11]seemtoberatherrare.
However, the presence of all the other elements do show that the Collatz Conjecture deservestobe called an“exemplar”.

Secondly,andmoreimportantly, the readerwillalsohavenoticedthatIhave givenno“real” proofsofpartial results. After
all,seeLagarias[2004],asone mightexpect,thereisamultitude ofproofsdealingwithbitsandpiecesofthe CC,butldidnotwanttopay
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attentiontothatpartofthe mathematical process. Idid wantto focus on all those elements that are at the same time not proofs, but
essential to guide the search for a proof. My claim is that these considerations are partand parcel of mathematical practice and,
by implication, thataphilosophy of mathematics that claims to deal with the essential features of what mathematics is all about,
shouldincludetheseelements.

Thirdly,asaconsequenceoftheobservationabove, itfollowsthatmath- ematics—orthe mathematical building, touse
the bestknownmetaphor— neednotbeanintegratedwholeoraunityinsomesense. Afterall,notonlywill proofmethodsdifferfrom
mathematicaldomaintomathemati-cal domain— think, e.g., about the difference between “diagram chasing” in category theory and
mathematical induction innumbertheory (see Van Bendegem [2004])— buttheadditionalelements[I1]upto[I16]willmostcer-
tainly differ from domain to domain—in number theory number crunching is obviously possible but visualisations, equally
obviously, seem more suited to geometrical and topological problems. Note that this form of ‘disunity’ | am pleading for, isnot in
contradiction with the existence of the founda- tions of mathematics, such as settheory.Fromthefoundationalpointofview,welookat
the end-products, i.e., mathematical theories, leave outthe details ofthe process thathas led to thetheory,andthenintegratethese
theoriesbyconstructingacommon language wherein these theoriescan be

22 Jean Paul Van Bendegem

translated, thus creating anew universe that has a uniformity that the daily practice of mathematicians seems to be lacking. In
terms of languages, foundationalworkcorrespondstodesigninganartificiallanguagesuchas Esperanto. Whereasinthispaperlam
suggestingthatweshouldalsohavea lookatthelanguageswedailyspeak.InthesamemannerthatEsperantodid notbecometheworld
language, working mathematicians know thatthere is this special group of “foundational speakers” that seem to have trouble to
convince everyone else to speak as they do. Inaddition, the better we understand our daily languages, the more likely we will
understand what kind ofartificial languages will haveany rate of successor not.

Asafinalclosingremark, letmejustmentionthatatthemomentofwriting— February 2005—the problem remains unsolved.
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