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ABSTRACT: Based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional 

analytic functions, this paper studies the calculation of the area surrounded by a plane fractional closed curve. 

The major method we used is the change of variables for fractional calculus. On the other hand, several 

examples are provided to illustrate how to solve this problem. In fact, these results obtained in this paper are 

generalizations of the results in classical calculus.  
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I. INTRODUCTION  
In 1695, the fractional derivative first appeared in a famous letter between L’Hospital and Leibniz. 

Fractional calculus includes the derivative and integral of any real or complex order. Fractional calculus has 

attracted many physicists, engineers, scientists, and mathematicians to do this research. In recent decades, 
fractional calculus has been widely used in many fields such as physics, mechanics, electricity, economics, 

control theory, and so on [1-8]. For the introduction and application of fractional calculus, we can refer to 

[9-13].  

In this paper, based on Jumarie modification of R-L fractional calculus and a new multiplication of 

fractional analytic functions, the problem of finding the area surrounded by a plane fractional closed curve is 

studied. The change of variables for fractional calculus plays an important role in this article. Moreover, we give 

some examples to illustrate the method to solve this problem. In addition, these results we obtained are natural 

generalizations of the results in traditional calculus. 

 

II. PRELIMINARIES 
       In the following, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([14]): Assume that      , and    is a real number. The Jumarie′s modified 

Riemann-Liouville (R-L)  -fractional derivative is defined by 
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And the Jumarie type of R-L  -fractional integral is defined by 
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where     is the gamma function.  

Proposition 2.2 ([15]):  Suppose that            are real numbers and        then 
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and 
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             Next, the definition of fractional analytic function is introduced. 

Definition 2.3 ([16]): Suppose that     , and    are real numbers for all  ,         , and      . If 

the function            can be expressed as     
    

  

       
      

   
    , an  -fractional power 

series on some open interval containing   , then we say that     
   is  -fractional analytic at    . 

Furthermore, if            is continuous on closed interval       and it is  -fractional analytic at every 
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point in open interval      , then    is called an  -fractional analytic function on      . 

             In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([17]): If      , and    is a real number. Let     
   and     

   be two  -fractional 

analytic functions defined on an interval containing    , 
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Then we define 
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Equivalently, 
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Definition 2.5 ([18]): Let        and     
  ,      

   be two  -fractional analytic functions defined on 

an interval containing    , 
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The compositions of     
   and     

   are defined by 
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and 
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Definition 2.6 ([18]): Let        If     
  ,     

   are two  -fractional analytic functions satisfies 
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Then     
  ,     

   are called inverse functions of each other.    

The following are some fractional analytic functions. 

Definition 2.7([18]): If      , and      are real numbers. The  -fractional exponential function is defined 

by 
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And the  -fractional logarithmic function      
   is the inverse function of     

    Moreover, the  -fractional 

the  -fractional cosine and sine function are defined as follows: 
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and 
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Definition 2.8: The smallest positive real number    such that          , is called the period of      
  . 

Definition 2.9 [18]: Let      , and   be a real number. The  -th power of the  -fractional analytic function 

    
   is defined by       

                   
    . 

 

III. METHODS AND EXAMPLES                                                                                                             
In this section, we introduce the main methods used in this paper and give some examples to illustrate 

how to evaluate the area enclosed the plane fractional closed curve.  

Theorem 3.1 (change of variables for fractional calculus)[ ]: Let      ,     
   is an  -fractional 

analytic function defined on an interval  , and        
    is an  -fractional analytic function such that the 

range of     contained in the domain of   , then  
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          ,              (17) 

for      . 
Definition 3.2: If      ,     

   is an  -fractional analytic function defined on an interval  , and 

    
    , then the area under     

   from     to     is defined by 

                                                                                               
       

   .                                (18) 

Definition 3.3: Assume that      ,     
   is the polar coordinate equation of a plane  -fractional 

analytic closed curve, then the area under     
   from     to     is defined by 
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Some examples are provided below to illustrate the method of calculating the area surrounded by a 

plane fractional closed curve. 

 

Example 3.4: Suppose that      ,        The parametric equation of the  -fractional elliptic curve is  
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Find the the area enclosed by this plane  -fractional closed curve.  

Solution Since this  -fractional elliptic curve satisfies 
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It follows that 
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Then by change of variable for fractional calculus, the area enclosed by this plane  -fractional closed curve is  
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Remark 3.5: If    , then the fractional elliptic curve becomes the classical elliptic curve, and its area is    . 

Example 3.6: Let            The polar coordinate equation of the  -fractional cardioid is  

                                                                            
             

    for      
   .              (24) 

Find the area enclosed by this plane  -fractional curve. 

Solution  By Definition 3.4, the area is 
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Remark 3.7: If    , then the fractional cardioid is the traditional cardioid, and the area enclosed is 
 

 
   . 

Example 3.8: Suppose that         is a real number. The polar coordinate equation of the  -fractional 

lemniscate is  

                                                                               
                

 
                           (26) 

Find the area enclosed by this plane  -fractional curve. 

Solution Using Definition 3.4, the area is  

                                                                           
 
  
 

 

 
 

   
 

 
          

     

                                                                        
 

 
      

  

 
    

                                                                           
  

 
 .                                     (27) 

Remark 3.9: If    , then the fractional lemniscate is the classical lemniscate, and the area enclosed is   . 
 

IV. CONCLUSION                                                                                                
       The main purpose of this paper is to evaluate the area enclosed by a plane fractional closed curve based 

on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions. The change 

of variables for fractional calculus plays an important role in this article. In fact, these results we obtained are 

generalizations of those in traditional calculus. In the future, we will continue to use these methods to study 

problems in other fields such as fractional calculus and engineering mathematics. 
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