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Abstract:In this paper, a hybrid method called ElzakiAdomian decomposition method (EADM) has been 

implemented to solve fractional-order PDEs. Caputo-Fabrizio operator describes fractional-order derivatives. 

The solutions of three examples are presented to show the validity of the current method. The results of the 

proposed method are shown and analyzed with the help of figures. It is shown that the proposed method is found 

to be efficient, reliable, and easy to implement for various related problems of science and engineering. 
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I. Introduction 

The subject of fractional calculus (FC) can be considered as an old yet novel topic. It has been an 

ongoing topic for more than300 years; however, since the 1970s, it has been gaining increasing attention [1]. 

Firstly,there were almost no practical applications of FC, and it was consideredby many as an abstract area 

containing only mathematical manipulations of little orno use [2]. Recently, FC has been widely used in various 

applications in almost everyfield of science, engineering, andmathematics, and it has gained considerable 

importancedue to its frequent applications in fluid flow, polymer rheology, economics, biophysics,control 

theory, psychology, and so on [3,4].  

In recent years a lot of attention has been paid to finding effective numerical methodsto simulate the 

fractional PDEs [5-35]. The aim of this paper is to find an analytical method that provides us with an 

approximate solution that is very close to the exact solution with the easiest steps and to use it to solve PDEs 

with CFFD. This work is arranged as follows: in section ‘‘Preliminaries,’’ the preliminaries are introduced. In 

section ‘‘ElzakiAdomian decomposition method,’’ the description of the EADM is offered. In section 

‘‘Applications,’’ the applications of EADM to the differential equations are illustrated and makes a comparison 

of ElzakiAdomiandecompositionmethod featuring Caputo–Fabrizio derivative. Eventually, in section 

‘‘Conclusion,’’ some conclusions regarding the proposition method are pulled. 
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2. Preliminaries 

Definition 1:  Let 𝝋 ∈ 𝑯 𝒂, 𝒃 , 𝒂 > 𝑏 , 𝑎 ∈  −∞, 𝝉 , 𝟎 ≤ 𝜶 ≤ 𝟏 , then The definition of the new Caputo fraction 

derivative is [36,37]: 

 

𝑫𝒂
𝑪𝑭

𝝉
𝜶𝝋 𝝉 =

𝜷 𝜶 

 𝟏 − 𝜶 
 𝝋 

𝝉

𝒂

 𝒔 𝐞𝐱𝐩 −
𝜶

𝟏 − 𝜶
 𝝉 − 𝜶  𝒅𝒔,                             (𝟏) 

where 𝜷(𝜶) is a normalization function satisfying 𝜷 𝟎 = 𝜷 𝟏 = 𝟏. 

Some properties fractional derivative 

1. 𝑫𝒂
𝑪𝑭

𝝉
𝜶 𝝀𝝋𝟏 𝝉 + 𝝋𝟐 𝝉  = 𝝀 𝑫𝒂

𝑪𝑭
𝝉
𝜶𝝋𝟏 𝝉 + 𝑫𝒂

𝑪𝑭
𝝉
𝜶𝝋𝟐 𝝉  

2. 𝑫𝒂
𝑪𝑭

𝝉
𝜶 𝒄 = 𝟎 ,where c is constant 

3. 𝑫𝒂
𝑪𝑭

𝝉
𝜶 𝝋  𝝉  = 𝝋  𝝉  , 𝐰𝐡𝐞𝐫𝐞 𝛂 = 𝟎 . 

Definition 2:  Let 𝝋 ∈ 𝑯 𝒂, 𝒃 , 𝒂 > 𝑏 , 𝑎 ∈  −∞, 𝝉 , 𝟎 ≤ 𝜶 ≤ 𝟏 ,then The fractional integral of order 𝜶of a 

functional f is defined by [22-23]: 

𝑰𝒂
𝑪𝑭

𝝉
𝜶𝝋 𝝉 =

𝟏 − 𝜶

𝜷 𝜶 
𝝋 𝝉 +

𝜶

𝜷(𝜶)
 𝝋 𝒔 𝒅𝒔.

𝝉

𝒂

                                                       (𝟐) 

where 𝜷 𝜶  is a normalization function satisfying 𝜷 𝟎 = 𝜷 𝟏 = 𝟏. 

Some properties fractional integral 

1. 𝐈𝐚
𝐂𝐅

𝛕
𝛂 𝛌𝛗𝟏 𝛕 + 𝛗𝟐 𝛕  = 𝛌 𝐈𝐚

𝐂𝐅
𝛕
𝛂𝛗𝟏 𝛕 + 𝐈𝐚

𝐂𝐅
𝛕
𝛂 𝛗𝟐 𝛕 . 

2. 𝐈𝐚
𝐂𝐅

𝛕
𝛂 𝐃𝐚
𝐂𝐅

𝛕
𝛂𝛗 𝛕 = 𝛗 𝛕 − 𝛗 𝐚 . 

 

Definition 3.1: The Elzaki transform (ET) is defined over the set of functions [24-25]: 

𝐴 =  𝜑 𝜏 /∃𝑀, 𝑘1, 𝑘2 > 0, |𝜑 𝜏 | < 𝑀𝑒𝑥𝑝  
 𝜏 

𝑘𝑗
 , 𝑖𝑓 𝜏 ∈  −1 𝑗𝑥 0,∞  ,                

by the following integral 

          𝐸 𝜑 𝜏  = 𝑇 𝑣 = 𝑣 𝜑 𝜏 
∞

0

exp  
−𝜏

𝑣
 𝑑𝜏, 𝜏 ≥ 0, 𝑘1 ≤ 𝑣 ≤ 𝑘2 3  

where v is the factor of variable 𝜏. 

Some ET properties: 

1. 𝐸 𝑘 = 𝑘𝑣2    ,   𝑘 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2. 𝐸 𝑡
𝑛

𝑛 !
 = 𝑣𝑛+2 , 𝑛 = 0,1,2, … 

3. 𝐸 𝜏𝛼 = Γ 𝛼 + 1 𝑣𝛼+2 

4. 𝐸 𝑒𝑎𝜏  =
𝑣2

1−𝑎𝑣
 

5. 𝐸 𝜆𝜑1 𝜏 ± 𝑀 𝜑2 𝜏  = 𝜆𝐸 𝜑1 𝜏  ± 𝑀𝐸 𝜑2 𝜏  ,                                                         
 

Theorem 3.2:  The Elzaki transform of the Caputo-Fabrizio fractional derivative of the function 𝜑 𝜏  of order 

𝛼 + 𝑛, where 0 < 𝛼 ≤ 1 and 𝑛 ∈ ℕ𝑈 0 , is given by [24-25]  

𝐸 𝐷 𝛼+𝑛 𝜑 𝜏  =
1

1 − 𝛼 1 − 𝑣 
 

1

𝑣𝑛
𝐸 𝜑 𝜏  − 𝑣2−𝑛+𝑘

𝑛

𝑘=0

𝜑 𝑘  0   4  

 

3. ElzakiAdomianDecomposition Method  

We consider FPIDE 

𝐷𝐶𝐹
𝜏
𝛼𝜑 𝜇, 𝜏 + 𝑅 𝜑 𝜇, 𝜏  + 𝑁 𝜑 𝜇, 𝜏  = 𝑔 𝜇, 𝜏  5  

 

With the initial condition  

𝜑 𝜇, 0 = 𝜑0 𝜇                                                                                                                             (6 ) 
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where 𝐷𝐶𝐹
𝜏
𝛼  is Caputo-Fabrizio operator, R is a linear operator, N is an nonlinear operator,  g is a source term 

and 0 < 𝛼 ≤ 1 

 

Taking Elzaki transform to (5) we obtain 

 

𝐸 𝐷𝐶𝐹
𝜏
𝛼𝜑 𝜇, 𝜏  + 𝐸 𝑅 𝜑 𝜇, 𝜏   + 𝑁 𝜑 𝜇, 𝜏  = 𝐸 𝑔 𝜇, 𝜏                                          (7) 

 

Now by relation (4), we get 
1

 1 − 𝛼 1 − 𝑣  
 𝐸 𝜑 𝜇, 𝜏  − 𝑣2𝜑 𝜇, 0  + 𝐸 𝑅 𝜑 𝜇, 𝜏  + 𝑁 𝜑 𝜇, 𝜏   = 𝐸 𝑔 𝜇, 𝜏         (8) 

 

by substituting (6) in (8), we get  

𝐸 𝜑 𝜇, 𝜏  = 𝑣2𝜑0 𝜇 +  1 − 𝛼 1 − 𝑣  𝐸 𝑔 𝜇, 𝜏  

−  1 − 𝛼 1 − 𝑣  𝐸 𝑅 𝜑 𝜇, 𝜏  + 𝑁 𝜑 𝜇, 𝜏                                        (9) 

 

By using inverse Elzaki transform to both side of (9) we get 

𝜑 𝜇, 𝜏 = 𝐸−1  𝑣2𝜑0 𝜇 +  1 − 𝛼 1 − 𝑣  𝐸 𝑔 𝜇, 𝜏   

− 𝐸−1   1 − 𝛼 1 − 𝑣  𝐸 𝑅 𝜑 𝜇, 𝜏  + 𝑁 𝜑 𝜇, 𝜏                              (10) 

 

let 𝑓 = 𝐸−1  𝑣2𝜑0 𝜇 +  1 − 𝛼 1 − 𝑣  𝐸 𝑔 𝜇, 𝜏    

then 

𝜑 𝜇, 𝜏 = 𝑓 − 𝐸−1   1 − 𝛼 1 − 𝑣   𝐸  𝑅 𝜑 𝜇, 𝜏     

− 𝐸−1   1 − 𝛼 1 − 𝑣   𝐸  𝑁 𝜑 𝜇, 𝜏                                              (11) 

 

Now, we represent solution as an infinite series given below  

𝜑 𝜇, 𝜏 =  𝜑𝑛 𝜇, 𝜏 

∞

𝑛=0

                                                                                                          (12) 

and the nonlinear term can be decomposed as 

𝑁 𝜑 𝜇, 𝜏  =  𝐴𝑛 𝜑0, 𝜑1 , 𝜑2 

∞

𝑛=0

                                                                                     (13) 

where 

𝐴𝑛 =
1

𝑛!

𝜕𝑛

𝜕𝜆𝑛
 𝑁   𝜆𝑖𝜑𝑖

∞

𝑖=0

  

𝜆=0

, 𝑛 = 0,1,2,…                                                             (14) 

 

By substituting (13)and (14)in (12), we have 

 𝜑𝑛 𝜇, 𝜏 

∞

𝑛=0

= 𝑓 − 𝐸−1   1 − 𝛼 1 − 𝑣  𝐸  𝑅 𝜑𝑛

∞

𝑛=0

+  𝐴𝑛

∞

𝑛=0

                        (15) 

 

On comparing both sides of the Eq.(16) we get 

𝜑0 𝜇, 𝜏 = 𝑓                                                                                  

𝜑1 𝜇, 𝜏 = −𝐸−1  1 − 𝛼 1 − 𝑣  𝐸 𝑅 𝜑0 𝜇, 𝜏 + 𝐴0    

𝜑2 𝜇, 𝜏 = −𝐸−1  1 − 𝛼 1 − 𝑣  𝐸 𝑅 𝜑1 𝜇, 𝜏 + 𝐴1    

                                                  ⋮                                                                                                 16  
 

In general, the recursive relation is given as 

𝜑𝑛+1 𝜇, 𝜏 = −𝐸−1  1 − 𝛼 1 − 𝑣   𝑅 𝜑𝑛 𝜇, 𝜏 + 𝐴𝑛                                         (17) 

 

Finally, we approximate the analytical solution (6) by truncated seriea: 
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𝜑 𝜇, 𝜏 =  𝜑𝑛 𝜇, 𝜏 

∞

𝑛=0

                                                                                                   (18) 

 

𝜑 𝜇, 𝜏 = 𝜑0 𝜇, 𝜏 + 𝜑1 𝜇, 𝜏 + 𝜑2 𝜇, 𝜏 + ⋯                                                       (19) 

 

4. Applications of (FEADM) 

Example 4.1:  We consider the following fractional KdV equation in Caputo-Fabrizio sense 

𝐷𝐶𝐹
𝜏
𝛼  𝜑 𝜇, 𝜏 − 6𝜑𝜑𝜇 + 𝜑𝜇𝜇𝜇 = 0                                                                         (20) 

Where 0 ≤ 𝛼 ≤ 1, 𝜇 ∈ ℝ, 𝜏 > 0 and subject to the initial condition  

𝜑 𝜇, 0 = 6𝜇                                                                                                              (21) 
Taking Elzaki transform to both side of (20), we get 

𝐸 𝐷𝐶𝐹
𝜏
𝛼  𝜑 𝜇, 𝜏  = 𝐸 6𝜑𝜑𝜇 − 𝜑𝜇𝜇𝜇                                                                   (22) 

 

By using the relation(9), we get 

𝐸 𝜑 𝜇, 𝜏  = 6𝜇𝑣2 +  1 − 𝛼 1 − 𝑣  𝐸 6𝜑𝜑𝜇 − 𝜑𝜇𝜇𝜇                                 (23) 

 

Taking the inverse Elzaki transform to both sides of (23) we get  

𝜑 𝜇, 𝜏 = 6𝜇 + 𝐸−1   1 − 𝛼 1 − 𝑣  𝐸  6 𝐴𝑛

∞

𝑛=0

−  𝜑𝑛 𝜇𝜇𝜇

∞

𝑛=0

         (24) 

Now 

𝐴0 = 𝜑0𝜑0𝜇  

𝐴1 = 𝜑0𝜑1𝜇 + 𝜑1𝜑0𝜇  

𝐴2 = 𝜑0𝜑2𝜇 + 𝜑2𝜑0𝜇 + 𝜑1𝜑1𝜇  

⋮             
By relation (16), we get  

 
𝜑0 𝜇, 0 = 6𝜇     

𝜑1 𝜇, 𝜏 = 𝐸−1  1 − 𝛼 1 − 𝑣  𝐸 6𝐴0 − 𝜑0𝜇𝜇𝜇    

= 𝐸−1  1 − 𝛼 1 − 𝑣  𝐸 6𝜇
3 − 0   

 = 63𝜇𝐸−1 𝑣2 − 𝛼𝑣2 + 𝛼𝑣3  
 = 63𝜇 1 − 𝛼 + 𝛼𝜏  

𝜑2 𝜇, 0 = 𝐸−1  1 − 𝛼 1 − 𝑣  𝐸 6𝐴1 − 𝜑1𝜇𝜇𝜇    

= 𝐸−1   1 − 𝛼 1 − 𝑣  𝐸  6 2 64𝜇   1 − 𝛼 + 𝛼𝜏  − 0  

 = 2 65𝜇 𝐸−1  1 − 𝛼 1 − 𝑣  𝐸 1 − 𝛼 + 𝛼𝜏   

   = 2 65𝜇 𝐸−1  1 − 𝛼 + 𝛼𝑣  𝑣2 − 𝛼𝑣2 + 𝛼𝑣3   
                                      = 2 65𝜇 𝐸−1 𝑣2 − 𝛼𝑣2 + 𝛼𝑣3 − 𝛼𝑣2 + 𝛼2𝑣2 − 𝛼2𝑣3 + 𝛼𝑣3 − 𝛼2𝑣3 + 𝛼2𝑣4  

      = 2 65𝜇 𝐸−1 𝑣2 − 2𝛼𝑣2 + 2𝛼𝑣3 + 𝛼2𝑣2 − 2𝛼2𝑣3 + 𝛼2𝑣4  

 = 2 65𝜇  1 − 2𝛼 + 2𝛼𝜏 + 𝛼2 − 2𝛼2𝜏 + 𝛼2𝜏
2

2!
  

 = 2 65𝜇   1 − 2𝛼 + 𝛼2 + 2 𝛼 − 𝛼2 𝜏 +
1

2
𝛼2𝜏2  

⋮     
Then the approximate solution of (20) is  

 

𝜑 𝜇, 𝜏 = 6𝜇 + 63𝜇 1 − 𝛼 + 𝛼𝜏 + 2 65𝜇   1 − 2𝛼 + 𝛼2 + 2 𝛼 − 𝛼2 𝜏 +
1

2
𝛼2𝜏2          (25) 

 

The equation (25) is approximate solution to the form  
 

𝜑 𝜇, 𝜏 =
6𝜇

1 − 62𝜏
 

 

for 𝛼 = 1, which is exact solution of (20) at 𝛼 = 1 
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which is the exact solution of (20). Figure 1 shows the graphs of the approximate and the exact solutions among 

different values of and when is fixed for the problem (20) in the Caputo-Fabrizio fractional operator. In Figures 

2,3,4 we plotted the graphs of the approximate solutions among different values of µ and τ  when α = 0.9,  0.95, 

1. In Figure 5 we plotted the graphs of the exact solution among different values of µ and τ. 

 
Figure 1: Plots of the exact and approximate solutions𝜑(µ , τ ) for different values of α with fixed value µ = 1   

 

 
  

Figure 2. The surface graph of the approximate solution of fractional KdV equation when                   α =0.9. 
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Figure 3. The surface graph of the approximate solution of fractional KdV equation when α =0.95. 

 

 
Figure 4.The surface graph of the approximate solution of fractional KdV equation when α =1. 
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Figure 5. The surface graph of the exact solution of fractional KdV equation. 

 

 

5. Conclusions 

In this work, we have consideredPDEs with CFFD. The EADM has been successfully used to obtain 

the analytical approximate solutions . The obtained solutions were in the form of infinite power series which can 

be written in a closed form. The examples show that the results ofEADMare in excellent agreement with the 

exact solution when 𝛼 = 1. Because of the results, we can say that the proposed technique is a powerful 

mathematical tool for solving fractional PDEs. Also, we can use them to obtain approximate (or even analytical) 

solutions to other problems. 
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