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Abstract 

Various sequences such as Sn= 
1 2

, , ,...
1 2 3

n n n 
and Tn = 

1 2 3
, , , ,

1 2 3 4

n n n n  
are studied.  Which 

terms are integers?  Is 1 a term?  How many terms are integers?   

Key terms:  divisor;integer; mod; sequence 

Let n be a positive integer such that n> 1.  Consider the sequence, Sn=
1 2

, , ,...
1 2 3

n n n 
 The sequence 

decreases, and weonly include terms ≥ 1.(If we did not terminate the sequence, then the (n+1)-st term of 

Snwould be 0.) 

Example: S11 =
11 10 9 8 7 6

, , , , ,
1 2 3 4 5 6

, all integers, except for 
7

5
.  In stark contrast, S12 =

12 11 10 9 8 7
, , , , ,

1 2 3 4 5 6

, containing no integers except for 
12

1
. 

Fact:1 is a term of Snif and only if n is odd.   

Proof:  When n is odd, the difference between the numerator, n, and denominator, 1, of the initial term is even.  

Since these differences decrease by 2 each time we subtract 1 from the numerator and add 1 to the denominator, 

the difference between the numerator and denominator remains even till it reaches 0, at which point the 

numerator equals the denominator, thereby yielding 1. When n is even, the differences between numerators and 

denominators are odd, in which case no term can equal 1. ■ 

For a given integer, m, satisfying 1 ≤m<n, when does one of the members of Sn equal m?  To answer this 

question, represent the sequence members by 
1 1 1

1
n x n x n

x x x

    
   , where x is a positive integer, 

starting with 1, that identifies the location of  the term, 
1n x

x

 
, in Sn. That is, 

1n x

x

 
 is the x-th term of 

Sn. If a sequence member equals m, there will be a corresponding x, such that 
1

1
n

m
x


  is an integer, or, 

equivalently,
1n

x


is an integer, that is, x must be a divisor of n+ 1.Noting that 

1

1

n
x

m





, we have the 

following fact. 

Fact 1:  A sequence member of Snequals the positive integer, m, if and only if m + 1|n + 1, or, equivalently,n + 1 

= 0 mod (m + 1).■ 

Examples:  When m = 1, we haven + 1 = 0 mod 2, implying that n is odd.  When m = 2, we have n + 1 = 0 mod 

3, implying that n = 2 mod 3.  When m = 3, this becomes n + 1 = 0 mod 4, implying that n = 3 mod 4, etc. 
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Remark 1:
1n x

x

 
, is an integer if and only if  x|n – x +1, that is, if and only if x| n+ 1.  Then x is not a 

divisor of n.  Note, further, that if 
1n x

x

 
can be reduced by cancelling a common divisor, d, then d does not 

divide n.  

Remark 2: Let n = p – 1, where p is an odd prime.  Then the only integer-valued term of Snis the initial term, 

1

n
, as is exemplified by S100 = 

100 99 98 97 52 51
, , , , , ,

1 2 3 4 49 50
 , wherep = 101.  

Remark 3:  Since 
1

lim 1
x

n x

x

 
   and the terms decrease monotonically, no term of Sn, if we extend it 

indefinitely, equals  –1. 

Fact2:  Consider the sequence that begins with  

Sn!–1=
! 1 ! 2 ! 3 !

, , ,..., ,...
1 2 3

n n n n n

n

   
                                    (*) 

Then if k = 1, 2, 3, …, or n, then the k-th term is 
! !

1
n k n

k k


   which is an integer.  Then for any positive 

integer, n, (*) is a sequence whose first n members are integers.  ■ 

Example:  6! – 1 = 719.  The first six members of S719 are
719 718 717 716 715 714

, , , , ,
1 2 3 4 5 6

. 

The sequence,  S101 = 
101 100 99 98 52 51

, , , , , ,
1 2 3 4 50 51

 , contains the integers,  

101 100 99 96 85 68 51
101, 50, 33, 16, 5, 2, 1

1 2 3 6 17 34 51
       . 

Let us analyze S101 be rewriting the terms as 

102 1 102 2 102 3 102 4 102 50 102 51
, , , , , ,

1 2 3 4 50 51

     
  

which become  

102 102 102 102 102 102
1, 1, 1, 1, , 1, 1

1 2 3 4 50 51
       

These terms will be integers if and only if the fractions are integers.  Recalling (see [1]) that the number of 

divisors of n is given by τ(n), the number of integers in S101 is τ(102) – 1 = 8 – 1 = 7.  We subtract 1 since the 

denominator cannot be102. More generally, we have the following. 

Fact 3:  The number of integer-valued terms in Snis τ(n + 1) – 1.■ 

Examples:  The number of integers in S100is τ(101) – 1 = 2 – 1 = 1.  The number of integers in S7is τ(8) – 1 = 4 

– 1 = 3.  The integers in S7 are 
7 6 4

, ,
1 2 4

.The number of integers in S32is τ(33) – 1 = 4 – 1 = 3.  The integers in 

S32 are 
32 30 22

, ,
1 3 11

.  Their denominators are precisely the proper divisors of 33.  

Fact 4:  Let the odd integer n = 2k – 1.  Then Sn= 
2 1 2 2 2 3 2

, , , , 1
1 2 3

k k k k k

k

   
 . Let f(k) be the 

number of terms that are not fully reduced.  Then f(k) ≥
2

k 
 
 

. ■ 
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Examples:  When n = 11, k = 6.  Then S11 = 
11 10 9 8 7 6

, , , , ,
1 2 3 4 5 6

 and 
6

3
2

 
 

 
.  Since four terms of S11, that 

is, 
10 9 8 6

, , ,
2 3 4 6

, are not fully reduced, we have f(6) ≥ 
6

2

 
 
 

.  When n = 13, k = 7.  Then S13 = 

13 12 11 10 9 8 7
, , , , , ,

1 2 3 4 5 6 7
 and 

7
4

2

 
 

 
.  Since four terms of S13, that is, 

12 10 8 7
, , ,

2 4 6 7
, are not fully 

reduced, we have f(7) ≥ 
7

2

 
 
 

.   

We turn our attention to the sequence, Tn = 
1 2 3

, , , ,
1 2 3 4

n n n n  
 , for n > 1. Letting 

1
( )

n x
f x

x

 
 , 

we have 
2 2

( )(1) ( 1)(1) 1
( )

x n x n
f x

x x

   
    , implying that Tn is a decreasing sequence.  Furthermore, 

1
lim 1
x

n x

x

 
 , so 1 is never a term of Tn.   

Example:  T7 = 
7 8 9 10 11 12

, , , , , ,
1 2 3 4 5 6

  yielding the integers, 2, 3, 4, and 7.  Since 1 is not in Tn(for any n), 

the search for integers terminates after its first six terms. 

For a given integer, m, satisfying 1 ≤ m<n, when does one of the members of Tn equal m?  To answer this 

question, represent the sequence members by 
1 1 1

1
n x n x n

x x x

    
   , where x is a positive integer.  

If a sequence member equals m, there will be a corresponding x, such that     
1

1
n

m
x


   must be an integer.  

Equivalently, 
1n

x


 must be an integer, that is, x must be a divisor of n– 1.   

Fact 5:  The number of integer-valued terms of Tn is τ(n– 1) – 1.■ 

It follows that if n – 1 is an odd prime, then the number of integer-valued terms of Tn is 1.  Moreover, noting 

that 
1

1

n
x

m





, we have the following fact. 

Fact 6:  A sequence member of Tnequals the positive integer, m, if and only if m – 1 |n– 1, or, equivalently, n– 1 

= 0 mod (m– 1).  ■ 

Fact7:  Given the positive integers a and k, where k<a, let P = a(a – 1)(a – 2)…(a – k) + a.  Then we have the 

sequence of  k + 1 integers, 
1 2 3

, , , , ,
1 2 3

P P P P P k

a a a a a k

   

   
 .  ■                    (**) 

Example:  Let a = 7 and let k = 3.  Then P = 7·6·5·4 + 7 = 847.  We have the sequence of integers 

847 846 845 844
121, 141, 169, 211

7 6 5 4
     

This sequence can be extended to include integers
843 842 841

281, 421, 841
3 2 1

   , and we obtain the 

first seven members of T841 listed backwards.  In fact, (**) may be continued to yield the first a members of TP–

a+1, listed backwards.  The terms with which we augment our sequence may or not be integers, except for the last 

term, P–a+1.   

Let 1

1 2
, ,  ...,

1 2
n

n n n n

n


  
S  and 1 .

1 2
,  ..  , ,

1 2
n

n n n n

n


  
T . Then 1 1n n S T = 

1
 

2

1 2
..

1
.

2

2

1

n n

n n

n n n n n n             
           

        

2 2 2 2 2

2 2

1 2
...

1 2

n n n n

n
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2

2 2

1 1
1 ...

2
n n

n


 


 


   

Fact:

2

1 1
6

~n n

n
 S T .  (Two functions are asymptotic (~), if their limiting ratio is 1.) 

Proof:
2

1 1 2 2

1 1
1 ...

2
n n n n

n
     









S T .  Since

2

2
1

1

6k k





 , the Fact follows. ■ 

Let n and d be a positive integers such that n> 1.  Consider the sequence, Dn,d= 

2 3
, , , ,...

1 1 1 2 1 3

n n d n d n d

d d d

  

  
 The sequence clearly decreases, and we only include terms ≥ 1. 

Examples:  D13,2 = 
13 11 9 7

, , ,
1 3 5 7

.D15,2 = 
15 13 11 9

, , ,
1 3 5 7

. D31,3 = 
31 28 25 22 19 16

, , , , ,
1 4 7 10 13 16

. 

Fact 7:Since the k-th term of  Dn,d  is 
( 1)

1 ( 1)

n k d

k d

 

 
, 1 will be a term of the sequence if and only if   

( 1)
1

1 ( 1)

n k d

k d

 


 
 ( 1) 1 ( 1)n k d k d      1 2( 1)n k d   ■ 

Example:When n = 31 and d = 3, we have 31 = 1 + 6(k – 1), so k = 6.  Indeed, the 6-th term of D31,3 = 
16

1
16

 .   

Let d = 2. Then Dn,2 = 
2 4 6

, , , ,...
1 3 5 7

n n n n  
 If n is even, 1 will not be a term of Dn,2.  Let us examine a 

few cases where nassumes the even values, 4, 6, 8, and 10. 

D4,2 = 
4

1
.  The length, l(D4,2) = 1, and the last term is 

4

1
. 

D6,2 = 
6 4

,
1 3

.  The length, l(D6,2) = 2, and the last term is 
4

3
. 

D8,2 = 
8 6

,
1 3

.  The length, l(D8,2) = 2, and the last term is 
6

3
. 

D10,2 = 
10 8 6

, ,
1 3 5

.  The length, l(D10,2) = 3, and the last term is 
6

5
. 

Fact:  Given Dn,2 where n is even, l(Dn,2) = 
4

n 
 
 

  and the last term is 

2 2
4

1
2 1

4

n

n

 
 

 

 
 

 

.  ■ 
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