Ouest Journals Journal of Research in Applied Mathematics *Volume 8 ~ Issue 9 (2022) pp: 34-37* ISSN(Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Where are the Integers?

Eric Choi, Anthony Delgado, Marty Lewinter

Received 02 Sep., 2022; Revised 13 Sep., 2022; Accepted 15 Sep., 2022 © The author(s) 2022. Published with open access at www.questjournals.org

Abstract

Various sequences such as $S_n = \frac{n}{1}, \frac{n-1}{2}, \frac{n-2}{3}, \dots$ and $T_n = \frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}, \dots$ are studied. Which terms are integers? Is 1 a term? How many terms are integers?

Key terms: divisor; integer; mod; sequence

Let *n* be a positive integer such that n > 1. Consider the sequence, $S_n = \frac{n}{1}, \frac{n-1}{2}, \frac{n-2}{3}, \dots$ The sequence decreases, and we only include terms ≥ 1 (If we did not terminate the sequence, then the (n+1)-st term of S_n would be 0.)

Example:
$$S_{11} = \frac{11}{1}, \frac{10}{2}, \frac{9}{3}, \frac{8}{4}, \frac{7}{5}, \frac{6}{6}$$
, all integers, except for $\frac{7}{5}$. In stark contrast, $S_{12} = \frac{12}{1}, \frac{11}{2}, \frac{10}{3}, \frac{9}{4}, \frac{8}{5}, \frac{7}{6}$, containing no integers except for $\frac{12}{1}$.

Fact: 1 is a term of S_n if and only if *n* is odd.

Proof: When *n* is odd, the difference between the numerator, *n*, and denominator, 1, of the initial term is even. Since these differences decrease by 2 each time we subtract 1 from the numerator and add 1 to the denominator, the difference between the numerator and denominator remains even till it reaches 0, at which point the numerator equals the denominator, thereby yielding 1. When n is even, the differences between numerators and denominators are odd, in which case no term can equal 1. ■

For a given integer, m, satisfying $1 \le m < n$, when does one of the members of S_n equal m? To answer this

question, represent the sequence members by $\frac{n-x+1}{x} = \frac{n+1-x}{x} = \frac{n+1}{x} - 1$, where x is a positive integer,

starting with 1, that identifies the location of the term, $\frac{n-x+1}{x}$, in S_n. That is, $\frac{n-x+1}{x}$ is the x-th term of

S_n. If a sequence member equals m, there will be a corresponding x, such that $m = \frac{n+1}{r} - 1$ is an integer, or,

equivalently, $\frac{n+1}{x}$ is an integer, that is, x must be a divisor of n+1. Noting that $x = \frac{n+1}{m+1}$, we have the

following fact. Fact 1: A sequence member of S_n equals the positive integer, m, if and only if m + 1|n + 1, or, equivalently, n + 1 $= 0 \mod (m+1)$.

Examples: When m = 1, we have $n + 1 = 0 \mod 2$, implying that n is odd. When m = 2, we have $n + 1 = 0 \mod 2$ 3, implying that $n = 2 \mod 3$. When m = 3, this becomes $n + 1 = 0 \mod 4$, implying that $n = 3 \mod 4$, etc.

Remark 1: $\frac{n-x+1}{x}$, is an integer if and only if x|n-x+1, that is, if and only if x|n+1. Then x is not a

divisor of *n*. Note, further, that if $\frac{n-x+1}{x}$ can be reduced by cancelling a common divisor, *d*, then *d* does not divide n.

Remark 2: Let n = p - 1, where p is an odd prime. Then the only integer-valued term of S_n is the initial term, $\frac{n}{1}$, as is exemplified by $S_{100} = \frac{100}{1}, \frac{99}{2}, \frac{98}{3}, \frac{97}{4}, \dots, \frac{52}{49}, \frac{51}{50}$, where p = 101.

Remark 3: Since $\lim_{n \to \infty} \frac{n-x+1}{n} = -1$ and the terms decrease monotonically, no term of S_n, if we extend it

indefinitely, equals -1

Fact2: Consider the sequence that begins with

$$S_{n!-1} = \frac{n!-1}{1}, \frac{n!-2}{2}, \frac{n!-3}{3}, \dots, \frac{n!-n}{n}, \dots$$
(*)

Then if k = 1, 2, 3, ..., or *n*, then the *k*-th term is $\frac{n!-k}{k} = \frac{n!}{k} - 1$ which is an integer. Then for any positive integer, n, (*) is a sequence whose first n members are integers

Example: 6! - 1 = 719. The first six members of S_{719} are $\frac{719}{1}, \frac{718}{2}, \frac{717}{3}, \frac{716}{4}, \frac{715}{5}, \frac{714}{6}$.

The sequence, $S_{101} = \frac{101}{1}, \frac{100}{2}, \frac{99}{3}, \frac{98}{4}, \dots, \frac{52}{50}, \frac{51}{51}$, contains the integers,

$$\frac{101}{1} = 101, \frac{100}{2} = 50, \frac{99}{3} = 33, \frac{96}{6} = 16, \frac{85}{17} = 5, \frac{68}{34} = 2, \frac{51}{51} = 1.$$

Let us analyze S_{101} be rewriting the terms as

$$\frac{102-1}{1}, \frac{102-2}{2}, \frac{102-3}{3}, \frac{102-4}{4}, \dots, \frac{102-50}{50}, \frac{102-51}{51}$$

which become

$$\frac{102}{1} - 1, \frac{102}{2} - 1, \frac{102}{3} - 1, \frac{102}{4} - 1, \cdots, \frac{102}{50} - 1, \frac{102}{51} - 1$$

These terms will be integers if and only if the fractions are integers. Recalling (see [1]) that the number of divisors of n is given by $\tau(n)$, the number of integers in S₁₀₁ is $\tau(102) - 1 = 8 - 1 = 7$. We subtract 1 since the denominator cannot be102. More generally, we have the following.

Fact 3: The number of integer-valued terms in S_n is $\tau(n + 1) - 1$.

Examples: The number of integers in S_{100} is $\tau(101) - 1 = 2 - 1 = 1$. The number of integers in S_7 is $\tau(8) - 1 = 4$ -1 = 3. The integers in S₇ are $\frac{7}{1}, \frac{6}{2}, \frac{4}{4}$. The number of integers in S₃₂ is $\tau(33) - 1 = 4 - 1 = 3$. The integers in S_{32} are $\frac{32}{1}, \frac{30}{3}, \frac{22}{11}$. Their denominators are precisely the proper divisors of 33.

Fact 4: Let the odd integer
$$n = 2k - 1$$
. Then $S_n = \frac{2k-1}{1}, \frac{2k-2}{2}, \frac{2k-3}{3}, \dots, \frac{2k-k}{k} = 1$. Let $f(k)$ be the number of terms that are not fully reduced. Then $f(k) \ge \left\lceil \frac{k}{2} \right\rceil$.

Examples: When n = 11, k = 6. Then $S_{11} = \frac{11}{1}$, $\frac{10}{2}$, $\frac{9}{3}$, $\frac{8}{4}$, $\frac{7}{5}$, $\frac{6}{6}$ and $\left\lceil \frac{6}{2} \right\rceil = 3$. Since four terms of S_{11} , that is, $\frac{10}{2}, \frac{9}{3}, \frac{8}{4}, \frac{6}{6}$, are not fully reduced, we have $f(6) \ge \left\lfloor \frac{6}{2} \right\rfloor$. When n = 13, k = 7. Then $S_{13} =$ $\frac{13}{1}, \frac{12}{2}, \frac{11}{3}, \frac{10}{4}, \frac{9}{5}, \frac{8}{6}, \frac{7}{7}$ and $\left[\frac{7}{2}\right] = 4$. Since four terms of S₁₃, that is, $\frac{12}{2}, \frac{10}{4}, \frac{8}{6}, \frac{7}{7}$, are not fully reduced, we have $f(7) \ge \left| \frac{7}{2} \right|$.

We turn our attention to the sequence, $T_n = \frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}, \cdots$, for n > 1. Letting $f(x) = \frac{n+x-1}{x}$,

we have $f'(x) = \frac{(x)(1) - (n + x - 1)(1)}{x^2} = -\frac{n - 1}{x^2}$, implying that T_n is a decreasing sequence. Furthermore,

 $\lim_{x \to \infty} \frac{n+x-1}{x} = 1$, so 1 is never a term of T_n.

Example: $T_7 = \frac{7}{1}, \frac{8}{2}, \frac{9}{3}, \frac{10}{4}, \frac{11}{5}, \frac{12}{6}, \cdots$ yielding the integers, 2, 3, 4, and 7. Since 1 is not in T_n (for any *n*), the search for integers terminates after its first six terms.

For a given integer, m, satisfying $1 \le m \le n$, when does one of the members of T_n equal m? To answer this question, represent the sequence members by $\frac{n+x-1}{x} = \frac{n-1+x}{x} = \frac{n-1}{x} + 1$, where x is a positive integer.

 $m = \frac{n-1}{n} + 1$ must be an integer. If a sequence member equals m, there will be a corresponding x, such that

Equivalently, $\frac{n-1}{n}$ must be an integer, that is, x must be a divisor of n-1.

Fact 5: The number of integer-valued terms of T_n is $\tau(n-1) - 1$.

It follows that if n - 1 is an odd prime, then the number of integer-valued terms of T_n is 1. Moreover, noting

that $x = \frac{n-1}{m-1}$, we have the following fact.

Fact 6: A sequence member of T_n equals the positive integer, m, if and only if m - 1 | n - 1, or, equivalently, n - 1 $= 0 \mod (m-1)$.

Fact7: Given the positive integers a and k, where k < a, let P = a(a - 1)(a - 2)...(a - k) + a. Then we have the

sequence of k + 1 integers, $\frac{P}{a}, \frac{P-1}{a-1}, \frac{P-2}{a-2}, \frac{P-3}{a-3}, \dots, \frac{P-k}{a-k}$. (**) **Example:** Let a = 7 and let k = 3. Then $P = 7 \cdot 6 \cdot 5 \cdot 4 + 7 = 847$. We have the sequence of integers $\frac{847}{a-1} = 121, \frac{846}{a-1} = 141, \frac{845}{a-1} = 169, \frac{844}{a-1} = 211$

$$\frac{347}{7} = 121, \quad \frac{846}{6} = 141, \quad \frac{843}{5} = 169, \quad \frac{844}{4} = 211$$

This sequence can be extended to include integers $\frac{843}{3} = 281$, $\frac{842}{2} = 421$, $\frac{841}{1} = 841$, and we obtain the

first seven members of T_{841} listed backwards. In fact, (**) may be continued to yield the first *a* members of T_{P} . $_{a+1}$, listed backwards. The terms with which we augment our sequence may or not be integers, except for the last term, P-a+1.

Let
$$\mathbf{S}_{n-1} = \left\langle \frac{n-1}{1}, \frac{n-2}{2}, \dots, \frac{n-n}{n} \right\rangle$$
 and $\mathbf{T}_{n-1} = \left\langle \frac{n+1}{1}, \frac{n+2}{2}, \dots, \frac{n+n}{n} \right\rangle$. Then $\mathbf{S}_{n-1} \cdot \mathbf{T}_{n-1} = \left(\frac{n-1}{1}\right) \left(\frac{n+1}{1}\right) + \left(\frac{n-2}{2}\right) \left(\frac{n+2}{2}\right) + \dots + \left(\frac{n-n}{n}\right) \left(\frac{n+n}{n}\right) = \frac{n^2-1}{1} + \frac{n^2-2^2}{2^2} + \dots + \frac{n^2-n^2}{n^2} = \frac{n^2-1}{n^2}$

*Corresponding Author: Eric Choi

$$n^{2}\left(1+\frac{1}{2^{2}}+\ldots+\frac{1}{n^{2}}\right)-n$$

Fact: $\mathbf{S}_{n-1} \cdot \mathbf{T}_{n-1} \sim \frac{\pi n^2}{6}$. (Two functions are asymptotic (~), if their limiting ratio is 1.) **Proof:** $\mathbf{S}_{n-1} \cdot \mathbf{T}_{n-1} = n^2 \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) - n$. Since $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$, the Fact follows. Let *n* and *d* be a positive integers such that n > 1. Consider the sequence, $D_{n,d} =$ $\frac{n}{1}, \frac{n-d}{1+d}, \frac{n-2d}{1+2d}, \frac{n-3d}{1+3d}, \dots$ The sequence clearly decreases, and we only include terms ≥ 1 . Examples: $D_{13,2} = \frac{13}{1}, \frac{11}{3}, \frac{9}{5}, \frac{7}{7}, D_{15,2} = \frac{15}{1}, \frac{13}{3}, \frac{11}{5}, \frac{9}{7}, D_{31,3} = \frac{31}{1}, \frac{28}{4}, \frac{25}{7}, \frac{22}{10}, \frac{19}{13}, \frac{16}{16}, \frac{$ **Fact 7:**Since the *k*-th term of $D_{n,d}$ is $\frac{n-(k-1)d}{1+(k-1)d}$, 1 will be a term of the sequence if and only if $\frac{n-(k-1)d}{1+(k-1)d} = 1 \Longrightarrow n-(k-1)d = 1+(k-1)d \Longrightarrow \boxed{n=1+2(k-1)d}$ **Example:** When n = 31 and d = 3, we have 31 = 1 + 6(k - 1), so k = 6. Indeed, the 6-th term of $D_{31,3} = \frac{16}{16} = 1$. Let d = 2. Then $D_{n,2} = \frac{n}{1}, \frac{n-2}{3}, \frac{n-4}{5}, \frac{n-6}{7}, \dots$ If *n* is even, 1 will not be a term of $D_{n,2}$. Let us examine a few cases where nassumes the even values, 4, 6, 8, and 10. $D_{4,2} = \frac{4}{1}$. The length, $l(D_{4,2}) = 1$, and the last term is $\frac{4}{1}$. $D_{6,2} = \frac{6}{1}, \frac{4}{3}$. The length, $l(D_{6,2}) = 2$, and the last term is $\frac{4}{3}$. $D_{8,2} = \frac{8}{1}, \frac{6}{3}$. The length, $l(D_{8,2}) = 2$, and the last term is $\frac{6}{3}$. $D_{10,2} = \frac{10}{1}, \frac{8}{3}, \frac{6}{5}$. The length, $l(D_{10,2}) = 3$, and the last term is $\frac{6}{5}$. **Fact:** Given $D_{n,2}$ where *n* is even, $l(D_{n,2}) = \left\lceil \frac{n}{4} \right\rceil$ and the last term is $\frac{2\left\lfloor \frac{n}{4} \right\rfloor + 2}{2\left\lfloor \frac{n-1}{4} \right\rfloor + 1}$.

Reference

[1] M. Lewinter, J. Meyer, *Elementary Number Theory with Programming*, Wiley & Sons. 2015.