Quest Journals Journal of Research in Applied Mathematics Volume 8 ~ Issue 9 (2022) pp: 34-37 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Where are the Integers?

Eric Choi, Anthony Delgado, Marty Lewinter

Received 02 Sep., 2022; Revised 13 Sep., 2022; Accepted 15 Sep., 2022 © The author(s) 2022. Published with open access at www.questjournals.org

Abstract

Various sequences such as $S_n = \frac{n}{n}, \frac{n-1}{n}, \frac{n-2}{n}, \dots$ $1'$ 2 $'$ 3 $\frac{n}{1}, \frac{n-1}{2}, \frac{n-2}{2}, \dots$ and $T_n = \frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{2}, \frac{n+3}{4},$ $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ $\frac{n}{n}$, $\frac{n+1}{n}$, $\frac{n+2}{n}$, $\frac{n+3}{n}$, \cdots are studied. Which *terms are integers? Is 1 a term? How many terms are integers?*

Key terms: divisor;integer; mod; sequence

Let *n* be a positive integer such that $n > 1$. Consider the sequence, $S_n = \frac{n}{1}, \frac{n-1}{2}, \frac{n-2}{2}, \dots$ $1'$ 2 $'$ 3 $\frac{n}{n}$, $\frac{n-1}{n}$, $\frac{n-2}{n}$,... The sequence decreases, and weonly include terms ≥ 1 . (If we did not terminate the sequence, then the $(n+1)$ -st term of S*n*would be 0.)

Example: S₁₁ =
$$
\frac{11}{1}
$$
, $\frac{10}{2}$, $\frac{9}{3}$, $\frac{8}{4}$, $\frac{7}{5}$, $\frac{6}{6}$, all integers, except for $\frac{7}{5}$. In stark contrast, S₁₂ = $\frac{12}{1}$, $\frac{11}{2}$, $\frac{10}{3}$, $\frac{9}{4}$, $\frac{8}{5}$, $\frac{7}{6}$, containing no integers except for $\frac{12}{1}$.

Fact:1 is a term of S*n*if and only if *n* is odd.

Proof: When *n* is odd, the difference between the numerator, *n*, and denominator, 1, of the initial term is even. Since these differences decrease by 2 each time we subtract 1 from the numerator and add 1 to the denominator, the difference between the numerator and denominator remains even till it reaches 0, at which point the numerator equals the denominator, thereby yielding 1. When *n* is even, the differences between numerators and denominators are odd, in which case no term can equal 1. ■

For a given integer, *m*, satisfying 1 ≤*m*<*n*, when does one of the members of S*ⁿ* equal *m*? To answer this For a given integer, *m*, satisfying $1 \leq m < n$, when does one of the members of question, represent the sequence members by $\frac{n-x+1}{n} = \frac{n+1-x}{n} = \frac{n+1}{n} - 1$ en does one of the members of S_n equal m? To answer this
 $\frac{-x+1}{-x} = \frac{n+1-x}{-x} = \frac{n+1}{-x} - 1$, where x is a positive integer,

 $\frac{x+1}{x} = \frac{n+1-x}{x} = \frac{n+1}{x}$

starting with 1, that identifies the location of the term, $\frac{n - x + 1}{x - x}$ *x* $-x+$, in S*n*. That is, $n - x + 1$ *x* $\frac{-x+1}{x}$ is the *x*-th term of

S*n*. If a sequence member equals *m*, there will be a corresponding *x*, such that $m = \frac{n+1}{n-1}$ *x* $=\frac{n+1}{n-1}$ is an integer, or,

equivalently, $\frac{n+1}{n+1}$ *x* $\frac{1}{x+1}$ is an integer, that is, *x* must be a divisor of *n*+ 1. Noting that $x = \frac{n+1}{x}$ 1 $x = \frac{n}{2}$ *m* $=\frac{n+1}{n}$ $\frac{1}{x+1}$, we have the

following fact.

Fact 1: A sequence member of S_n equals the positive integer, *m*, if and only if $m + 1|n + 1$, or, equivalently, $n + 1$ $= 0 \mod(m + 1)$.

Examples: When $m = 1$, we have $n + 1 = 0$ mod 2, implying that *n* is odd. When $m = 2$, we have $n + 1 = 0$ mod 3, implying that $n = 2$ mod 3. When $m = 3$, this becomes $n + 1 = 0$ mod 4, implying that $n = 3$ mod 4, etc.

Remark 1: $\frac{n-x+1}{n}$ *x* $\frac{-x+1}{-x+1}$, is an integer if and only if $x|n-x+1$, that is, if and only if $x|n+1$. Then x is not a

divisor of *n*. Note, further, that if $\frac{n - x + 1}{n}$ *x* $\frac{-x+1}{x}$ can be reduced by cancelling a common divisor, *d*, then *d* does not divide *n*.

Remark 2: Let $n = p - 1$, where p is an odd prime. Then the only integer-valued term of S_n is the initial term, 1 *n* as is exemplified by $S_{100} = \frac{100}{1}, \frac{99}{2}, \frac{98}{2}, \frac{97}{4}, \dots, \frac{52}{40}, \frac{51}{50}$ $\frac{30}{1}, \frac{3}{2}, \frac{3}{3}, \frac{3}{4}, \cdots, \frac{32}{49}, \frac{31}{50}$, where *p* = 101.

Remark 3: Since $\lim_{x\to\infty} \frac{n-x+1}{x} = -1$ $n - x$ $\rightarrow \infty$ *x* $\frac{-x+1}{-x-1} = -1$ and the terms decrease monotonically, no term of S_n, if we extend it

indefinitely, equals -1

Fact2: Consider the sequence that begins with
\n
$$
S_{n!-1} = \frac{n! - 1}{1}, \frac{n! - 2}{2}, \frac{n! - 3}{3}, ..., \frac{n! - n}{n}, ...
$$
\n(*)

Then if $k = 1, 2, 3, ...,$ or *n*, then the *k*-th term is $\frac{n! - k}{k} = \frac{n!}{k} - 1$ *k k* $\frac{-k}{k} = \frac{n!}{k} - 1$ which is an integer. Then for any positive integer, n , (*) is a sequence whose first n members are integers.

integer, *n*, (*) is a sequence whose first *n* members are integers. \blacksquare
Example: 6! – 1 = 719. The first six members of S₇₁₉ are $\frac{719}{1}$, $\frac{718}{2}$, $\frac{717}{3}$, $\frac{716}{4}$, $\frac{715}{5}$, $\frac{714}{6}$ $\frac{19}{1}, \frac{718}{2}, \frac{717}{3}, \frac{710}{4}, \frac{715}{5}, \frac{714}{6}$

The sequence, $S_{101} = \frac{101}{1}, \frac{100}{2}, \frac{99}{2}, \frac{98}{4}, \dots, \frac{52}{50}, \frac{51}{51}$

$$
= \frac{101}{1}, \frac{100}{2}, \frac{99}{3}, \frac{98}{4}, \dots, \frac{52}{50}, \frac{51}{51}, \text{ contains the integers,}
$$

$$
\frac{101}{1} = 101, \frac{100}{2} = 50, \frac{99}{3} = 33, \frac{96}{6} = 16, \frac{85}{17} = 5, \frac{68}{34} = 2, \frac{51}{51} = 1.
$$

Let us analyze S_{101} be rewriting the terms as

$$
\frac{2}{1} \times 3 = 3
$$
\n
$$
\frac{1}{7} \times 34 = 31
$$
\n
$$
\frac{102 - 1}{1}, \frac{102 - 2}{2}, \frac{102 - 3}{3}, \frac{102 - 4}{4}, \dots, \frac{102 - 50}{50}, \frac{102 - 51}{51}
$$

which become

$$
\frac{102}{1} - 1, \frac{102}{2} - 1, \frac{102}{3} - 1, \frac{102}{4} - 1, \dots, \frac{102}{50} - 1, \frac{102}{51} - 1
$$

These terms will be integers if and only if the fractions are integers. Recalling (see [1]) that the number of divisors of *n* is given by $\tau(n)$, the number of integers in S_{101} is $\tau(102) - 1 = 8 - 1 = 7$. We subtract 1 since the denominator cannot be102. More generally, we have the following.

Fact 3: The number of integer-valued terms in S_n is $\tau(n + 1) - 1$.

Examples: The number of integers in S_{100} is $\tau(101) - 1 = 2 - 1 = 1$. The number of integers in S_7 is $\tau(8) - 1 = 4$ $-1 = 3$. The integers in S₇ are $\frac{7}{4}$, $\frac{6}{3}$, $\frac{4}{4}$ $\frac{1}{1}$, $\frac{3}{2}$, $\frac{4}{4}$. The number of integers in S₃₂is $\tau(33) - 1 = 4 - 1 = 3$. The integers in

 S_{32} are $\frac{32}{1}$, $\frac{30}{2}$, $\frac{22}{11}$ $\frac{25}{1}, \frac{55}{3}, \frac{22}{11}$. Their denominators are precisely the proper divisors of 33.

Fact 4: Let the odd integer $n = 2k - 1$. Then $S_n = \frac{2k-1}{1}, \frac{2k-2}{2}, \frac{2k-3}{3}, \cdots, \frac{2k-k}{k} = 1$ $\frac{z-1}{1}, \frac{2k-2}{2}, \frac{2k-1}{3}$ $\frac{k-1}{k+2}$ $\frac{2k-2}{k+3}$... $\frac{2k-k}{k+2}$ *k* $\frac{-1}{2}, \frac{2k-2}{2}, \frac{2k-3}{2}, \dots, \frac{2k-k}{2} = 1$. Let $f(k)$ be the number of terms that are not fully reduced. Then $f(k) \geq$ 2 $\lceil k \rceil$ $\left|\frac{n}{2}\right|$.■

Examples: When $n = 11$, $k = 6$. Then $S_{11} = \frac{11}{1}, \frac{10}{2}, \frac{9}{2}, \frac{8}{4}, \frac{7}{5}, \frac{6}{6}$ $\frac{11}{1}, \frac{10}{2}, \frac{9}{3}, \frac{8}{4}, \frac{7}{5}, \frac{6}{6}$ and $\left| \frac{6}{2} \right| = 3$ 2 $\left|\frac{6}{2}\right|$ = 3. Since four terms of S₁₁, that

is, $\frac{10}{2}, \frac{9}{2}, \frac{8}{4}, \frac{6}{5}$ $\frac{10}{2}, \frac{9}{3}, \frac{8}{4}, \frac{6}{6}$, are not fully reduced, we have $f(6) \ge \left[\frac{6}{2}\right]$ 2 $|6|$ $\left|\frac{6}{2}\right|$. When *n* = 13, *k* = 7. Then S₁₃ = $\frac{13}{1}, \frac{12}{2}, \frac{11}{3}, \frac{10}{4}, \frac{9}{5}, \frac{8}{5}, \frac{7}{7}$ $\left|\frac{13}{1}, \frac{12}{2}, \frac{11}{3}, \frac{10}{4}, \frac{9}{5}, \frac{8}{6}, \frac{7}{7} \right|$ and $\left|\frac{7}{2}\right| = 4$ 2 $\left|\frac{7}{2}\right|$ = 4. Since four terms of S₁₃, that is, $\frac{12}{2}, \frac{10}{4}, \frac{8}{5}, \frac{7}{5}$ $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{6}$, $\frac{1}{7}$, are not fully reduced, we have $f(7) \geq \left\lceil \frac{7}{7} \right\rceil$ 2 $\mid 7 \mid$ $\left|\frac{1}{2}\right|$.

We turn our attention to the sequence, $T_n = \frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}$, $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ $\frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}, \cdots$, for $n > 1$. Letting $f(x) = \frac{n+x-1}{3}$ *x* $=\frac{n+x-1}{n},$ we have $f'(x) = \frac{(x)(1) - (n + x - 1)(1)}{x^2} = -\frac{n-1}{x^2}$ $f(x) = \frac{(x)(1) - (n + x - 1)(1)}{x^2} = -\frac{n-1}{x^2}$, implying that T_n is a decreasing sequence. Furthermore,

 $\frac{n+x-1}{x^2} = -\frac{n-x^2}{x^2}$

 $\lim_{x\to\infty}\frac{n+x-1}{x}=1$ $n + x$ $\rightarrow \infty$ *x* $\frac{+x-1}{+x-1} = 1$, so 1 is never a term of T_n.

Example: $T_7 = \frac{7}{1}, \frac{8}{2}, \frac{9}{2}, \frac{10}{4}, \frac{11}{5}, \frac{12}{5}$ $\frac{1}{1}, \frac{5}{2}, \frac{5}{3}, \frac{10}{4}, \frac{11}{5}, \frac{12}{6}, \cdots$ yielding the integers, 2, 3, 4, and 7. Since 1 is not in T_n(for any *n*), the search for integers terminates after its first six terms.

For a given integer, *m*, satisfying $1 \leq m \leq n$, when does one of the members of T_n equal *m*? To answer this For a given integer, *m*, satisfying $1 \le m < n$, when does one of the members of question, represent the sequence members by $\frac{n+x-1}{n} = \frac{n-1+x}{n} = \frac{n-1}{n} + 1$ $\frac{x}{x} = \frac{n-1+x}{x} = \frac{n}{x}$ len does one of the members of T_n equal *m*? To answer this $\frac{m+1}{n} = \frac{n-1+x}{n} = \frac{n-1}{n} + 1$, where *x* is a positive integer.

If a sequence member equals m , there will be a corresponding x , such that $m = \frac{n-1}{n+1}$ *x* $=\frac{n-1}{n+1}+1$ must be an integer.

Equivalently, $\frac{n-1}{n}$ *x* $\frac{-1}{x}$ must be an integer, that is, *x* must be a divisor of *n*-1.

Fact 5: The number of integer-valued terms of T_n is $\tau(n-1) - 1$.

It follows that if $n-1$ is an odd prime, then the number of integer-valued terms of T_n is 1. Moreover, noting that $x = \frac{n-1}{1}$ $x = \frac{n}{2}$ $=\frac{n-1}{n}$

1 *m* $\frac{-1}{-1}$, we have the following fact.

Fact 6: A sequence member of T_n equals the positive integer, *m*, if and only if $m-1$ $|n-1$, or, equivalently, $n-1$ $= 0 \mod (m-1)$. ■

Fact7: Given the positive integers *a* and *k*, where $k \le a$, let $P = a(a - 1)(a - 2)...(a - k) + a$. Then we have the **Fact7:** Given the positive integers a and k, where k<a, let
sequence of $k + 1$ *integers*, $\frac{P}{q}, \frac{P-1}{q}, \frac{P-2}{q}, \frac{P-3}{q}, \dots$, ttegers *a* and *k*, where $k < a$, let $P = a$
 $\frac{P}{P} = \frac{P-1}{P-2} = \frac{P-3}{P-3}$... *a* and *k*, where $k < a$, let $P = a(a -$
 $\frac{-1}{P-2} P - 3 \frac{P-k}{P-k}$

 $\frac{1}{1}, \frac{P-2}{a-2}, \frac{P-3}{a-3}$ $\frac{P}{a}$, $\frac{P-1}{a-1}$, $\frac{P-2}{a-2}$, $\frac{P-3}{a-3}$, ..., $\frac{P-k}{a-k}$ $\frac{-1}{-1}, \frac{P-2}{a-2}, \frac{P-3}{a-3}, \cdots, \frac{P-k}{a-k}$. **Example:** Let $a = 7$ and let $k = 3$. Then $P = 7$. $4 + 7 = 847$. We have the sequence of integers

$$
a \quad a-1 \quad a-2 \quad a-3 \qquad a-k
$$

7 and let $k = 3$. Then $P = 7.6.5.4 + 7 = 847$. We have the sequence of

$$
\frac{847}{7} = 121, \quad \frac{846}{6} = 141, \quad \frac{845}{5} = 169, \quad \frac{844}{4} = 211
$$

This sequence can be extended to include integers $\frac{843}{3} = 281$, $\frac{842}{2} = 421$, $\frac{841}{1} = 841$ $rac{43}{3} = 281$, $rac{842}{2} = 421$, $rac{84}{1}$ $= 281, \frac{842}{2} = 421, \frac{841}{1} = 841$, and we obtain the

first seven members of T₈₄₁ listed backwards. In fact, (**) may be continued to yield the first *a* members of T_P *^a*+1, listed backwards. The terms with which we augment our sequence may or not be integers, except for the last term, *P–a*+1.

Let
$$
S_{n-1} = \left\langle \frac{n-1}{1}, \frac{n-2}{2}, \ldots, \frac{n-n}{n} \right\rangle
$$
 and $T_{n-1} = \left\langle \frac{n+1}{1}, \frac{n+2}{2}, \ldots, \frac{n+n}{n} \right\rangle$. Then $S_{n-1} \cdot T_{n-1} =$

\n
$$
\left(\frac{n-1}{1} \right) \left(\frac{n+1}{1} \right) + \left(\frac{n-2}{2} \right) \left(\frac{n+2}{2} \right) + \ldots + \left(\frac{n-n}{n} \right) \left(\frac{n+n}{n} \right) = \frac{n^2 - 1}{1} + \frac{n^2 - 2^2}{2^2} + \ldots + \frac{n^2 - n^2}{n^2} =
$$

*Corresponding Author: Eric Choi 36 | Page

$$
n^2 \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) - n
$$

Fact: 2 $\mathbf{S}_{n-1} \cdot \mathbf{T}_{n-1} \sim \frac{\pi n^2}{6}$. (Two functions are asymptotic (~), if their limiting ratio is 1.) **Proof:** $S_{n-1} \cdot T_{n-1} = n^2 \left(1 + \frac{1}{2^2} + ... + \frac{1}{n^2} \right) - n$ $\overline{\mathcal{L}}$ $\Bigg)$ $\mathbf{S}_{n-1} \cdot \mathbf{T}_{n-1} = n^2 \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) - n$. Since 2 $\frac{1}{1}k^2$ 1 $\sum_{k=1} k^2$ 6 $\sum_{n=1}^{\infty} 1$ π $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi}{6}$, the Fact follows. Let *n* and *d* be a positive integers such that $n > 1$. Consider the sequence, $D_{n,d} =$ $\frac{n-1}{2}, \frac{n-2d}{1+2}, \frac{n-3d}{1+3}, \dots$ $\frac{n}{1}, \frac{n}{1+d}, \frac{n}{1+2d}, \frac{n}{1+3}$ Let *n* and *a* be a
 $n \cdot n - d \cdot n - 2d \cdot n - 3d$ $\frac{a}{d}$, $\frac{n}{1+2d}$, $\frac{n}{1+3d}$ $\begin{array}{ccc} n & \text{and} & d & \text{be} & a \\ -d & n-2d & n-3d \end{array}$ $\frac{a}{x+d}$, $\frac{b}{1+2d}$, $\frac{c}{1+3d}$,... The sequence clearly decreases, and we only include terms ≥ 1 . **Examples:** $D_{13,2} =$ $\frac{13}{1}, \frac{11}{2}, \frac{9}{2}, \frac{7}{2}$ $\frac{1}{1}$, $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$. $D_{15,2}$ = $\frac{15}{1}, \frac{13}{1}, \frac{11}{1}, \frac{9}{1}$ $\frac{15}{1}, \frac{13}{3}, \frac{11}{5}, \frac{9}{7}$. $D_{31,3} = \frac{31}{1}, \frac{28}{4}, \frac{25}{7}, \frac{22}{10}, \frac{19}{13}, \frac{16}{16}$ $\frac{1}{1}$, $\frac{1}{4}$, $\frac{1}{7}$, $\frac{1}{10}$, $\frac{1}{13}$, $\frac{1}{16}$. **Fact 7:**Since the *k*-th term of $D_{n,d}$ is $(k-1)$ $1 + (k-1)$ $n - (k - 1)d$ $(k-1)d$ $-(k-1)$ $\frac{(n-2)(n-1)}{(k-1)d}$, 1 will be a term of the sequence if and only if $\frac{(k-1)d}{(1+i)} = 1$ $1+(k-1)$ $n - (k - 1)d$ $(k-1)d$ $\frac{-(k-1)d}{+(k-1)d} = 1 \implies n - (k-1)d = 1 + (k-1)d \implies \boxed{n=1+2(k-1)d}$ ■ **Example:**When $n = 31$ and $d = 3$, we have $31 = 1 + 6(k - 1)$, so $k = 6$. Indeed, the 6-th term of $D_{31,3} = \frac{16}{16} = 1$ 16 $=1$. Let $d = 2$. Then $D_{n,2} = \frac{n}{1}, \frac{n-2}{2}, \frac{n-4}{5}, \frac{n-6}{7}, \dots$ $\frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}$ $\frac{n}{1}$, $\frac{n-2}{2}$, $\frac{n-4}{5}$, $\frac{n-6}{7}$, ... If *n* is even, 1 will not be a term of D_{*n*,2}. Let us examine a few cases where *n*assumes the even values, 4, 6, 8, and 10. $D_{4,2} =$ 4 $\frac{1}{1}$. The length, $l(D_{4,2}) = 1$, and the last term is 4 $\frac{1}{1}$. $D_{6,2} =$ $\frac{6}{1}, \frac{4}{3}$ $\frac{1}{1}$, $\frac{1}{3}$. The length, $l(D_{6,2}) = 2$, and the last term is 4 $\frac{1}{3}$. $D_{8,2} =$ $\frac{8}{1}$, $\frac{6}{1}$ $\frac{1}{1}$, $\frac{1}{3}$. The length, $l(D_{8,2}) = 2$, and the last term is 6 3 . $D_{10,2} =$ $\frac{10}{1}, \frac{8}{3}, \frac{6}{5}$ $\frac{1}{1}$, $\frac{1}{3}$, $\frac{1}{5}$. The length, $l(D_{10,2}) = 3$, and the last term is 6 5 . **Fact:** Given $D_{n,2}$ where *n* is even, $l(D_{n,2}) = \frac{1}{4}$ *n* $\left|\frac{1}{4}\right|$ and the last term is $2\frac{1}{2}$ + 2 4 $\left| \frac{n-1}{1} \right| + 1$ 4 *n n* $\left\lfloor \frac{n}{4} \right\rfloor +$ $\left\lfloor \frac{n-1}{4} \right\rfloor +$. ■

Reference

[1] M. Lewinter, J. Meyer, *Elementary Number Theory with Programming*, Wiley & Sons. 2015.