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Abstract 

The n-th triangular number, tn, equals 1 + 2 + 3 + ... + n.Gauss showed that every positive integer can be 

expressed as the sum of three or fewer triangular numbers. Positive integers that are sums of two triangular 

numbers are characterized. Numbers that can be written in two different ways as the sum of two triangular 

numbers are considered. Additional known properties are presented. 
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I. Introduction 
The n-th triangular number,tn, equals 1 + 2 + 3 + ... + n. See [1,2]. The closed form is given by  
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Triangular numbers were of interest to ancient Greek mathematicians such as Pythagoras and 

Euclid.There are many beautiful identities involving them, requiring nothing more than high school algebra.  

Triangular numbers can be depicted as triangular arrays of dots.   

 A given number m is triangular if and only if 1 + 8m is a perfect square. Furthermore, the greatest 

triangular number less than or equal to m is
1 1 8
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The identity
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will be useful. It follows directly from (1), that is, 
2

2

1
2

2

2

)1(

2

)1(
n

nnnnn
tt nn 





  .  The 

geometric proof cuts a square array of n
2
 dots with a line just over the main diagonal of dots, thereby 

partitioning the dots into two right triangular configurations that represent the two consecutive triangular 

numbers, tn and tn–1. 
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Contrast this with squares:
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Theorem:Sincetn –tn–1 =n and tn + tn–1 = n
2
, we equate the products of the left and right sides of these two 

equations to obtain    
2 2 3

1–  n nt t n    ■ 

There are infinitely many triangular numbers such as t8 = 36 that are squares. The sum of the 

reciprocals of the triangular numbers is 2.  

Theorem:Since
1 2 3

2 3 4 1
, , , ,
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 , we have, using the Hockey Stick 

Theorem for Pascal’s Triangle,  
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Theorem: Given a sphere with radius, r, let there be a partition of the diameter into 1n  segments, each with 

length 
2
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. Then the volume, V,is given by  
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, where r  is the radius of the sphere.  By the previous Theorem, 
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Theorem:The n-th square and the n-th oblong number add up to a triangular number.  

Proof:n
2
 + n(n + 1) = 2n

2
 + n = n(2n + 1) = 

(2 )(2 1)
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Compare this with the average of the first n squares. 
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Theorem: 
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Proof: 

2 2 2

2 1

1 2 1 ( 1)(2 1) (2 1)( 1) 1 (2 1)(2 2) 1

6 6 6 2 6
n

n n n n n n n n
t

n n


        
      


■ 

Theorem: 
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Proof:  This follows at once from the formula,  
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Theorem:tn = (2n – 1) + (2n – 5) + (2n – 9) + (2n – 13) + … + [2 + (–1)
n
].  The sum terminates with a 1 if n is 

odd, or with a 3, if n is even.■ 

Lemma:t2m< 4tm<t2m+1 

Proof: 4m
2
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Theorem:  The equation, tn = 4tm, has no positive solution. 

Proof:  By the Lemma, 4tm is trapped between two consecutive triangular numbers.   ■ 

Alternate Proof: tn = 4tm n(n + 1) = 4m(m + 1)    n
2
 + n = 4(m

2
 + m)  

4n
2
 + 4n = 4(4m

2
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2
 + 4n + 1 = 4(4m

2
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2
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2
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2
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2
 = 3     

[2(2m + 1)]
2
 = 4 and  (2n + 1)

2
 = 1    m = n = 0     tn = 4tm, has no positive solution. ■ 

Theorem:  The equation, tn = 9tm, has no positive solution.   

Proof:  Observe that 9t1 = t4 – 1,  9t2 = t7 – 1,  9t3 = t10 – 1,  9t4 = t13 – 1, …., that is, 9tmis 1 less than t3m+1.  The 

Theorem follows at once.  ■ 

Lemma:  Given the positive integer k,  the Diophantine equation, a
2
 – b

2
 = k, has at most finitely many 

solutions. 

Proof:  Clearly, a>b.  Then a
2
 – b

2
 = k  (a – b)(a + b) = k a+b≤k a≤kandb≤k.  ■ 

Theorem:For eachk = 10, 14, 18, … , the equation, tn = k
2
tm, such that n>m> 1, has (a) at least one solution, and 

(b) at most finitely many solutions. 

Proof of (a):The equation, tn = k
2
tm,  n>m> 1 and k> 1, has solutions parametrized by   

n = 4(t +1)(t + 2)k = 2(2t + 3)    m = t + 1t> 0 

Proof of (b): tn = k
2
tm n(n + 1) = k

2
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2
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2
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2
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4n
2
 + 4n = k

2
(4m

2
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2
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2
(2m + 1)

2
 – (k

2
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2
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2
 = (k

2
 – 1).  By the preceding  Lemma, we have 

at most finitely many solutions to tn = k
2
tm.  ■ 

■The following chart yields the first four solutions: 

t k n m 

1 10 24 2 

2 14 48 3 

3 18 80 4 

4 22 120 5 

By contrast, we have 

Theorem:  The equation, tn = 2tm, has infinitely many positive solutions.   

Proof: n(n + 1) = 2m(m + 1)    n
2
 + n = 2(m

2
 + m)     

4n
2
 + 4n = 2(4m

2
 + 4m)       4n

2
 + 4n + 1 = 2(4m

2
 + 4m + 1) – 1  

(2n + 1)
2
 = 2(2m + 1)

2
 – 1.  Letting x = 2n + 1  andy = 2m + 1, this last equation becomes 

x
2
 – 2y

2
 = –1  

This is a Pell equation that has infinitely many solutions, (x, y), such as (7, 5) and (41, 19).  Infinitely many 

solutions may be found from the following table in which x1 = y1 = 1, and 

xn+1 = xn + 2ynyn+1 = xn + yn 

The solutions to xn
2
 – 2yn

2
 = –1  are given for all odd values of n.  Here are the first five rows of the chart.  Note, 

however, that x1 = y1 = 1  implies that n = m = 0, which doesn’t yield a positive solution.  

n xn yn 

1 1 1 

2 3 2 

3 7 5 

4 17 12 

5 41 29 

■ 

Let’s obtain the generating function of the triangular numbers, tn.  That is, we wish to find a function, f(x) with 

Maclaurin series:  (t0 = 0, so we omit the constant term.) 

f(x) = t1x + t2x
2
 + t3x

3
 + t4x

4
 + t5x

5
 + … = x + 3x

2
 + 6x

3
 + 10x

4
 + 15x

5
 + … 

Recalling that the triangular number 
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Then
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Differentiating again yields
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Recalling that ( ) ( )
2
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f x x , we finally have  
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We obtain an elegant consequence of the above equation by first letting x = 
1

2
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Now recalling that 
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Theorem: The sequence of triangular numbers, mod 4,is periodic, because the increments are periodic.   
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We will use a chart. The first column will list the triangular numbers, tn, starting with the unconventional t0 = 0.  

The second column will list them mod 4, and the third column will list the increments from the previous entries 

mod 4.  (The increments, Δ, are 0, 1, 2, and 3.  They repeat periodically.) 

(mod 4) (mod 4)

0 0

1

3 3 2

6 2 3

10 2 0

15 3 1

21 1 2

28 0 3

36 0 0

n nt t 

1 1

 

                                                                    45            1                  1 

The entries in the rows that begin with entries 1 and 45 have identical 1’s, thereby establishing periodicity.  The 

period length is 8. ■ 

Theorem:  The product of two consecutive triangular numbers is never a square.  

Proof:  By contradiction.  Suppose tn–1tn = m
2
.  This becomes 

2( 1) ( 1)

2 2

n n n n
m

   
  

  

  2 2 21 4n n m   

which is impossible since n
2
 – 1 isn’t a square, while n

2
 and 4m

2
 are squares.  ■ 

On the other hand, the product of the three consecutive triangular numbers, t3×t4×t5 =6×10×15 = 900 = 30
2
, a 

square.   

II.A theorem of Gauss 
The great mathematician, Gauss, proved that every positive integer can be expressed as the sum of 

three or fewer triangular numbers.  See [1,2]. 

 It is obvious that infinitely many numbers are sums of two triangular numbers. Simply add any two 

triangular numbers.  In fact, the n-th oblong number, On = n(n + 1) = tn+ tn. 

Theorem: n
2
– (n– 1)

2
 + (n– 2)

2
–  (n– 3)

2 
+ ... + (–1)

n+1
 = tn                             (3) 

Proof:It is a direct result of (2). We have 
 

n
2
– (n– 1)

2
 + (n– 2)

2
– ... (–1)

n+1
 = (tn + tn–1)– (tn–1 + tn–2) + (tn–2 + tn–3) – ... +  (–1)

n+1
= tn■ 

III. The correspondence of two problems 
Are there any numbers which may be written in more than one way as the sum of two triangular 

numbers?  We answer this question by employing consecutive partitions.  

 From the consecutive partition 4 + 5 + 6 = 15, we add 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 to both sides, 

yielding 

4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 = 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 

or, t14t3 = t15t6. This becomes  

t14 + t6 = t15 + t3 
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 This says that 126 can be written in two ways as the sum of two triangular numbers, that is, 105 + 21 = 

120 + 6.  

 In the spirit of the above example, consider the two consecutive partitions of equation (4) below, the 

one on the left having length 9 and the other of length 6.  

3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = 8 + 9 + 10 + 11 + 12 + 13          (4) 

Now, for any k = 1, 2, 3, …, we add 2kto each term on the left and add 3k to each term on the right. 

(This adds a total of 18k to both side.)  We obtain the equality of two new consecutive partitions, given by 

(2k + 3) + (2k + 4) + … + (2k + 11) = (3k + 8) + (3k + 9) + … + (3k + 13)       (5) 

This is equivalent to t2k+11t2k+2 = t3k+13t3k+7or  

  t2k+11 + t3k+7 = t3k+13 + t2k+2   (6) 

thereby yielding an infinite class of numbers that can be written as the sum of two triangular numbers in two 

different ways.  Moreover, equations (5) and (6) imply each other, thereby establishing a correspondence 

between two seemingly unrelated problems.  We conclude that if N has two consecutive partitions, then some 

other number, M, can be written in two different ways as the sum of two triangular numbers. 

 

IV. Main Result 

We have already seen (equation 2) that if n is a square, it is the sum of two (consecutive) triangular 

numbers.  We have also seen that if n is an oblong number, it is the sum of two (equal) triangular numbers.  We 

will, therefore, consider numbers of the form tn + tm, where |n – m| ≥ 2. There are two cases: 

Case 1: m and n have opposite parity.  WLOG, assume n>m.  Then 

tn + tm= (tn + tn–1) – ( tn–1 + tn–2) + (tn–2 + tn–3) – ... +  (tm+1 + tm) =                                                                                                                                              

  n
2
– (n– 1)

2
 + (n– 2)

2
– (n– 3)

2 
+ ... + (m + 1)

2
   (7) 

Note that the length (number of terms) of each side is n – m, which is odd. 

Case 2:m and n have the same parity.  Once again, we assume n>m.  This case is more complicated since an 

attempt to use equation (7) will result in the final term of the left side being negative. Then the sum telescopes to 

tn–tm, and not tn + tm. To rectify this situation, we make the last term (tm+1–tm) instead of (tm+1 + tm).  So 

tn + tm = (tn + tn-1) – ( tn-1 + tn-2) + (tn-2 + tn-3) – ... –  (tm+1–tm) = 

n
2
– (n– 1)

2
 + (n– 2)

2
–  (n– 3)

2 
+ ... + (m + 2)

2 
– (m +1).                  (8) 

The length (number of terms) of each side is even. We have proven the following theorem. 

Theorem: A given positive integer, n, is the sum of two triangular numbers if and only if either 

(1) n is squareor oblong, 

(2) n is a descending, alternating sum of consecutive squares of odd length, or 

(3) n is a descending, alternating sum of consecutive squares of even length, such that the first term is positive 

and the absolute value of the last (negative) term isone less than the square root of the previous term.  ■ 

 

This chart displays all triangular partitions of length two for the 59 numbers up to 100 with this property. 

 

2 = 1 + 1 

4 = 1 + 3 

6 = 3 + 3 

7 = 1 + 6 

9 = 3 + 6 

11 = 1 + 10 

12 = 6 + 6 

13 = 3 + 10 

16 = 1 + 15, 6 + 10 

18 = 3 + 15 

20 = 10 + 10 

21 = 6 + 15 

22 = 1 + 21 

24 = 3 + 21 

25 = 10 + 15 

 

27 = 6 + 21 

29 = 1 + 28 

30 = 15 + 15 

31 = 3 + 28, 10 + 21 

34 = 6 + 28 

36 = 15 + 21 

37 = 1 + 36 

38 = 10 + 28 

39 = 3 + 36 

42 = 6 + 36, 21 + 21 

43 = 15 + 28 

46 = 1 + 45, 10 + 36 

48 = 3 + 45 

49 = 21 + 28 

51 = 6 + 45, 15 + 36 

55 = 10 + 45 

56 = 1 + 55, 28 + 28 

57 = 21 + 36 

58 = 3 + 55 

60 = 15 + 45 

61 = 6 + 55 

64 = 28 + 36 

65 = 10 + 55 

66 = 21 + 45 

67 = 1 + 66 

69 = 3 + 66 

70 = 15 + 55 

72 = 6 + 66, 36 + 36 

73 = 28 + 45 

76 = 10 + 66, 21 + 55 

 

79 = 1 + 78 

81 = 3 + 78, 15 + 66, 36 + 45 

83 = 28 + 55 

84 = 6 + 78 

87 = 21 + 66 

88 = 10 + 78 

90 = 45 + 45 

91 = 91, 36 + 55 

92 = 1 + 91 

93 = 15 + 78 

94 = 3 + 91 = 28 + 66 

97 = 6 + 91 

99 = 21 + 78 

100 = 45 + 55 
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