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ABSTRACT: Let G = (V,E) be a simple graph. A set of vertices S of a graph G is geodetic, if every vertex of G
lies on a shortest path between two vertices in S. The geodetic number of G is the minimum cardinality of all
geodetic sets of G, and is denoted by g (G). In (8), the concept of geodetic polynomial is defined as

n
9(G,x) = Z g.(G,i)x" where g_(G,i) is the number of geodetic sets of cardinality i. In this paper, we
i=g(G)
obtain the geodetic sets and geodetic polynomials of the Fan graph. Also, we study some properties of geodetic
sets and the coefficients of the polynomials. It is also derived that the geodetic polynomial of the centipede Pn*
is x"(1+ x)".
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l. INTRODUCTION
Let G=(V, E) be a simple graph of order || = n. The distance d(u, v) between two vertices u and v in a
connected graph G is the length of a shortest u-v path in G. A u-v path of length d(u, v) is called u-v geodesic.
The closed interval I[u, v] consists of all vertices lying on some u-v geodesic of G, while for S —V, 1 [S] = U
I [u, v]. A set S of vertices is a geodetic set if I [S] = V, and the minimum cardinality of a geodetic set is the
geodetic number g(G). The geodetic number of a graph was introduced in [4,5]. In [I], the domination
polynomial was introduced and some properties have been derived. In [8], the concept of geodetic polynomial

was introduced. It is defined as (G, x) = i ge(G,i)xi where G is a graph of order n and g_(G,i) is the
i=g@)

number of geodetic sets of G of cardinality i. Let G,(F,,,i) be the family of geodetic sets of F,  with
cardinality i. Let ge(Fl,n'i)z‘Gé(Fl,n’i)" The geodetic polynomial, 9(F,,,x) of Fl'n is defined as

n+1

g(F‘l,n’x) = Z ge(F‘l,n’i)xi '

i=g(R,,)
In the next section, we construct the families of the geodetic sets of fan graphs by a recursive method. In section
3, we use the results obtained in section 2 to study the geodetic polynomial of Fan graphs.

As usual we use ’_X_| for the smallest integer greater than or equal to X . In this paper, we denote the set
{1,2,...n} simply by [n].
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Il. GEODETIC SETS OF FAN GRAPH
Let F,, be the fan graph with n+LverticesVy,V;,V,,Vy, ...V, 4, V, with V, having degree n, v, and Vv,

having degree two and all the remaining vertices having degree three. Let G (F, ™ be the family of

geodetic sets of F, | with cardinality i. Let g, (F,,,i)= ‘Q( " ‘ We investigate the geodetic sets of the

Fan graph Fl’n . We need the following lemma to prove our main results.
0,

Figurel: Labeled Fan graph, F

Lemma2.1. Let F,  be the fan graph. Then, the following hold for F,  :

ONEGRER

(i) G(F,.i)=¢ ifandonly if i{”;rlw or i>n+1
2
Proof: Proof is obvious.

Remark 2.2. LetV ={0,,v,,V,,...,V } be the vertex set of the fan graph F, . Let S be a subset of V. If
V;,V;,; €S for some i, then S is not a geodetic set.

Proof. We have V ={01,V1,V2,...,Vn}. Let S be a subset of V. The shortest distance between any two
vertices of S is at most two. If two consecutive vertices say V;,V,,, among V,,V,,...,V  is missing in the set S,
then any path joining two elements of S and covering V;,V;_, is of distance greater than two. Therefore, this
path is not a geodetic path. Thus, the vertices of S do not cover V; and V; ,. Therefore, S is not a geodetic set.
Lemma23. If G(F,,.i-1)=¢ and G(F,_,,i—-1)=¢, then G(F,.,i)=¢

Proof. Since G(F, ,,i-)=¢ and G(F,,,1-1)=4¢, by lemma 2.1(ii), we have j 1<P‘ 1}
' ’ 2
i—1>n-1and i_1<{”—l or i—1>n. From these, we obtain, |_1<[n 1—‘ ori—1>n. If ; 1{ —‘ then
2 2 2
,<P;1—l_ Therefore, by lemma 2.1(ii), we have G (F,,,i) =¢@. Also, if i—1>n, then i >n+1; and by

lemma 2.1(ii), we have G (F,,,,i) = ¢.

Lemma 2.4. Suppose G(F,,,i) = ¢, then

(i) Foroddn, G(F,,,i-1)#¢ and G(F,,,i—1)=¢ ifandonlyif
n+1

2
(i) G(F,,i1-)=¢ and G(F,,,,i-1)=#¢ ifandonlyif i=n+1.

(i) G(F,,,1-1)#¢ and G(F,,,i—1)#¢ ifand only if [g—‘+1£ i<n.
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Proof of (i). (=) Since G,(F,,,,i—1)=¢, by lemma 2.1(ii), we have i_l{ﬂ or i—1>n. If
’ 2

i—1>n, then i >n+1, by lemma 2.1(ii), G (F,,,i) =@, which is a contradiction. So, we must have

i—1<(2—‘- Therefore i<B—‘+l' Also, since G (F,, ,,i—1) # @, by lemma 2.1(ii), we have (nz_l—l

<i—1<n-1. Together, we have P]Z_:L—‘Jrls i <B—‘+1_

-(1)
When n is odd, | 1= 1 :n_l and n =n_+1. Therefore, from (1), we have n—_1+1£i n_+1+1
2 2 2 2 2
Therefore, n_+1<| n+3 Hence i=n—+:L )
2 2 2

. n+1
(<) 1fi= — then by lemma 2.1(ii), we have

G (F i —1):(3{,:11” . n;rl_ j

n-1
_G ( 1n—1’7j

= ¢, Since N=1_ P—l .

2 2

Also, G, (F,,_,, 1)=GE(FM,”T+1—1J

n-1
EGE[Fl,nZ’Tj

-1 |n-1
# ¢, Since "2 .
ik

Proof of (ii). (=) Since G (F,,,_,,1—1) = ¢, by lemma 2.1(ii), we have |_1<(n21—l or i—=1>n-1.1If
i—1< n-1 ,then j < n+l and by

2 2
lemma 2.1(ii), G(F,,,i) =¢, which is a contradiction. So, we must have i—1>n-1. Also, since
G(F,,i—-1)#¢, wehave (%—‘ <i—-1<n. Together, we have N <i<n+1. Therefore i =n+1.
(<) If i=n+1 then by lemma 21(ii), we have G(F, , i-1)= G(F,,,n)=¢ and

G(R, ., i-1)=G(F,,n)#¢. Since G(F, i) # ¢ for g—lsiﬁ n.
Proof of (iii). (=) Since G(F,,_,,i-1)#¢ and G(F, ,i-1) =g,

by lemma 2.1(ii), we have P‘T_l—}gi_lgn_l and nWSi—lsn. From these, we obtain,

[g—l <i-1<n-1 and hence [EW+1S i<n.

( ) If{ —l+1<|<n then we have BWsi—lgn—l and hence P 1—‘<|_1<n —1. Therefore, by
2 2

lemma 2.1(ii), we have G,(F,,;,i—1) # ¢ and
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G (Fl,n—z A=-D=¢.

Theorem2.5. Let N>5and > nT-i_l

(i) f G(FR,.,,i-)=#¢and G(F,,,i—1)=¢,then
G(F,,.i)= q( 1"’n;1j {1,3,5,...,n)

(i) If G, i-D=¢and G(F,,i—-1)#¢,then
G(F,.))=G(F,.n+1)={0,,1,23,..,n}
(iiiy If G(F,,,i-D)#¢ad G(F,,,i—1) #4¢, then
G(R,.1) _{ uin}/ X, €G (R, i - }
b{ng4n}/xzeqxﬁmwu—n}
Proof of (i). Since G(F, ,,i-1)#¢ and G(F, _,,i—-1)=¢, and nis odd, by lemma 2.4(i), i:“T“Ll.

Clearly {1,3,5,...,n} is geodetic sets of F, of cardinality "= N+1 Therefore, {1,35,...,n}c Ge[Fln,n_’Llj
> ,

2
. If X is a subset of V other than {l, 35,..., } of cardinality n_+l then X will miss at least two consecutive
2

numbers from 1,2,3,...,N. By remark 2.2, X is a not a geodetic set. Therefore,

G(F,,.i)= G[ » ”;1) (1,35,...,n}.

Proof of (ii). Since G(F, ,,i—1)=¢ and G(F,, ;,i—1)# @, by lemma 2.4(ii),i =n+1. Therefore,
G(R,.i)=G(R, n+1)={0,123,..,n}.

Proof of (iii). Denote the families { u{n}/ X, eG (R, 1)} and {qu{n}/ X, eGe(FLH,i—l)}
simply by F1 and F2 respectively. Any geodetic set in FLH contains the extreme vertex N—2. If we
add n with X, e G(F,,,_,,1—1), then X, U{n} is of cardinality i. The shortest path between N—2and n
contains N—1. Therefore, X, U{n} is a geodetic set in F;  with cardinality i. Therefore F, < G (F,,,1)
and F, cG(F,,,i). Thatis,

FUF, < G(F,.i). Now, let YeG(F,,i). If neY, then, at least one of the vertices labeled n—1or
n—2isinY. If n-1eY then Y =X, u{n} for some X, e G(F,,,i—1). Therefore, Y cF,. If
n-1gY and n-2eY theny =X, u{n} forsome X eG(F,,,i-1), thatis Y e F. Therefore,
G(,.i) cFUF,. Hence, we have G(FR,,i)={X,u{n}/ X eG(F,,i-D}
AX, u{n}/ X, eG(F,,.i-D}

Example 2.6. Consider F,, with V (F ;) = {01,1, 2,3,4,5, 6,7} . We use

theorem 2.5 to construct G, (F,,,i) , for 4<i<8.

Since, G (F,5,3) =¢ and G (F5,3) ={1,3,5}, by theorem 2.5(i), we have

G(F,.4)={1357}.

Since, GE(FLS,7):¢ and G(F,,7)={0,1,2,34,56}, by theorem 25(ii), we have
G(F,.8)={0,,1,2,34,56,7}.
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since, G (F,5,4) ={{0,,1,3,5}, {1.2,3,5}, {1,3,4,5}, {1,2,4,5}} , and
G (F.4) ={{135,6}, {1,2,4,6}, {1,3,4,6}}, by theorem 2.5(iii), we have
G(F;.5) ={X, U{7}/ X, eG(Fs. D)} U{X, U{T}/ X, € G (F,s.4)}
={{01,1,3,5, 7}4,{1,2,35,7},{1,3,4,5,7},{1,2,4,5,7},
{13567}, {12,4,6,7}, {1,3,4,6,7}}.
since, G (F;5,5) ={{0,,1,2,3,5}, {0,,1,3,4,5}, {0,,1,2,4,5}, {1,2,3,4,5}}
and G (F,,5)={{0,,1,3,5,6}, {0,,1,2,4,6}, {0,,1,3,4,6}, {1,2,3,5,6},
{13,4,5,6}, {1,2,3,4,6}, {1,2,4,5,6}}
by theorem 2.5(iii), we have
G(F;,.6)={X, U{7}/ X, €G(F5,5 | U{X, U{7}/ X, €G(F;s.5)}
={{0,,1,2,35,7}, {0,,1,3,4,5,7}, {0,,1,2,4,5,7}, {1,2,3,45,7},
{0,,1,35,6,7},{0,,12,4,6,7}, {0,,1,3,4,6,7}, {1,2,35,6,7},
{1,3,4,5,6,7},{1,2,3,4,6,7},{1,2,4,5,6,7}}.
since, G (F5,6) ={0,,1,2,3,4,5} and
G (F,.6)=1{{0,1234,6}, {0,,1,2,35,6}, {0,,1,2,4,5,6},

{0,1,3,4,5,6}, {1,2,3,4,5,6}}

by theorem 2.5 (iii), we have
G (R, ) ={X, U{7}/ X, e G(F5,6)} U{X, U{7}/ X, €G(F;4.6)}

={{01,1, 2,34,5,7},{0,,1,2,3,4,6,7},{0,,1,2,35,6,7},

{0,,1,2,4,5,6,7},{0,,1,3,4,5,6,7}, {1,2,3,4,5,6,7}}.

Theorem 2.7. Forevery N>5, g,(F,,.i) =0.(F,,,.i 1) +9.(F_, i )
Proof. Case(i). If G(F,, ,.i—1)#¢ and G(F,,,i—1) =g, then,
by theorem 2.5(i), we have Ge(Fl,n'i)=Gb(Fl,n’nTH-j={l73’5""’n}' Therefore, 9.(F.,.i)=1. Also,

G (i i—1) =GE(F1',,2,”2_1j={1,3,5,...,n—2}.

Therefore, g.(F, ,,i—1)=1and g,(F,,;,i—1)=0. Hence the theorem holds.

Case(ii). If G(F,,,1-1)=¢ and G(F,,,i—-1)#¢, then, by theorem 25(ii), we have
G(F,.))=G(F,.n+1)={0,123,...,n}. Therefore, 9.(F i) =1. Also,
G(F,.i-D=G ( Fonas n) ={0,,1,2,3....,n-1}. Therefore, 0.(F,,i-1)=1 and
9.(F,,,,i—1)=0. Hence the theorem holds.

Case(iii). If G(F,,,i—-1)#¢ and G(F,,,i—1) = ¢, then, by theorem 2.5(iii), we have G (F, ,,i) = F, UF,.
Where F, ={X, u{n}/ X, eG(F,, ,.i—1)} and

F, :{X2 u{n}/ X, EQ(Fl,n—l’i_l)}' Therefore, |F,| =g, (F,,_,,i—1) and

IF,|=09.(F,,,,i—1). Since for every x cf, and x,cF,, we have n—1e X, but n—1¢ X, , we have
F,NF,=¢. Therefore,

‘Gb(l:l'”’i) :‘{Xlu{n}/ X EGEe(Fl,nfz’i_l)}
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+{x, Ui}/ X, eG (R, i-D-
Hence, g, (F,.1)=0.(F,,.i-D+g.(F,,.i-1).

[y
N

3 |4 |5 6 7 8 9 10 11 12 13 |14

H
SE
(e»)
(e»)
[

~;'I'I
o
[N
N
[N

F. 00 2|3 |1

Fs 0 |0 |1 |4 |4 |1

Fie 0|0 |0 |3 |7 (5 |1

F, [0 (00 |1 |7 |11 /6 |1

F, |0 [0 |0 [0 |4 J14 716 |7 |1

F, [0 (0 [0 |0 |1 |11 )25 228 |1

F, [0 [0 [0 |0 [0 |5 |25 41 |29 |9 1

F, [0 (0|0 |0 ]O |1 |16 |50 |63 |37 10 1

F, |0 |0 [0 |0 0O O |6 |4l 91 |92 46 11 1

F, [0 (0|0 |00 10 |1 |22 91 154 | 129 |56 12 |1

Table 1: ge( Lns ) the number of geodetic set of F, | with cardinality i.

Theorem 2.8. For every n>5, g(F,,x)=x[g(F, ,,x)+g(F, ,x)] with the initial values

g(F5,x)=x*+2x° + x* and g(FM,x)zzx +3xt + 5.
Proof: By theorem 2.7,
9. (Fn ) =09 (F, 001 -1) + 9.(F 1 1)

n+l n+l n+t i
[Z_L ln'I)X z ge( 1,n- 2' 1)X + Z g ( 1n—1' :I-)XI
. n+1 . n+1 . n+1
2 Gl 7

n+l n+1

9ELX)=x| D, G (Fppi-Dx7 + > g (F,ui-1)x™
~_[n# . [nu
--H =[]
gl s %) = X [gF 5, %) + gF 4, X))
Example 2.9. In this example, we have to find the geodetic polynomial of F1,1o from the geodetic polynomial
of F g and F 4 by using theorem 2.8.
From table 1, we have,
g(F g, %) =4x° +14x° +16x" + 7x° + x” and
9(F g, %)= x° +11x° + 25x" +22x° + 8x” + x'°
By theorem 2.8, we have,
g(F . X) = x [gF 5, %) + g(F, 4, X)]
When n =10,
9(F 10, %) = X [g(Fy 5, X) + g(F 9, X)]
=X [(4x° +14x° +16x" + 7x° + xX°)
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+(x° +11x° + 25x" +22x° +8x° + X'
9(F10,%) =5x° +25x" +41x® +29x° +9x° + x''
Corollary 2.10. The following properties hold for the coefficients of g(F, , , x) :
(i) 0.(F, n+1)=1, forevery n>3.
(i) g.(F,.,n)=n-1, forevery n>3.

(iii) g.(F, n-1)= w+2, for every n>3.

2n+3 2n+1

(iv) Z ge(Flvj,n+2)=22ge(Flyj,n+1), for every n> 2.
j=n+1 j=n
n+l
(v) If S,= > g.(F,. J) then, forevery n>5,S =S ,+S _, withthe

initial values S;=4,S,=6.
(vi) g.(F,,n+1)=n, forevery n>3.

(i) g.(Fn.,n+1) =1, forevery n>3.

Proof of (i). Since G (F1,n .n +1) ={0,,1,2,3,...,n}, we have the result.

Proof of (ii). By induction on n. The result is true for all natural numbers less than n, and we prove it for n.
By theorem 2.7, induction hypothesis and part(i), we have g, (F,,,n)=9.(F,,.n-D+g.(F,,,n-1)
=1+n-2
=n-1.
Proof of (iii). By induction on n. The result is true for all natural numbers less than n, and we prove it for n.
By theorem 2.7, the induction hypothesis and part(ii), we have

Je (Fl,n’ n_l) =0, (Fl,n—zfn_2)+ 9. (Fl,n—l’ n— 2)
_n_3.(N=2M=9 ,
_ 2(n—=3)+(n—2)(n-5) L9
2
_ (n=-Y(n-4) ey
2

7 5
Proof of (iv). By induction on n. The result is true for N = 2, because de(Fl‘j,4) =12=2 de(FLj,?;).
j=3 j=2
Now suppose that the result is true for all numbers less than N+ 2, and we prove it for N+ 2. By theorem 2.7,
and the induction hypothesis, we have

2n+3 2n+3 2n+3
Z ge(Fl,j7n+2) = Z ge(Fl,j—27n+1) + Z ge(Fl,j—l’n+l)
j=n+1 j=n+1 j=n+1

2n+l 2n+l

=2 Z 9.(F; . n+2 Z 9.(F;1Nn)
j=n j=n

2n+1

=2 Z [ge(Fle'—Z’ n)+ ge(Fl,j—l’ n)]
j=n
2n+1

= 22 9.(F,;,n+1).
j=n

Proof of (v). S, = nzﬂ 9.(F,, J)

EE!

2
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n+l

= 2 |:ge(F1,n—2’ j_1)+ ge(Fl,n—l’ J_l)]
i=| %

= Y GFa Dt Y 6Faw])
i<t i<t

= Y 0Fan )t ¥ 6Fos i)
=3 i=[3]

2
Sn = Sn—2 + Sn—l'

Proof of (vi) and (vii) is obvious.
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