Quest Journals Journal of Research in Applied Mathematics Volume 9 ~ Issue 1 (2023) pp: 01-08 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

On Geodetic Sets and Geodetic Polynomials of Fan Graphs

Dr.K.Vijila Dafini, Dr.A.Vijayan

(Assistant Professor, Department of Mathemetics,Malankara Catholic college, Mariagiri,Kaliakkavilai, Kanyakumari District, Tamilnadu, India) (Associate Professor, Department of Mathematics,Nesamony memorial Christian college, Kanyakumari District, Tamilnadu, India) Corresponding author: Dr.K.Vijila Dafini

ABSTRACT: Let G = (V,E) be a simple graph. A set of vertices S of a graph G is geodetic, if every vertex of G lies on a shortest path between two vertices in S. The geodetic number of G is the minimum cardinality of all geodetic sets of G, and is denoted by g (G). In (8), the concept of geodetic polynomial is defined as

 $=$ $\sum_{n=1}^{n}$ e $= g(G)$ $(G, x) = \sum_{k=1}^{n} g_e(G,i) x^k$ *i* $g(G,x) = \sum_{k=1}^{n} g_{e}(G,i)x^{i}$ where $g_{e}(G,i)$ is the number of geodetic sets of cardinality i. In this paper, we

obtain the geodetic sets and geodetic polynomials of the Fan graph. Also, we study some properties of geodetic sets and the coefficients of the polynomials. It is also derived that the geodetic polynomial of the centipede P_n^*

is $x^n(1+x)^n$. *KEYWORDS: Geodetic sets, Geodetic number, Geodetic polynomial, Recursive formula, Fan graph.*

Received 01 Jan., 2023; Revised 09 Jan., 2023; Accepted 11 Jan., 2023 © The author(s) 2023. Published with open access at www.questjournals.org

I. INTRODUCTION

Let $G=(V, E)$ be a simple graph of order $|V| = n$. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. A u-v path of length d(u, v) is called u-v geodesic. The closed interval I[u, v] consists of all vertices lying on some u-v geodesic of G, while for $S \subseteq V$, I [S] = \bigcup u, u

I [u, v]. A set S of vertices is a geodetic set if I [S] = V, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. The geodetic number of a graph was introduced in [4,5]. In [I], the domination polynomial was introduced and some properties have been derived. In [8], the concept of geodetic polynomial

was introduced. It is defined as $g(G, x) = \sum_{n=1}^{n}$ $g(G, x) = \sum_{i=g(G)}^{n} g_e(G,i)x^i$ where G is a graph of order n and $g_e(G,i)$ is the

number of geodetic sets of G of cardinality i. Let $G_e(F_{1,n}, i)$ be the family of geodetic sets of $F_{1,n}$ with cardinality *i*. Let $g_e(F_{1,n}, i) = |G_e(F_{1,n}, i)|$. The geodetic polynomial, $g(F_{1,n}, x)$ of $F_{1,n}$ is defined as

$$
g(F_{1,n},x)=\sum_{i=g(F_{1,n})}^{n+1}g_e(F_{1,n},i)x^i.
$$

In the next section, we construct the families of the geodetic sets of fan graphs by a recursive method. In section 3, we use the results obtained in section 2 to study the geodetic polynomial of Fan graphs.

As usual we use $|x|$ for the smallest integer greater than or equal to x. In this paper, we denote the set $\{1,2,...n\}$ simply by [n].

II. GEODETIC SETS OF FAN GRAPH

Let $F_{1,n}$ be the fan graph with $n+1$ vertices v_0 , v_1 , v_2 , v_3 , v_{n-1} , v_n with v_0 having degree *n*, v_1 and v_n having degree two and all the remaining vertices having degree three. Let $G_e(F_{1,n}, i)$ be the family of geodetic sets of $F_{1,n}$ with cardinality *i*. Let $g_e(F_{1,n}, i) = |G_e(F_{1,n}, i)|$. We investigate the geodetic sets of the Fan graph $F_{1,n}$. We need the following lemma to prove our main results.

Figure1: Labeled Fan graph, F_{17}

Lemma 2.1. Let $F_{1,n}$ be the fan graph. Then, the following hold for $F_{1,n}$:

$$
(i) \t g(F_{1,n}) = \left\lceil \frac{n+1}{2} \right\rceil
$$

(ii) $G_e(F_{1,n}, i) = \phi$ if and only if $i < \frac{n+1}{n}$ 2 $i<\left[\frac{n+1}{2}\right]$ or $i>n+1$

Proof: Proof is obvious.

Remark 2.2. Let $V = \{0_1, v_1, v_2, ..., v_n\}$ be the vertex set of the fan graph $F_{1,n}$. Let *S* be a subset of *V*. If v_i , $v_{i+1} \notin S$ for some *i*, then *S* is not a geodetic set.

Proof. We have $V = \{0_1, v_1, v_2, ..., v_n\}$. Let *S* be a subset of *V*. The shortest distance between any two vertices of *S* is at most two. If two consecutive vertices say v_i , v_{i+1} among v_1 , v_2 ,..., v_n is missing in the set *S*, then any path joining two elements of *S* and covering V_i , V_{i+1} is of distance greater than two. Therefore, this path is not a geodetic path. Thus, the vertices of *S* do not cover v_i and v_{i+1} . Therefore, *S* is not a geodetic set. **Lemma 2.3.** If $G_e(F_{1,n-2}, i-1) = \phi$ and $G_e(F_{1,n-1}, i-1) = \phi$, then $G_e(F_{1,n}, i) = \phi$

Proof. Since $G_e(F_{1,n-2}, i-1) = \phi$ and $G_e(F_{1,n-1}, i-1) = \phi$, by lemma 2.1(ii), we have $i-1 < \frac{n-1}{2}$ $i-1 < \left\lceil \frac{n-1}{2} \right\rceil$ or $i-1 > n-1$ and $i-1 < \left\lfloor \frac{n}{2} \right\rfloor$ $i-1 < \left\lceil \frac{n}{2} \right\rceil$ or $i-1 > n$. From these, we obtain, $i-1 < \left\lceil \frac{n-1}{2} \right\rceil$ $i-1 < \left\lceil \frac{n-1}{2} \right\rceil$ or $i-1 > n$. If $i-1 < \left\lceil \frac{n-1}{2} \right\rceil$ $i-1 < \left\lceil \frac{n-1}{2} \right\rceil$, then $\frac{+1}{2}$. $i < \left\lceil \frac{n+1}{2} \right\rceil$. Therefore, by lemma 2.1(ii), we have $G_e(F_{1,n}, i) = \phi$. Also, if $i - 1 > n$, then $i > n + 1$; and by lemma 2.1(ii), we have $\mathbf{G}_{e}(F_{1,n}, i) = \phi$.

Lemma 2.4. Suppose $G_e(F_{1,n}, i) \neq \phi$, then

(i) For odd *n*, $G_e(F_{1,n-2}, i-1) \neq \phi$ and $G_e(F_{1,n-1}, i-1) = \phi$ if and only if $n+1$.

$$
i=\frac{n+1}{2}
$$

(ii) $G_e(F_{1,n-2}, i-1) = \phi$ and $G_e(F_{1,n-1}, i-1) \neq \phi$ if and only if $i = n+1$.

(iii) $G_e(F_{1,n-2}, i-1) \neq \phi$ and $G_e(F_{1,n-1}, i-1) \neq \phi$ if and only if $\left|\frac{n}{2}\right|+1 \leq i \leq n$. 2 $\left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n$

Proof of (i). (\Rightarrow) Since $G_e(F_{1,n-1}, i-1) = \phi$, by lemma 2.1(ii), we have $i-1 < \frac{n}{2}$ $i-1 < \left\lfloor \frac{n}{2} \right\rfloor$ or $i-1 > n$. If $i-1 > n$, then $i > n+1$, by lemma 2.1(ii), $G_e(F_{1,n}, i) = \phi$, which is a contradiction. So, we must have $1 < \frac{\pi}{2}$ $i-1 < \left\lceil \frac{n}{2} \right\rceil$. Therefore $i < \left\lceil \frac{n}{2} \right\rceil + 1$. $i<\left[\frac{n}{2}\right]+1$. Also, since $G_e(F_{1,n-2}, i-1) \neq \emptyset$, by lemma 2.1(ii), we have $\frac{n-1}{2}$ 2 $n-1$ $\vert \overline{2}\vert$ $\leq i-1 \leq n-1$. Together, we have $\left\lceil \frac{n-1}{2} \right\rceil + 1 \leq i < \left\lceil \frac{n}{2} \right\rceil + 1$. $\frac{1}{2}$ | +1 $\leq i <$ | $\frac{1}{2}$ *n n ⁱ* -- --(1) When *n* is odd, $\left[\frac{n-1}{n}\right] = \frac{n-1}{n}$ 2 | 2 $\left\lceil \frac{n-1}{2} \right\rceil = \frac{n-1}{2}$ and $\left\lceil \frac{n}{2} \right\rceil = \frac{n+1}{2}$ 2 | $\sqrt{2}$ $\left\lceil \frac{n}{2} \right\rceil = \frac{n+1}{2}$. Therefore, from (1), we have $\frac{n-1}{2} + 1 \le i < \frac{n+1}{2} + 1$ $\frac{1}{2}$ + 1 \le 1 \le - \le $\frac{n-1}{2}+1 \leq i < \frac{n+1}{2}+1$. Therefore, $\frac{n+1}{1} \le i < \frac{n+3}{1}$ $2 \begin{array}{c} 2 \\ 2 \end{array}$ $\frac{n+1}{2} \leq i < \frac{n+3}{2}$. Hence $i = \frac{n+1}{2}$ 2 $i = \frac{n+1}{2}$. (\Leftarrow) If $i = \frac{n+1}{2}$, 2 $i = \frac{n+1}{2}$, then by lemma 2.1(ii), we have $\mathbf{G}_{e} \left(F_{1,n-1}, i-1 \right) = \mathbf{G}_{e} \left(F_{1,n-1}, \frac{n+1}{2} - 1 \right)$ $1, n-1$ $\frac{n-1}{2}$ $\mathbf{F}_e \left(\begin{array}{c} \mathbf{F}_{1,n-1}, \ \hline \ \mathbf{2} \end{array} \right)$ $=\mathbf{G}_{e}\left(F_{1,n-1},\frac{n-1}{2}\right)$ $=\phi$, Since $\frac{n-1}{n}$ 2 \vert 2 $\frac{n-1}{2} < \left\lceil \frac{n}{2} \right\rceil$. Also, $G_e(F_{1,n-2}, i-1) = G_e\left(F_{1,n-2}, \frac{n+1}{2} - 1\right)$ $1, n-2$ $\frac{n-1}{2}$ $\mathbf{F}_e \left(\begin{array}{c} \mathbf{F}_{1,n-2}, \mathbf{F}_{2n} \end{array} \right)$ $=\mathcal{G}_{e}\left(F_{1,n-2},\frac{n-1}{2}\right)$ $\neq \phi$, Since $\frac{n-1}{n-1} = \frac{n-1}{n}$ 2 | 2 $\frac{n-1}{2} = \left\lceil \frac{n-1}{2} \right\rceil$. **Proof of (ii). (** \Rightarrow **) Since** $G_e(F_{1,n-2}, i-1) = \phi$ **, by lemma 2.1(ii), we have** $i-1 < \frac{n-1}{2}$ 2 $i-1 < \left\lceil \frac{n-1}{2} \right\rceil$ or $i-1 > n-1$. If

$$
i-1 < \left\lceil \frac{n-1}{2} \right\rceil
$$
, then $i < \left\lceil \frac{n+1}{2} \right\rceil$ and by
lemma 2.1(ii) $G(F, i) = \phi$ which is

lemma 2.1(ii), $G_e(F_{1,n}, i) = \phi$, which is a contradiction. So, we must have $i - 1 > n - 1$. Also, since $\mathbb{G}_{e}(F_{1,n-1}, i-1) \neq \phi$, we have $\left|\frac{n}{2}\right| \leq i-1$ 2 $\left\lceil \frac{n}{2} \right\rceil \leq i-1 \leq n$ Together, we have $n < i \leq n+1$. Therefore $i = n+1$. (\Leftarrow) If $i = n + 1$, then by lemma 2.1(ii), we have $G_e(F_{1,n-2}, i-1) = G_e(F_{1,n-2}, n) = \phi$ and $G_e(F_{1,n-1}, i-1) = G_e(F_{1,n-1}, n) \neq \emptyset$. Since $G_e(F_{1,n-1}, i) \neq \emptyset$ for $\left\lceil \frac{n}{2} \right\rceil \leq i \leq n$. 2 $\left\lceil \frac{n}{2} \right\rceil \leq i \leq n$ **Proof of (iii).** (\Rightarrow) Since $G_e(F_{1,n-2}, i-1) \neq \emptyset$ and $G_e(F_{1,n-1}, i-1) \neq \emptyset$, by lemma 2.1(ii), we have $\left\lceil \frac{n-1}{2} \right\rceil \leq i-1 \leq n-1$ $\left\lceil \frac{n-1}{2} \right\rceil \leq i-1 \leq n-1$ and $\left\lceil \frac{n}{2} \right\rceil \leq i-1 \leq n$. 2 $\left\lceil \frac{n}{2} \right\rceil \leq i - 1 \leq n$. From these, we obtain, $1 \leq n-1$ 2 $\left\lceil \frac{n}{2} \right\rceil \leq i-1 \leq n-1$ and hence $\left| \frac{n}{2} \right| + 1 \le i \le n$. 2 $\left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n$ (\Leftarrow) If $\left\lfloor \frac{n}{2} \right\rfloor + 1 \le i \le n$, 2 $\left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n$, then we have $\left\lceil \frac{n}{2} \right\rceil \le i - 1 \le n - 1$ 2 $\left\lceil \frac{n}{2} \right\rceil \leq i-1 \leq n-1$ and hence $\left\lceil \frac{n-1}{2} \right\rceil \leq i-1$ 2 $\left\lceil \frac{n-1}{2} \right\rceil \leq i-1 \leq n-1$. Therefore, by lemma 2.1(ii), we have $G_e(F_{1,n-1}, i-1) \neq \phi$ and

*Corresponding Author: Dr.K.Vijila Dafini 3 | Page

 $G_e(F_{1,n-2}, i-1) \neq \phi$. **Theorem 2.5.** Let $n \ge 5$ and $i \ge \frac{n+1}{2}$. 2 $i \geq \frac{n+1}{2}$ (i) If $C_{\epsilon}(F_{1,n-2}, i-1) \neq \phi$ and $C_{\epsilon}(F_{1,n-1}, i-1) = \phi$, then $T_{1,n}$, i) = G_e $\left(F_{1,n}, \frac{n+1}{2}\right)$ = {1,3,5,...,*n*} \mathbf{G}_{e} ($F_{1,n-2}$, i) = \mathbf{G}_{e} $\left(F_{1,n}, \frac{n+1}{2}\right)$ = {1,3,5,..., If $G_e(F_{1,n-2}, i-1) \neq \emptyset$ and $G_e(F_{1,n-1}, i-1)$
 $G_e(F_{1,n}, i) = G_e\left(F_{1,n}, \frac{n+1}{2}\right) = \{1, 3, 5, ..., n\}$ (ii) If $G_e(F_{1,n-2}, i-1) = \phi$ and $G_e(F_{1,n-1}, i-1) \neq \phi$, then (ii) If $G_e(F_{1,n-2}, i-1) = \phi$ and $G_e(F_{1,n-1}, i-1) \neq \phi$
 $G_e(F_{1,n}, i) = G_e(F_{1,n}, n+1) = \{0_1, 1, 2, 3, ..., n\}$ (iii) If $G_e(F_{1,n-2}, i-1) \neq \phi$ and $G_e(F_{1,n-1}, i-1) \neq \phi$, then If $G_e(F_{1,n-2}, i-1) \neq \emptyset$ and $G_e(F_{1,n-1}, i-1) \neq \emptyset$,
 $G_e(F_{1,n}, i) = \left\{ X_1 \cup \{n\} / X_1 \in G_e(F_{1,n-2}, i-1) \right\}$

$$
\bigcup \{ X_2 \cup \{n\} / X_2 \in \mathcal{G}_e(F_{1,n-1}, i-1) \}
$$

Proof of (i). Since $G_e(F_{1,n-2}, i-1) \neq \emptyset$ and $G_e(F_{1,n-1}, i-1) = \emptyset$, and *n* is odd, by lemma 2.4(i), $i = \frac{n+1}{2}$ 2 $i = \frac{n+1}{2}$. Clearly $\{1,3,5,...,n\}$ is geodetic sets of $F_{1,n}$ of cardinality $\frac{n+1}{2}$ 2 $\frac{n+1}{2}$. Therefore, $\{1,3,5,...,n\} \subseteq G_e\left(F_{1,n}, \frac{n+1}{2}\right)$ *n* $n \leq G_{e} \left(F_{1,n}, \frac{n+1}{2} \right)$ $\subseteq \operatorname{G}_{\!\! e} \!\left(F_{_{1,n}}, \frac{n+1}{2} \right)$ If *X* is a subset of *V* other than $\{1,3,5,...,n\}$ of cardinality $\frac{n+1}{n+1}$ 2 $\frac{n+1}{n+1}$, then *X* will miss at least two consecutive numbers from $1, 2, 3, \ldots, n$. is a not a geodetic set. Therefore, $F_{1,n}$, $i) = G_e\left(F_{1,n}, \frac{n+1}{2}\right) = \{1, 3, 5, ..., n\}.$ $\mathbf{G}_e^{\mathbf{i}}(F_{1,n}, i) = \mathbf{G}_e^{\mathbf{i}}\left(F_{1,n}, \frac{n+1}{2}\right) = \{1, 3, 5, ..., n\}.$ numbers from 1, 2, 3, ..., *n*. By 1
 $G_e(F_{1,n}, i) = G_e\left(F_{1,n}, \frac{n+1}{2}\right) = \{1, 3, 5, ..., n\}$

Proof of (ii). Since $G_e(F_{1,n-2}, i-1) = \phi$ and $G_e(F_{1,n-1}, i-1) \neq \phi$, by lemma 2.4(ii), $i = n+1$. Therefore, **Proof of (ii).** Since $G_e(F_{1,n-2}, i-1) = \phi$ and $G_e(F_{1,n}, i) = G_e(F_{1,n}, n+1) = \{0_1, 1, 2, 3, ..., n\}.$

Proof of (iii). Denote the families $\{X_1 \cup \{n\} / X_1 \in G_e(F_{1,n-2}, i-1)\}$ and $\{X_2 \cup \{n\} / X_2 \in G_e(F_{1,n-1}, i-1)\}$ simply by F_1 and F_2 respectively. Any geodetic set in $F_{1,n-2}$ contains the extreme vertex $n-2$. If we add *n* with $X_1 \in G$ $(F_{1,n-2}, i-1)$, then $X_1 \cup \{n\}$ is of cardinality *i*. The shortest path between $n-2$ and *n* contains $n-1$. Therefore, $X_1 \cup \{n\}$ is a geodetic set in $F_{1,n}$ with cardinality *i*. Therefore $\mathsf{F}_1 \subseteq \mathsf{G}_e(F_{1,n}, i)$ and $\mathsf{F}_2 \subseteq \mathsf{G}_{e}(F_{1,n}, i)$. That is,

 $\mathsf{F}_{1} \bigcup \mathsf{F}_{2} \subseteq \mathsf{G}_{e}(F_{1,n}, i)$. Now, let $Y \in \mathsf{G}_{e}(F_{1,n}, i)$. If $n \in Y$, then, at least one of the vertices labeled $n-1$ or $n-2$ is in Y. If $n-1 \in Y$ then $Y = X_2 \cup \{n\}$ for some $X_2 \in G_e(F_{1,n-1}, i-1)$. Therefore, $Y \in F_2$. If $n-1 \notin Y$ and $n-2 \in Y$ then $Y = X_1 \cup \{n\}$ for some $X_1 \in G_e(F_{1,n-2}, i-1)$, that is $Y \in F_1$. Therefore, $G_e(F_{1,n}, i) \subseteq F_1 \cup F_2$. Hence, we have $G_e(F_{1,n}, i) = \{X_1 \cup \{n\} / \ X_1 \in G_e(F_{1,n-2}, i-1)\}$

 ${ G_{\epsilon}(F_{1,n}, i) \subseteq F_1 \cup F_2. \qquad \text{Hence} \cup \{ X_2 \cup \{ n \} / X_2 \in G_{\epsilon}(F_{1,n-1}, i-1) \}.$

Example 2.6. Consider $F_{1,7}$ with $V(F_{1,7}) = \{0, 1, 2, 3, 4, 5, 6, 7\}$. We use

theorem 2.5 to construct $G_e(F_{1,7}, i)$, for $4 \le i \le 8$.

Since, $G_e(F_{1,6}, 3) = \phi$ and $G_e(F_{1,5}, 3) = \{1,3,5\}$, by theorem 2.5(i), we have $G_e(F_{1,7}, 4) = \{1,3,5,7\}$.

Since, $G_e(F_{1,5}, 7) = \phi$ and $G_e(F_{1,6}, 7) = \{0_1, 1, 2, 3, 4, 5, 6\},\$ theorem $2.5(ii)$, we have G_e ($F_{1,7}$, 8) = {0₁, 1, 2, 3, 4, 5, 6, 7}.

On Geodetic Sets and Ge

Since, $G_e(F_{1,5}, 4) = \{\{0, 1, 3, 5\}, \{1, 2, 3, 5\}, \{1, 3, 4, 5\}, \{1, 2, 4, 5\}\}\)$, and Since, $G_e(F_{1,5}, 4) = \{\{0, 1, 3, 5\}, \{1, 2, 3, 5\}, \{1, 3, 4, 5\}, \{1, 2, 4, 5\}\}\$, and
 $G_e(F_{1,6}, 4) = \{\{1, 3, 5, 6\}, \{1, 2, 4, 6\}, \{1, 3, 4, 6\}\}\}$, by theorem 2.5(iii), we have Since, $G_e(F_{1,5}, 4) = \{(0_1, 1, 3, 3)\}, \{1, 2, 3, 3\}, \{1, 3, 4, 3\}, \{1, 2, 4, 3\}\}\$, and
 $G_e(F_{1,6}, 4) = \{\{1, 3, 5, 6\}, \{1, 2, 4, 6\}, \{1, 3, 4, 6\}\}\}$, by theorem 2.5(iii), we hav
 $G_e(F_{1,7}, 5) = \{X_1 \cup \{7\} / X_1 \in G_e(F_{1,5}, 4)\} \$ $G_e(F_{1,7}, 5) = \left\{ X_1 \cup \left\{7\right\} / X_1 \in G_e(F_{1,5}, 4) \right\} \cup \left\{ X_2 \cup \left\{7\right\} / X_2 \in G_e(F_{1,6}, 4) \right\}$
= {{0,,1,3,5,7}, {1,2,3,5,7}, {1,3,4,5,7}, {1,2,4,5,7}, $\{1,3,5,6,7\}, \{1,2,4,6,7\}, \{1,3,4,6,7\}.$ Since, G_e(F_{1,5},5) = {{0₁,1,2,3,5}, {0₁,1,3,4,5}, {0₁,1,2,4,5}, {1,2,3,4,5}} and G*e* $G_e(F_{1,5}, 5) = \{ \{0, 1, 2, 3, 5\}, \{0, 1, 3, 4, 5\}, \{0, 1, 2, 4, 5\}, \{1, 2, 3, 4, 5\}, \{F_{1,6}, 5\} = \{ \{0, 1, 3, 5, 6\}, \{0, 1, 2, 4, 6\}, \{0, 1, 3, 4, 6\}, \{1, 2, 3, 5, 6\}, \{1, 2, 3, 5, 6\}, \{1, 2, 3, 5, 6\}, \{1, 2, 3, 5, 6\}, \{1,$ by theorem 2.5(iii), we have $\{1,3,4,5,6\}, \{1,2,3,4,6\}, \{1,2,4,5,6\}\}$ ${1,3,4,5,6}, {1,2,3,4,6}, {1,2,4,5,6}$
by theorem 2.5(iii), we have
 $G_e(F_{1,7}, 6) = {X_1 \cup {7} / X_1 \in G_e(F_{1,5}, 5)} \cup {X_2 \cup {7} / X_2 \in G_e(F_{1,6}, 5)}$ 2.5(iii), we have
 $=\{X_1 \cup \{7\} / X_1 \in \mathbb{G}_{e}(F_{1,5}, 5)\} \cup \{X_2 \cup \{7\} / X_2 \in \mathbb{G}_{e}(F_{1,6}, 5)\}$
 $=\{\{0_1, 1, 2, 3, 5, 7\}, \{0_1, 1, 3, 4, 5, 7\}, \{0_1, 1, 2, 4, 5, 7\}, \{1, 2, 3, 4, 5, 7\},\}$ $\{0_1, 1, 2, 3, 5, 7\}, \{0_1, 1, 3, 4, 5, 7\}, \{0_1, 1, 2, 4, 5, 7\}, \{1, 2, 3, 4, 5, 7\}$
 $\{0_1, 1, 3, 5, 6, 7\}, \{0_1, 1, 2, 4, 6, 7\}, \{0_1, 1, 3, 4, 6, 7\}, \{1, 2, 3, 5, 6, 7\},$ $\{0,1,3,5,6,7\}$, $\{0,1,2,4,6,7\}$, $\{0,1,3,4,6,7\}$, $\{1,2,3,5,6,7\}$, $\{1,3,4,5,6,7\}$, $\{1,2,3,4,6,7\}$, $\{1,2,4,5,6,7\}$. Since, $G_e(F_{1,5}, 6) = \{0_1, 1, 2, 3, 4, 5\}$ and Since, $G_{\ell}(F_{1,5}, 6) = \{0_1, 1, 2, 3, 4, 5\}$ and
 $G_{\ell}(F_{1,6}, 6) = \{\{0_1, 1, 2, 3, 4, 6\}, \{0_1, 1, 2, 3, 5, 6\}, \{0_1, 1, 2, 4, 5, 6\},\}$

 $\{0_1, 1, 3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\}\}$
by theorem 2.5 (iii), we have
 $G_e(F_{1,7}, 7) = \{X_1 \cup \{7\} / X_1 \in G_e(F_{1,5}, 6)\} \cup \{X_2 \cup \{7\} / X_2 \in G_e\}$

by theorem 2.5 (iii), we have

$$
\{0_1, 1, 3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\}\}
$$

by theorem 2.5 (iii), we have

$$
G_e(F_{1,7}, 7) = \{X_1 \cup \{7\}/X_1 \in G_e(F_{1,5}, 6)\} \cup \{X_2 \cup \{7\}/X_2 \in G_e(F_{1,6}, 6)\}
$$

$$
= \{\{0_1, 1, 2, 3, 4, 5, 7\}, \{0_1, 1, 2, 3, 4, 6, 7\}, \{0_1, 1, 2, 3, 5, 6, 7\}, \{0_1, 1, 2, 4, 5, 6, 7\}, \{1, 2, 3, 4, 5, 6, 7\}\}.
$$

Theorem 2.7. For every $n \ge 5$, $g_e(F_{1,n}, i) = g_e(F_{1,n-2}, i -1) + g_e(F_{1,n+1}, i -1)$

Proof. Case(i). If $G_e(F_{1,n-2}, i-1) \neq \phi$ and $G_e(F_{1,n-1}, i-1) = \phi$, then,

by theorem 2.5(i), we have $G_e(F_{1,n}, i) = G_e\left(F_{1,n}, \frac{n+1}{2}\right) = \{1, 3, 5, ..., n\}.$ \mathbf{G}_{ϵ} ($F_{1,n}, i$) = \mathbf{G}_{ϵ} $\left(F_{1,n}, \frac{n+1}{2}\right)$ = {1,3,5,...,*n*}. *F* f and $G_e(F_{1,n-1}, i-1) = \phi$, then,
 $G_e(F_{1,n}, i) = G_e\left(F_{1,n}, \frac{n+1}{2}\right) = \{1, 3, 5, ..., n\}.$ Therefore, $g_e(F_{1,n}, i) = 1.$ Also, $T_{1,n-2}$, $i-1$) = $G_e\left(F_{1,n-2}, \frac{n-1}{2}\right)$ = {1,3,5,..., n - 2}. \mathbf{G}_{e} ($F_{1,n-2}$, $i-1$) = \mathbf{G}_{e} $\left(F_{1,n-2}, \frac{n-1}{2}\right)$ = {1,3,5,..., n - 2}. by theorem 2.5(1), we have $G_e(F_{1,n}, i) = G_e(F_{1,n}, \frac{m-1}{2})$
 $G_e(F_{1,n-2}, i-1) = G_e(F_{1,n-2}, \frac{n-1}{2}) = \{1, 3, 5, ..., n-2\}.$ Therefore, $g_e(F_{1,n-2}, i-1) = 1$ and $g_e(F_{1,n-1}, i-1) = 0$. Hence the theorem holds. Case(ii). $\mathbf{G}_{e}(F_{1,n-2}, i-1) = \phi$ and $\mathbf{G}_{e}(F_{1,n-1}, i-1) \neq \phi$, then, by theorem 2.5(ii), we have

Case(ii). If $G_e(F_{1,n-2}, i-1) = \phi$ and
 $G_e(F_{1,n}, i) = G_e(F_{1,n}, n+1) = \{0_1, 1, 2, 3, ..., n\}.$ Therefore, $g_e(F_{1,n}, i) = 1.$ Also, $G_{\rm E}(F_{1,n-1}, i-1) = G_{\rm E}(F_{1,n-1}, n) = \{0, 1, 2, 3, \ldots, n-1\}.$ Therefore, $g_e(F_{1,n-1}, i-1) = 1$ and $g_e(F_{1,n-2}, i-1) = 0$. Hence the theorem holds.

Case(iii). If $G_e(F_{1,n-2}, i-1) \neq \phi$ and $G_e(F_{1,n-1}, i-1) \neq \phi$, then, by theorem 2.5(iii), we have $G_e(F_{1,n}, i) = F_1 \cup F_2$. **Case(iii).** If $\mathbf{G}_{k}(F_{1,n-2}, t-1) \neq \emptyset$ and $\mathbf{G}_{k}(F_{1,n-1}, t-1)$
Where $\mathbf{F}_{1} = \{X_{1} \cup \{n\} / X_{1} \in \mathbf{G}_{k}(F_{1,n-2}, t-1)\}$ and

where $\mathbf{F}_1 = \{X_1 \cup \{n\} / X_1 \in \mathbf{Q}_e(F_{1,n-2}, I -\)$
 $\mathbf{F}_2 = \{X_2 \cup \{n\} / X_2 \in \mathbf{G}_e(F_{1,n-1}, i-1)\}.$ Therefore, $|F_1| = g_e(F_{1,n-2}, i-1)$ and

 $\mathcal{F}_2 = g_e(F_{1,n-1}, i-1)$. Since for every $X_1 \in \mathcal{F}_1$ and $X_2 \in \mathcal{F}_2$, we have $n-1 \in X_2$ but $n-1 \notin X_1$, we have

$$
F_1 \cap F_2 = \phi.
$$
 Therefore,

$$
|G_e(F_{1,n}, i)| = |\{X_1 \cup \{n\} / X_1 \in G_e(F_{1,n-2}, i-1)\}|
$$

*Corresponding Author: Dr.K.Vijila Dafini 5 | Page

$g_e(F_{1,n}, i) = g_e(F_{1,n-2}, i-1) + g_e(F_{1,n-1}, i-1).$														
\dot{i} 1, h	$\mathbf 1$	$\sqrt{2}$	3	4	5	6	$\overline{7}$	$8\,$	9	10	11	12	13	14
$F_{1,2}$	$\mathbf{0}$	$\overline{0}$	$\mathbf{1}$											
$F_{1,3}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\mathbf{1}$										
$F_{\rm 1,4}$	$\boldsymbol{0}$	$\mathbf{0}$	$\overline{2}$	3	$\mathbf{1}$									
$F_{\rm 1,5}$	$\boldsymbol{0}$	$\overline{0}$	$\mathbf{1}$	$\overline{4}$	$\overline{4}$	$\mathbf{1}$								
$F_{\rm 1,6}$	$\boldsymbol{0}$	$\mathbf{0}$	$\boldsymbol{0}$	3	$\overline{7}$	5	$\mathbf{1}$							
$F_{\rm 1,7}$	$\boldsymbol{0}$	$\overline{0}$	$\boldsymbol{0}$	$\mathbf{1}$	$\overline{7}$	11	6	$\mathbf{1}$						
$F_{\rm 1,8}$	$\boldsymbol{0}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{0}$	$\overline{4}$	14	16	$\overline{7}$	$\mathbf{1}$					
$F_{1,9}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{1}$	11	25	22	$\overline{8}$	$\mathbf{1}$				
$F_{1,10}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{5}$	$\overline{25}$	41	$\overline{29}$	$\overline{9}$	$\mathbf{1}$			
$F_{1,11}$	$\boldsymbol{0}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{0}$	$\boldsymbol{0}$	$\overline{1}$	$\overline{16}$	50	$\overline{63}$	$\overline{37}$	$10\,$	$\overline{1}$		
$F_{1,12}$	$\boldsymbol{0}$	$\overline{0}$	$\overline{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	6	41	91	$\overline{92}$	46	$\overline{11}$	$\mathbf{1}$	
$F_{1,13}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$	$\mathbf{1}$	22	91	154	129	56	12	$\mathbf{1}$

 $+\Big|\Big\{X_{2} \cup \big\{n\big\}/\,X_{2} \in \mathbf{G}_{\!e}(F_{1,n-1}, i-1)\Big\}\Big|.$

$$
+ \Big| \Big\{ X_2 \cup \{n\} / X_2 \in G_e(F_{1,n-1}, i-1) \Big\} \Big|.
$$

Hence, $g_e(F_{1,n}, i) = g_e(F_{1,n-2}, i-1) + g_e(F_{1,n-1}, i-1).$

Table 1: $g_e(F_{1,n}, i)$, the number of geodetic set of $F_{1,n}$ with cardinality *i*.

Theorem 2.8. *n* \ge 5, $g(F_{1,n}, x) = x [g(F_{1,n-2}, x) + g(F_{1,n-1}, x)]$ with the initial values $g(F_{1,3}, x) = x^2 + 2x^3 + x^4$ and $g(F_{1,4}, x) = 2x^3 + 3x^4 + x^5$.

$$
g(F_{1,3}, x) = x^{2} + 2x^{3} + x^{4} \text{ and } g(F_{1,4}, x) = 2x^{2} + 3x^{3} + x^{5}.
$$

\n**Proof:** By theorem 2.7,
\n
$$
g_{e}(F_{1,n}, i) = g_{e}(F_{1,n-2}, i-1) + g_{e}(F_{1,n-1}, i-1)
$$
\n
$$
\sum_{i=\left\lceil \frac{n+1}{2} \right\rceil}^{n+1} g_{e}(F_{1,n}, i) x^{i} = \sum_{i=\left\lceil \frac{n+1}{2} \right\rceil}^{n+1} g_{e}(F_{1,n-2}, i-1) x^{i} + \sum_{i=\left\lceil \frac{n+1}{2} \right\rceil}^{n+1} g_{e}(F_{1,n-1}, i-1) x^{i}
$$
\n
$$
g(F_{1,n}, x) = x \left[\sum_{i=\left\lceil \frac{n+1}{2} \right\rceil}^{n+1} g_{e}(F_{1,n-2}, i-1) x^{i-1} + \sum_{i=\left\lceil \frac{n+1}{2} \right\rceil}^{n+1} g_{e}(F_{1,n-1}, i-1) x^{i-1} \right]
$$
\n
$$
g(F_{1,n}, x) = x \left[g(F_{1,n-2}, x) + g(F_{1,n-1}, x) \right].
$$

Example 2.9. In this example, we have to find the geodetic polynomial of $F_{1,10}$ from the geodetic polynomial of $F_{1,8}$ and $F_{1,9}$ by using theorem 2.8. From table 1, we have, From table 1, we have,
 $g(F_{1,8}, x) = 4x^5 + 14x^6 + 16x^7 + 7x^8 + x^9$ and
 $g(F_{1,9}, x) = x^5 + 11x^6 + 25x^7 + 22x^8 + 8x^9 + x^{10}$

By theorem 2.8, we have, By theorem 2.8, we have,
 $g(F_{1,n}, x) = x [g(F_{1,n-2}, x) + g(F_{1,n-1}, x)]$ When $n = 10$, $q(F_{110}, x) = x [q(F_{18}, x) + q(F_{19}, x)]$ $= x [(4x⁵ + 14x⁶ + 16x⁷ + 7x⁸ + x⁹)$

*Corresponding Author: Dr.K.Vijila Dafini 6 | Page

$$
+(x5+11x6+25x7+22x8+8x9+x10)]
$$

g(F_{1,10}, x) = 5x⁶ + 25x⁷ + 41x⁸ + 29x⁹ + 9x¹⁰ + x¹¹

Corollary 2.10. The following properties hold for the coefficients of $g(F_{1,n}, x)$:

(i) $g_e(F_{1,n}, n+1) = 1$, for every $n \ge 3$.

(ii)
$$
g_e(F_{1,n}, n) = n-1
$$
, for every $n \ge 3$.

(iii)
$$
g_e(r_{1,n}, n) = n-1
$$
, for every $n \ge 3$.
\n(iii) $g_e(F_{1,n}, n-1) = \frac{(n-1)(n-4)}{2} + 2$, for every $n \ge 3$.

(ii)
$$
g_e(F_{1,n}, n-1) = \frac{2}{2} + 2
$$
, for every $n \ge 3$.
\n(iv)
$$
\sum_{j=n+1}^{2n+3} g_e(F_{1,j}, n+2) = 2 \sum_{j=n}^{2n+1} g_e(F_{1,j}, n+1)
$$
, for every $n \ge 2$.

(v) If +1 $j = \left[\frac{n+1}{2}\right]^{\mathcal{S}_{e}(\mathbf{I}')}$ $\sum\limits_{n + 1}^{n + 1} \;\; g_{_e}(F_{_{1,n}},j),$ $n = \sum_{n=1}^{\infty} g_e(F_{1,n})$ $S_n = \sum_{n=1}^{n+1} g_e(F_{1,n}, j)$ $\left\lceil \frac{n+1}{2} \right\rceil$ $=\sum_{n=1}^{\infty} g_e(F_{1,n}, j)$, then, for every $n \ge 5$, $S_n = S_{n-1} + S_{n-2}$ with the

initial values $S_3 = 4$, $S_4 = 6$.

$$
(vi) \t ge(F1,2n, n+1) = n, \t for every n \ge 3.
$$

(vii)
$$
g_e(F_{1,2n+1}, n+1) = 1
$$
, for every $n \ge 3$.

Proof of (i). Since $G_e(F_{1,n}, n+1) = \{0_1, 1, 2, 3, ..., n\}$, we have the result.

Proof of (ii). By induction on *n*. The result is true for all natural numbers less than *n*, and we prove it for *n*. **Proof of (ii).** By induction on *n*. The result is true for all natural numbers less than *n*, and we prove it for *n*. By theorem 2.7, induction hypothesis and part(i), we have $g_e(F_{1,n}, n) = g_e(F_{1,n-2}, n-1) + g_e(F_{1,n-1}, n-1)$

$$
= 1 + n - 2
$$

$$
= n - 1.
$$

Proof of (iii). By induction on *n*. The result is true for all natural numbers less than *n*, and we prove it for *n*. By theorem 2.7, the induction hypothesis and part(ii), we have By induction on *n*. The result is true for all natural numbe
, the induction hypothesis and part(ii), we have
 $g_e(F_{1,n}, n-1) = g_e(F_{1,n-2}, n-2) + g_e(F_{1,n-1}, n-2)$

$$
g_e(F_{1,n}, n-1) = g_e(F_{1,n-2}, n-2) + g_e(F_{1,n-1}, n-2)
$$

= $n-3 + \frac{(n-2)(n-5)}{2} + 2$
= $\frac{2(n-3) + (n-2)(n-5)}{2} + 2$
= $\frac{(n-1)(n-4)}{2} + 2$.

Proof of (iv). By induction on *n*. The result is true for $n = 2$, because $\frac{7}{5}$ $F_{1,j}$, 4) = 12 = 2 $\sum g_e (F_{1,j})$ $\sum_{j=3}$ $\frac{1}{3}$ $\frac{5e^{(1)}1}{1}$, $\frac{1}{7}$ $\frac{-1}{2}$ $\frac{2}{1}$ $g_e(F_{1,j}, 4) = 12 = 2 \sum_{i=0}^{5} g_e(F_{1,i}, 3).$ $\sum_{j=3}$ \mathcal{S}_e \mathcal{S}_1 $\sum_{j=3}$ \mathcal{S}_e \mathcal{S}_2 \mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_2 \mathcal{S}_3 $(F_{1,j}, 4) = 12 = 2 \sum_{k=0}^{5} g_{e}(F_{k})$ $\sum_{j=3}^{7} g_e(F_{1,j}, 4) = 12 = 2 \sum_{j=2}^{5} g_e(F_{1,j}, 3).$

Now suppose that the result is true for all numbers less than $n + 2$, and we prove it for $n + 2$. By theorem 2.7, and the induction hypothesis, we have
 $\sum_{j=n+1}^{2n+3} g_e(F_{1,j}, n+2) = \sum_{j=n+1}^{2n+3} g_e(F_{1,j-2}, n+1) + \sum_{j=n+1}^{2n+3$ and the induction hypothesis, we have $\frac{2n+3}{n}$ $\sum_{n=1}^{\infty}$ \sum_{n

$$
\sum_{j=n+1}^{2n+3} g_e(F_{1,j}, n+2) = \sum_{j=n+1}^{2n+3} g_e(F_{1,j-2}, n+1) + \sum_{j=n+1}^{2n+3} g_e(F_{1,j-1}, n+1)
$$

$$
= 2 \sum_{j=n}^{2n+1} g_e(F_{1,j-2}, n) + 2 \sum_{j=n}^{2n+1} g_e(F_{1,j-1}, n)
$$

$$
= 2 \sum_{j=n}^{2n+1} \left[g_e(F_{1,j-2}, n) + g_e(F_{1,j-1}, n) \right]
$$

$$
= 2 \sum_{j=n}^{2n+1} g_e(F_{1,j}, n+1).
$$

Proof of (v).
$$
S_n = \sum_{j=\lceil \frac{n+1}{2} \rceil}^{n+1} g_e(F_{1,n}, j)
$$

$$
= \sum_{j=\left\lceil\frac{n+1}{2}\right\rceil}^{n+1} \left[g_e(F_{1,n-2}, j-1) + g_e(F_{1,n-1}, j-1) \right]
$$

\n
$$
= \sum_{j=\left\lceil\frac{n+1}{2}\right\rceil}^{n} g_e(F_{1,n-2}, j) + \sum_{j=\left\lceil\frac{n+1}{2}\right\rceil}^{n} g_e(F_{1,n-1}, j)
$$

\n
$$
= \sum_{j=\left\lceil\frac{n-1}{2}\right\rceil}^{n-1} g_e(F_{1,n-2}, j) + \sum_{j=\left\lceil\frac{n}{2}\right\rceil}^{n} g_e(F_{1,n-1}, j)
$$

\n
$$
S_n = S_{n-2} + S_{n-1}.
$$

Proof of (vi) and (vii) is obvious.

ACKNOWLEDGMENT

The authors are highly thankful to the anonymous referees for their critical comments and kind suggestions on the first draft of this paper.

REFERENCES

- [1]. Alikhani.A, and Peng Y.H., Introduction to Domination Polynomial of a Graph, arXiv:0905.2251v1 [math.CO] 14May 2009.
- [2]. Alikhani.A, and Peng Y.H., Dominating sets and Domination polynomials of paths, International journal of Mathematics and Mathematical sciences, volume 2009.
- [3]. Alikhani.A, and Peng Y.H., Dominating sets of centipedes,Journal of Discrete Mathematical Sciences and Cryptography,Vol.12(2009).
- [4]. Buckly.F and Harary.F, Distance in graphs, Addison Wesley. Redwood City, CA, 1990.
- [5]. Chartrand.G, Palmer.E.M and Zhang.P, The geodetic number of a graph, Asurvey, Congr.numer.156(2002)37-58.
[6]. Chartrand.G, Harary.F and Zhang.P, On the geodetic number of a graph, Networks 39(2002)1-6.
[7]. Chartrand
- [6]. Chartrand.G, Harary.F and Zhang.P, On the geodetic number of a graph, Networks 39(2002)1-6.
- [7]. Chartrand.G and Zhang.P, Introduction to Graph Theory,MC Graw Hill, Higher education, 2005.
- Vijayan.A and Binu Selin.T, An introduction to geodetic polynomial of a graph
- [8].
[9]. [9]. Bulletin of pure and applied sciences, Vol 31E(Math & Stat.)Issue(No.1)(2012): p 25-32.